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ABSTRACT
Visual interfaces to computer systems are interactive.  The
cycle of visual interaction involves both visual perception
and action.  This paper examines formal models of
interactive systems and cognitive models of users.  Neither
completely captures the special nature of visual interaction.
In order to investigate this, the paper examines two forms
of non-visual interaction: mathematics for the blind and
interaction by smell (nasal interaction).  Finally three forms
of more pragmatic design-oriented method are considered:
information rich task analysis (what information is
required), status–event analysis (when it is perceived) and
models of information (how to visually interact with it).
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1 INTRODUCTION
Visual interfaces are clearly very powerful and popular.  Is
this simply because they look good or are there deeper
reasons?  Also some visual interfaces are more successful
than others, but what makes them so and how can we
design visual interfaces which make maximum use of the
medium?  Without some sort of structured understanding
design is an open-loop activity – even where the design
process is iterative, each attempt is a shot in the dark.

The crucial difference between a visual interface to a
computer system and well designed graphic art (say a
poster on bill-board) is that computer interfaces are
interactive.  We do not just ‘see’ things on the computer
system, but also manipulate them using their visual
properties – “what you can see you can grab”.
Visualisation is about the look of things interaction is about
the feel.

The first part of this paper will deal with models which help
us to understand the nature of visual interaction.  First
looking at the formal models which have been the initial
basis of much of my own work, and then at various
cognitive models.  Each model will tackle only part of the
interactive process.

Figure 1.    Visual interaction

Interaction is often viewed as a cycle where user goals are
translated into user actions, which are processed by  the
machine to give some (visual) response, leading to a
reformulation of goals ... (Norman 1988).  Few models
even attempt to model this entire cycle of activity, and we
will see that both the ‘visual’ and ‘interaction’ aspects
cause problems for many of them!  Note especially that
there is no mouse in figure 1.  It is not at all clear that this
cycle is the best way of looking at mouse-based interaction.

Given the complexity of visual aspects of interaction, the
second part of this paper “pushing the boundaries” looks at
non-visual interaction.  We will try to see what
distinguishes vision from other senses.  Perhaps the success
of modern interfaces is purely to do with their rapid
interaction?  By breaking beyond the boundaries of normal
visual interfaces we can start to see what makes vision
different and hence understand how to use it better.

Finally, in section 4, we will return to the issue of design
and look at more pragmatic methods which attempt to
capture more of the crucial aspects of the cycle of
interaction.  As with the models considered in the first part
they cannot capture everything, but each focuses on some
aspect of the holistic nature of visual interaction.

2 MODELS OF PARTS

2.1 Formal models of display–based interfaces
My own work in HCI began with the study of formal
models of single user interaction.  One of the earliest and
simplest models was the PIE model (Dix and Runciman
1985), developed by Colin Runciman and myself back in
1984 and later developed into various specialised models
for different aspects of interactive systems (Dix 1991).  The
philosophy of the PIE model is to describe an interactive
system from the viewpoint of the user (but not necessarily
in the language of the user!).  Following this philosophy, it
is a black-box model – only concerning itself with the
behaviour of the system as perceived by the user but not the
internal representations used in the programming or even
design of it.
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Figure 2.    The PIE model

The PIE models the behaviour of the system as a function
(I) mapping the trace of user actions (P) to their effect on
the system (E).

I:  P  →  E

These names perhaps need a bit of explanation.  The label
‘P’ originally was short for ‘programs’, it is now rather
confusing, but a change would entail the model also
changing its name!  The set of effects, E, can be thought of
as the state of the system, but in the special sense of the
state as perceivable by the user.  Unpacking this rather
innocuous statement turns out to be a major task (see Dix
1991).

The effect of the user’s actions is typically seen by the user
in two ways.  First of all immediately in the current display
then later in the final results of the interaction, perhaps the
printout of a word-processed document.  These are
represented by the functions ‘display’ and ‘result’ and can
be thought of as the ephemeral and permanent effects
respectively.

display: E  →  D
result: E  →  R

In fact this particular formulation was driven strongly by
the prominence at the time of WYSIWYG – “what you see
is what you get”.  One of our goals was to formalise this
idea so that we could go to a particular system and
pronounce with certainty whether it truly was WYSIWYG
or not!

Looking at the model we have the display: “what you see”,
and the result: “what you get”.  The phrase captures the
idea that from what you see on the display you can know
what you will get in the result.  The simplest formulation of
this is to demand that there is a function (‘predict’) from D
to R.

P
I

E

R

D

predict

Figure 3.    The PIE model

This function must satisfy a simple condition, which says
that the above diagram ‘commutes’:

predict  o  display  =  result

This basically says that if you look at the display then use
the function ‘predict’ to work out what will be on the
printer, then you will be right!

So far so good, but things are never THAT simple.  The
above formulation is both too strong and too weak.

First of all it is too strong.  It says that you can predict all of
the result from the current display.  This is unreasonable.
At the moment I can see only one page of this paper on my
word-processor.  A WYSIWYG word-processor by the
above definition would only cope with single-page memos!
In fact, this is not too serious a problem and there are a
series of more complex formulations which capture the fact
that what is important is not necessarily what you can see
now, but what you could see with a little exploration of the
document.

The more serious problem is that it is too weak.  The above
formulation is based purely on the information available.  It
would find a system that displayed every character upside
down as good as one that displayed them the right way up.
In some sense the function ‘predict’ captures all the user’s
visual perception, but we have no limitations on the sort of
functions which are acceptable.  If no such function exists,
then the system has fundamental problems, but if there is
such a function it may be too complex to use, or even just
plain silly.

From a practical point of view, this is not quite as bad as it
seems as the sort of problem that the formulation does not
cover are ones which are fairly easy to spot.  However, it
does suggest that some understanding of cognitive
processes is also needed.

2.2 Cognitive models
Cognitive models obviously address the left hand side of
figure 1 – the human.  Different models address different
aspects of human behaviour.  We can roughly classify the
relevant models into:

• psychology of  perception

• models of action

• models of processing

These chop up the stages on the human side of the
interaction cycle.

psychology of perception

 

models of processing

  models of action

Figure 4.    Visual interaction

The study of perception is well established, both within
mainstream psychology and applied to interface design
(Monk 1985; Dix et al. 1993).  At a low level we know
about the effects of flicker, the minimum sizes of objects
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which can be seen at different light intensities, the ability to
distinguish colours, including the effects of common types
of colour-blindness, the readability of various fonts, point
sizes etc.  The list goes on.  At a higher level we have
screen layout heuristics and graphic design, often based on
established principles of paper-based graphics (Tufte 1990).

The models of action used in HCI have all been developed
primarily for that purpose.  For example, extensions to
formal grammars have been used extensively to analyse the
consistency of actions required to perform related tasks
(Reisner 1981; Payne and Green 1986).  A related form of
action model is based on hierarchical goal decomposition,
similar to that used in many forms of task analysis.  The
most famous example of this approach is GOMS (Card et
al. 1983), which has been modified and built upon over the
years.  All these models tend to be highly non-visual.  They
start off with a high-level goal, decompose it into a series of
sub-goals (methods in GOMS-speak), then decompose
those sub-goals further until the level of physical operations
is reached (keystrokes, mouse movements etc.).  The
direction is unequivocally outward from brain to fingers.
Sometimes perceptual operators are included, but usually
only for timing purposes.

Despite, or more likely because of, their limitations the
GOMS family of models have been very successful in
predicting timing properties of systems, indeed, predictions
based on one such model (John 1990) showed that a
proposed system for telephone operators would be slower
than the existing system and thus saved NYNEX many
millions of dollars.

These action-based models typically assume minimal
mental activity.  Indeed, as soon as we begin to think, to be
really human, we cease to be predictable and models break
down.  Some techniques do attempt to capture elements of
the way we think, for example the user models built into
some intelligent tutoring systems.  These are most
successful when applied to constrained domains such as
mathematics or programming.  In other words symbolic
domains, not visual!

A different kind of processing model which does capture
more of the movement between perception and action is
ICS (interacting cognitive subsystems) which uses an
architectural model of human cognition in order to predict
interference between different processing activities within
the brain (Barnard 1985; Barnard and Teasdale 1991).  As
with all models it obtains its power by abstraction, it
identifies where visual information is processed (at least in
a logical sense), but does not attempt to address the
understanding of visual information, or the way in which
actions are based on it.

In recent years there has been a minor revolution in the way
(some) researchers think about cognition.  Traditionally
there has been a cerebral fixation – thought happens inside
the head., but this is perhaps not the case.  Imagine we want
to know whether a table would fit in a different part of the
room.  We might measure it and then do the relevant
calculations in our heads.  Alternatively we might simply
move the table around to see where it fits.  In the later case
our thinking involves our interaction with the world.  Even
when we  do mathematical calculations we rarely do it all

in our heads, instead we use paper, fingers, or an abacus.  In
a social situation things get more complicated as people
solve problems together in interaction with one another.
This recognition that thinking happens not just in the head,
but in interaction with the environment is called distributed
cognition (Hutchins and Klausen 1991), or situated action
(Suchman 1987).

In the cognitive modelling community this same spirit,
although sometimes explicitly rejected, is also evident in
recent work in display-based cognition.  Models are being
developed which take into account the dependency of
human action on what is seen and sensed, for example,
Payne’s work on adding display based features in a SOAR
modelling framework (Payne 1994).

In summary, the available models are either very low-level,
giving predictive power at the expense of generality, or
purely high-level heuristic knowledge.  Although display-
based cognition is putting the emphasis onto the whole loop
of interaction, the real breakthrough is that the importance
of human senses has been recognised, rather than the
particular properties of visual interaction.

3 PUSHING THE BOUNDARIES
Recently my daughter was examining an old clock.  It was
unreliable and about to be thrown out.  She wanted to see
how it worked, but it was in a sealed case.  In order to get
inside we had to break the case.  In fact, it is often the case
that you have to break something to see how it works.
Let’s see what happens if we break some of the
assumptions behind modern visual interfaces.

3.1 “You can use it with your eyes shut”:
Advanced Aural Interfaces

Some years ago a common phrase heard in user-interface
circles was “you can use it with your eyes shut”.  This was
supposed to suggest to you just how easy to use a particular
user interface was.  Strangely enough the phrase was
current at just the time graphical user interfaces were
becoming popular and was frequently applied to them.  Of
course, whereas this could be a phrase to apply to an older
command-style interface it seems hardly appropriate for an
interface where visual display is central.  Perhaps the
various specialists were behind the times; or perhaps, as we
saw in the last section, they were too enamoured with
GOMS-like models of performance.

Although the phrase may bring a wry smile to the modern
designer, it is a serious matter if you are visually disabled.

Remember the days when text-based interfaces were the
norm, whether command line or full screen character
terminals.  Everyone had to remember large sets of arcane
commands.  The information available on-screen was
limited and viewing different aspects of data involved
complex navigation between screens.  Although this may
have been complex for the sighted user, it was not
substantially more complex for the blind or partially
sighted.  With a screen-reader and a reasonable memory the
blind user could compete with a sighted user.  In such ways
computers have liberated many disabled people.  Indeed,
from the other end of an email message who knows how
many eyes, legs or fingers the person you are talking to has.
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In contrast, the modern interface is based on recognition
rather than recall.  You are no longer expected to remember
commands, simply look them up on the menu.  Where
keystroke alternatives are supplied0 designers are far less
worried about making them mnemonic and consistent.  But
that doesn’t matter, you only need to remember keystrokes
if you are a ‘power user’!  Displays now have many
windows showing different applications and different
aspects of the same data simultaneously.  Finding out what
you want no longer requires complex interaction, just a
glance at the appropriate window.  Of course, making such
heavy use of the visual sense makes things far more
difficult for the blind.

Even building screen-readers is substantially more difficult:
with a character-based interface the reader could simply ask
the operating system what character was at any screen
location, with bitmap displays reading text is effectively a
form of OCR.  happily, screen-readers for Windows are
available, but this is only the beginning of the problem.
How does one interpret multiple overlapping windows,
menus, dialogue boxes, and the use of different typefaces
and fonts?  There is as yet no definitive answer, although
substantial progress has been made over several years on
the use of sound: both computer generated speech and non-
speech sound (Edwards 1989; Edwards 1993).

The MATHS project is an European TIDE funded project
to build a mathematics workstation for the blind.  When
dealing with text, hearing a paragraph or sentence read to
you is acceptable.  Mathematics is far more difficult.  Even
simple formulae are difficult for a human reader to say
unambiguously and clearly.  Consider:

“the square root of x minus one minus x squared minus 3”

What is squared: the x, “one minus x”?  How much of the
formula is rooted?  The printed formula makes all this clear
using spatial layout:

√ x  –  (1–x)2  –  3

In fact, good readers use vocal clues to help disambiguate:
leaving small pauses, changing the pitch of their voices
(prosody) and adding small phrases “all squared” (Stevens
and Edwards 1994).  On a more complex formula the
sighted mathematician will constantly scan and rescan the
formula to see what it means.  Furthermore, manipulating
mathematics means you have to compare different formulae
rapidly moving your eyes between them.  How can you
provide such facilities in a non-visual interface?

Answering such a question forces an understanding of the
fundamental nature of sight.  Let’s look briefly at three
factors:

• Gestalt  –  Looking at the typeset formula, one can just
‘see’ where the limits of the root and square are.  We get
a similar feeling when we see a rising graph, or a
network diagram.

• Matching  –  Given an equation, we can rapidly look for
occurrences of ‘x’ to see, for example, if all the ‘x’s
have been collected together on one side of the equation.

0  Which is by no means universal, especially on the
Macintosh platform – the bastion of visual interaction!

• Scanning  –  When dealing with large formulae, or
complex diagrams, we cannot take it all in at once in a
gestalt fashion.  This is partly a cognitive limitation and
partly due to the small angle of sharp vision.  When
reading text or looking at a picture, our eyes constantly
flick from  place to place (saccades)

At first the gestalt nature of vision seems most important.
However, for complex formulae this breaks down.  For the
blind mathematician hearing a formula being read, the
complexity of formula at which gestalt understanding is
possible is perhaps smaller, but for both blind and sighted a
more complex interaction with the text is necessary.
Consider the formula:

12zx + 3x – 4x2 + y = –4y + 7zx + 3x + 2y2

The sighted reader can quickly look back and forth at the
‘x’ terms and see that they cancel.   The algorithm goes
something like:

① look at each term on the left in turn
② look for a matching term on the right of the equation
③ if they cancel remove them both
④ otherwise subtract one from the other
⑤ continue from ②  with the next term on the left

We can imagine interfaces to allow such non-visual
scanning,  However, the difference is one of pace (Dix
1992) – the rate at which one interacts.  For the sighted
mathematician the pace is governed by the rate at which we
can move our eyes and fixate on a new position.  The
computer interface is limited by the rate at which the user
can issue navigation commands, but perhaps more critically
by the rate at which parts of the formulae can be spoken.

Notice that I haven’t focused on the two dimensional (or
2.5D) nature of vision, compared to inherent linear nature
of hearing.  This is important within the gestalt of vision,
but when we start to scan the visual field, the glances we
receive come in a linear fashion.  We can easily have 2D
aural interfaces with spatial information from stereo effects
and up-down left-right navigation commands (perhaps by
mouse or joystick).  Both are ultimately linear glances
through a planar space, the issue is the pace with which we
interact with that space.

3.2 Following your nose:
Advanced Nasal Interfaces

Although not a dog-lover  by nature, I have married into a
family of canophiles.  Having dogs thrust upon one, it is
natural to wonder what sort of perception of the world a
dog has.  Whereas vision dominates much of our view of
the world, dogs also depend strongly on their noses and
sense of smell.  Some animals, such as moles, depend even
more on smell rather than sight.

So what does the world ‘look’ like through your nose?
Dogs spend a few seconds sniffing at each place, so we’ll
compare it with what we see of the world through our eyes
when we spend a few seconds looking around.  When we
look around we see a snapshot of the world as it is now.
We may see a large area, but only how it as at a moment.  If
we want to know what happened five minutes, an hour  or a
day ago, we must rely on out memory.  In short, sight gives
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us a snapshot through space of a single time and we must
rely on memory to give is information about other times.

time

space

sight fades
with distance

now

rely on
memory
for past

Figure 5.    Visual perception

Consider now our dog sniffing.  The smell of a place
consists of the odours left by all the animals that have
visited it over a period.  Furthermore, the sensitive nose can
determine not only what has been there, but how stale or
faded the smells are and hence when the visits were made.
That is, the dog perceives a protracted history of a single
location.  If the dog wants to know about another location it
must move and smell there as well.  However, in smelling
at the new location it is no longer able to smell the first
location.  It must remember.  In short, smell gives us a
snapshot through time of a single place and we must rely on
memory to give us information about other places.

This sounds rather off the point.  Am I suggesting
designing interfaces for dogs (canine–computer
interaction?), or adding smells to human interfaces?  No,
the application of this sort of thinking is rather more
prosaic!  It has been previously noted that one difference
between graphical interfaces and command line interfaces
is their treatment of history.  If you are using a graphical
interface, looking at the screen tells you about the state of
the system now, but you have to remember how you got
there.  On the other hand with a command line interface,
the transcript gives you a trace of what you have done and
what parts of the system were like at various times;
however, to find the state of the system now requires
exploration.  Sounds familiar?

So command-based interfaces are rather like sniffing and
GUIs more like seeing. Which is better?  Obviously we are
well adapted to act and respond in visual environments.
We work from the state of the world as we perceive it now,
acting to change it in the ways we desire.  Many of our
basic skills are based on reaction and moment-to-moment
assessment of the situation.  This is why graphical
interfaces are engaging and ‘easy to use’ – they build on
our innate abilities.

time

space

smells fade
with time

now

rely on memory
for other places

here

Figure 6.    Nasal perception

However, much of culture and civilisation depend on a
reaching beyond the here-and-now, an awareness of the
past: the reasons for things and the way in which they have
come to be.  A sense of history is central to all complex
human activity, but it is difficult to manage and to
‘visualise’. That is why human-kind has had to spend many
thousands of years developing the methods for recording
and reasoning in this way.  An example of this is the
difficulty in designing interfaces for undo mechanisms.  If
these are more than a single step then the user is presented
with a textual list of ‘commands’ that have been executed
in the past.  Suddenly the user has to view the world in the
same way as an old fashioned command line interface.
How are the mighty fallen!

If we look wider afield, other animals have different
balances of senses.  Bats using sonar obtain something
close to a snapshot of the world in true three dimensions –
they have an accurate indication of distance as compared to
our use of clues such as hiding and binocular vision.
Probably their sense of what they are ‘seeing’ is less
detailed than vision, but in addition to the a full depth
dimension, they can also detect the speed of objects in their
environment.  We have to estimate speed more crudely
using successive views of an object.  Is it moving from left
to right?  Is it getting closer?  Again this has practical
parallels in the design of environments for scientific
visualisation such as the virtual wind tunnel (Bryson and
Levit 1992), where we want poor 2.5D human vision to
perceive a true 3D vector field.

The examples continue.  Consider whales.  Their sonar
travels over large distances, so the snapshot they receive is
neither of a single moment, nor of a single location, but a
sort of cone through space time.  The further away
something is the further into the past they are looking.  The
time scales here are in the order of no more than tens of
seconds, but it is remarkably similar to the experience of
astronomers peering outwards towards the birth of the
universe.
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Figure 7.    Whales and astronomers

In fact, every sense has limits: smells fade with time, we
can only see to the horizon.  Each sense differs in its local
gestalt, but when we want to build a picture of the wider
world: beyond the present, beyond the horizon; the
distinction between time and space fades.  Our lives and
experience are linear and we eventually rely on memory
and its aids: paper and electronic records.  Larger and larger
screens, immersive virtual reality, Hi-Fi quality stereo
sounds cannot give us everything at once, the nature of our
existence is one of exploration, discovery and recall.

4 CLOSING THE LOOP
Having gained some insight into what makes visual
interaction ‘visual’ let’s look at some more pragmatic
models which can be used during the design of visual
interactive systems.  We will consider what information is
required at any stage during an interactive task, then look at
when information and events will be perceived by the user
and finally look at models of how information is presented
and interacted with.

4.1 What
The MATHS project needs to determine what navigation
mechanism is most appropriate.  In order to determine this
one needs to know which parts of a mathematical
expression the blind user will want to visit during a typical
interaction.  In other words: what information is required at
each stage during the solving of a mathematical expression?
There are some existing models of sighted mathematics,
most notable by Larkin who is working within remit of the
display-based cognition and has constructed lisp models of
algebraic manipulation, focusing on the use of the written
equation (Larkin 1989).  Of course, this was for sighted use
and the program assumes all of the equation is visible all of
the time.  Linehan and McCarthy have used ‘Wizard of Oz’
techniques in order to obtain a more detailed analysis of
information needs during mathematical manipulation
(Linehan and McCarthy 1995).  This involved getting
university students and school children to solve equations
written down on a paper that only the experimenter could
see.  The subjects could ask the experimenter to read parts
of the problem and to write down intermediate results, but
could neither write on nor read the paper directly.

These techniques are not only of use for the design of aural
interfaces for the blind.  Their case is merely an extreme,
the aural ‘window’ on the world is very small, but all
displays are finite.  This is evident when interfaces which
functioned well on a desktop machine are shoe-horned into
a hand-held computer.  However, large the display you can
never get everything in it.  Sometimes we can get away
with being lazy with visual interfaces because there is
sufficient screen space, but then only because a mess of
stacked windows gives a larger virtual screen.

For virtually any system a detailed analysis of information
needs will be useful, if only for frequent scenarios of use.
This could take the form of a detailed walk-through or
perhaps a hierarchical task analysis (Shepherd 1995)
annotated with the information needed to perform each sub-
task.  This can then be used to assess whether the required
information is available in any given design for a visual (or
aural) interface.

4.2 When
If the interface is purely driven by the user, then our job as
interface designers may be simply to ensure that
information is available when it is needed.  However, when
there is any form of sporadic or externally generated events
things are not so simple.  We must ensure that users have
information presented to them and brought to their attention
at a suitable time.  This is one of the outcomes of status–
event analysis.

Status–event analysis covers a range of techniques that
myself and others have worked on over several years.  It is
based on the simple distinction of phenomena into events –
things that happen – and status – things that are.  Events we
are used to: the ringing of an alarm clock to wake you up in
the morning, keystrokes and mouse clicks sent to the
computer and various beeps and tones it makes in return.
Status is a little more complex and refers to anything whose
value you could sample: the time on a watch face, the
position of the mouse on the table, the display on the
screen.  It is interesting to note that many models used in
user interface design are predominantly event based (even
the PIE model for its input!), yet for visually intensive
systems both the major input device, the mouse position,
and the means of output, the display, are both status
phenomena (Abowd and Dix 1994; Dix et al. 1993).  It is
typically the case that if you attempt to model a status
phenomena with events or vice versa the result is less than
ideal!

This distinction, although simple has surprising analytic
power.  It can be used to describe human–human
interaction, human–computer interaction and computer–
computer interaction.  Most important many of the same
phenomena arise in all these different situations.  An
example of this is polling.

Any change in status can be regarded as an event, for
example, when the clock hands pass 10 o’clock.  However,
agents may not notice this change straightaway, there is
typically a lag between the actual event and the perceived
event.  There is only a small number of ways in which the
agent can discover the status change, one of which is
polling, periodically examining the status.  This is what we
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do as humans when occasionally glancing at the clock and
what computers do internally at various levels.

Furthermore, one of the ways in which agents, human and
computer, communicate events to one another is using
status.  One agent changes the status (actual event) and at
some time later the other agent notices the change
(perceived event).  An example of this is the behaviour
during the delivery of electronic mail.  Many of us have
some sort of mailtool that displays an icon on the screen.
When mail arrives it changes the icon to say so.  The icon
may be an image of a mailbox or an in-tray:

– no mail yet

– mail has arrived,  but when?

Has the mail arrived just when the icon changes, or has
there been a lag?  In fact, this is often the culmination of a
complex multi-stage process.  Under UNIX it involves two
status-mediated events depicted in Figure 8.  Let’s start
with mail arriving at the system (of course, it was initially
sent by someone, but that is another story).  This is an
event.  Some level of software agent notices this event
(sendmail under UNIX) and adds the mail message to the
end of the relevant user’s mailbox file.  This is a change in
the status of the file system.  The users mailtool agent
periodically monitors this file, perhaps examining it every
30 seconds – a polling behaviour.  Next time it looks the
file has grown and so it knows that mail has arrived – a
perceived event for the mailtool agent.  It then changes the
icon – a change in status of the screen.  The user
occasionally glances at the screen (a sporadic polling
behaviour) and some time later notices the icon has
changed (perceived event for the user).  Only at this stage
has the mail arrival been successfully notified to the user.

status agenttime
mailbox file

mail arrives

mailtool
agent

event mailtool 
notices

screen
status

event
event

change icon

user

event

user 
notices

Figure 8.    Mail has arrived!

Notice how similar behaviours happen between sendmail
and the mailtool (computer–computer interaction) and
between the mailtool and the user (human–computer
interaction).  Also note that a simple answer to the question
about the lag between arrival and notification may have
missed the human perception stage.  Effective design will
involve both aspects.  Finally, and most important, note
how the same analytic framework has been used throughout

the stages of human–computer interaction.  Rather like the
‘predict’ function in section 2, we have to rely on some
heuristic input to the process to determine how often and
reliably the user is likely to poll the screen, but this is a
highly focused question.  The status–event analysis is
bringing formal analysis of the system and informal
heuristics of the interface together within a single
framework.

This and other aspects of status–event analysis have been
used to analyse small scale properties of on-screen buttons
(Dix and Brewster 1994), medium scale properties of the
timeliness of status information in networked systems (Dix
and Abowd 1995) and the progress of long-term office
procedures (Dix et al. 1996).

4.3 How
Finally let’s look at models of how information is
presented.

There are a variety of models of visualisation coming from
different communities.  For relatively simple data, rules
have sometimes been derived for semi-automatic graphical
layout.  For example:

if the x data is ordered and both x and y are continuous
then use a line plot

Complex scientific data is not so easy!  Many techniques
have been developed, using colour, three-dimensional
effects, flow lines, contours, arrows, and increasingly
virtual reality.  How does one choose which technique to
apply to a particular data-set?  One way to at least get some
handle on this problem is to find some representation of the
dataset and of the visualisation technique so that one can at
least tabulate the possibilities.  An example of this is the
work of Brodie who represents the dataset and the
visualisation using the same notation (Brodie 1993).  For
example a scatter plot is represented as:

dataset: OV2(N1)
visualisation: {O2}0

This says the data set is a function from a one dimensional
set of nominal values ‘N1’ to a two dimensional vector
‘V2’ of ordinal values ‘O’.  The visualisation is a zero
dimensional restriction (the curley brackets) of a two
dimensional ordinal field (the screen).

Although this seems quite complex, it does not even
attempt to deal with computer data, such as trees, graphs,
hypertext and data-base results!  More important it is a
model of visualisation, not visual interaction.  That is it is
primarily interested in the static display of data.  Interaction
introduces extra dimensions.  On the one hand it can add
new methods of viewing complex data.  This is evident in
the use of virtual reality techniques which at very least
allow one to grow the normal visualisation space from two
to three dimensions.  However, the extra temporal
dimension can be used in other ways within both two and
three-dimensional displays.  During the process of
preparing an (unsuccessful!) funding bid some years ago,
my colleagues and I coined the term temporal fusion to
refer to a variety of such techniques which use temporal
behaviour to portray information, often under the control of
the user.  One generic method is sequential temporal fusion.
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For example, two maps of the same area showing different
information (say political and physical features) the maps
are too complex to overlay, but by flicking back and forth
between them one can obtain some feeling for common
features.  In contrast, concurrent temporal fusion occurs
when related things happen to two or more simultaneously
visible objects.  For example, we might see two graphs the
trail of an aircraft through space, the other showing its
distance from base through time.  A point can be moved
along the two graphs and allow the user to see the
relationship between the two.

Finally, we get on to the most complex case of all, the
filtering or modification of possibly complex information
via a visual interface.  One can apply the same sort of
techniques, modelling or taxonomising the information
domain and the different sorts of interaction technique.

An example of this is Ahlberg and Truvé’s recent
classification of interaction widgets (Ahlberg and Truvé
1995).  They consider basic data to consist of tuples of
integers, reals and strings and looks at different sorts of
selectors: individual values, ranges or sets.  This allows a
mapping of the design space and highlights gaps where no
current technique fits.  This sort of two-dimensional
taxonomy grid is often surprisingly effective as one can
take neighbouring techniques and see if they can be
modified to fit an empty location – new widgets from old.

In similar work at Huddersfield, we have been considering
ways to classify the growing number of browsing and
searching techniques for complex data structures.  This
time rather than the data itself, we have focused on the
aspect of the dataset used for retrieval:

• values of attributes  –  as in traditional relational
databases queries

• unstructured keywords  –  as in many bibliographic
searches

• taxonomy or hierarchy  –  as found in file systems and
multi-level library classifications

• direct reference  –  as found in hypertext links and
network or object-oriented databases

• semantic association  –  measures of closeness between
related items

Note how these do not map directly onto the data structure
as, for example, database records could be accessed by
looking at records with similar attributes – semantic
association.  On another axis we can put different
visualisation techniques:

• spatial  –  points in space, e.g. star-field displays
(Ahlberg and Shneiderman 1994)

• structural  –  grids, trees and graphs, e.g. cone-trees
(Robertson et al. 1991)

• summary  –  statistical information, e.g. how many
items in different classes

• listing  –  linear listing of items

• individual  –  only single item or record shown at once

For example, the standard World Wide Web interface uses
direct reference navigation and individual item
visualisation.

Individual item visualisation is perhaps not very interesting
in terms of visualisation, unless each item is itself complex.
However, there are suggestions for adding CSCW
(computer–supported cooperative work) awareness features
to the web so that you can see who has recently accessed
pages and hence perhaps make contact with people of
similar interests.  This may not be heavy on visualisations,
but is remarkably similar to the situation we found in
section 3.2.  So, the culmination of years of international
network development, the first global hypertext, and the
state of the art developments in CSCW have brought us not
to an advanced visual interface, but to the cyber-nose!

5 SUMMARY
Visual interfaces are not just about visualisation, but also
about visual interaction.  The fact that we can investigate,
navigate and modify visualised information gives extra
opportunities and problems.  Interaction is often viewed as
a cycle and we saw that different models only covered parts
of the loop.  Closing the loop typically requires both
technical and human-oriented input into the design process.

The PIE model is able to capture some of the dynamics of
interaction and generic information requirements, but the
information (in the formal sense) oriented nature of the
properties means we need additional human-oriented
analysis.  Although there are many cognitive models of
various aspects of visual interaction, they do not seem
particularly better at capturing the full richness of visual
interaction, although the growing study of display-based
cognition holds great promise.

We looked at what happens when interaction is not visual.
Aural interaction shows that the crucial thing about visual
displays is that we can rapidly navigate them with eye
movement – a form of low-level interaction.  Nasal
interaction reminds us that in being able to see space, we
typically loose a representation of history – both may be
necessary in complex systems.

Armed with a fresh perspective on the nature of visual
interaction, we looked at pragmatic models which may help
in design.  Mathematics for the blind forces an analysis of
information requirements.  However, in visual interaction,
especially when screen space is limited, we also need some
sort of rich task analysis which tells us what information is
required at each point during interaction.  The broad
descriptive nature of status–event analysis has enabled us to
understand aspects of the entire human-computer cycle
from both a formal and informal perspective, bringing the
two together within a common framework.  It has proved
especially powerful in analysing when information
becomes available and is noticed by the user.  Finally, we
looked at models of information itself which help us to
decide how particular information should be represented
and interacted with at the user interface.



28

REFERENCES
G. Abowd and A. Dix (1994). Integrating status and event

phenomena in formal specifications of interactive
systems. SIGSOFT’94,  New Orleans, ACM Press. pp.
44–52.

C. Ahlberg and B. Shneiderman (1994). Visual information
seeking: tight coupling of dynamic query filters with
starfield displays. Proceedings of CHI’94,  Boston,
ACM Press. pp. 313–317.

C. Ahlberg and S. Truvé (1995). Exploring terra incognita
in the design space of query devices. Engineering for
Human–Computer Interaction,  Grand Targee, USA,

P. Barnard (1985). Interacting Cognitive Subsystems: A
psycholinguistic approach to short-term memory.
Progress in the Psychology of Language ,  Ed. A. Ellis.
Hove, Lawrence Erlbaum Associates.  pp. 197–258.

P. J. Barnard and J. D. Teasdale (1991). Interacting
Cognitive Subsystems: A systematic approach to
cognitive-affective interaction and change. Cognition
and Emotion,  5: 1–39.

K. Brodie (1993). A classification scheme for scientific
visualisation. Animation and Scientific Visualisation ,
Eds. R. A. Earnshaw and D. Watson. London,
Academic Press.  pp. 125–140.

S. Bryson and C. Levit (1992). The virtual windtunnel: a
environment for the exploration of three-dimensional
unsteady fluid flows. Computer Graphics and
Applications.

S. K. Card, T. P. Moran and A. Newall (1983). The
psychology of human computer interaction.  Lawrence
Erlbaum.

A. Dix and G. Abowd (1995). Delays and Temporal
Incoherence Due to Mediated Status–Status Mappings.
SIGCHI Bullitin,  (June 1995)

A. Dix and S. A. Brewster (1994). Causing Trouble with
Buttons. Ancillary Proceedings of HCI’94,  Glasgow,

A. Dix, J. Finlay, G. Abowd and R. Beale (1993). Human-
Computer Interaction.  Prentice Hall.

A. J. Dix (1991). Formal Methods for Interactive Systems.
Academic Press.

A. J. Dix (1992). Pace and interaction. Proceedings of
HCI’92: People and Computers VII,  Cambridge
University Press. pp. 193-207.

A. J. Dix, D. Ramduny and J. Wilkinson (1996). Long-
Term Interaction: Learning the 4 Rs. CHI’96
Conference Companion,  Vancouver, ACM Press.

A. J. Dix and C. Runciman (1985). Abstract models of
interactive systems. People and Computers: Designing
the Interface,  Cambridge University Press. pp. 13-22.

A. D. N. Edwards (1989). Soundtrack: an auditary interface
for blind users. Human–Computer Interaction,  4(1):
45–66.

A. D. N. Edwards, Ed. (1993). Extra-ordinary Human–
Computer Interaction.  Cambridge, Cambridge
University Press.

E. Hutchins and T. Klausen (1991). Distributed cognition in
an airline cockpit. Cognition in communication at
work.  Eds. Y. Engestrm and D. Middleton.
CUP:,Cambridge.

B. E. John (1990). Extensions of GOMS Analysis to Expert
Performance Requiring Perception of Dynamic Visual
and Auditory Information. Proceedings of CHI’90,
Seattle, ACM Press. pp. 107–115.

J. Larkin (1989). Display based problem solving. Complex
Information Processing: The Impact of Herbert A.
Simon ,  Eds. D. Klahr and K. Kotovsky. New Jersey,
Lawrence Erlbaum Associates.

C. Linehan and L. McCarthy (1995). A Task Analysis of
Students doing Mathematics: Contributing to the
design of the input and manipulation language.
MATHS Project Internal Report, IR-15.3, University
College Cork.

A. F. Monk, Ed. (1985). Fundamentals of Human
Computer Interaction.  London, Academic Press.

D. A. Norman (1988). The Psychology of Everyday Things.
Basic Books.

S. J. Payne (1994). Acquisition of display-based skill.
CHI’94 Conference Companion,  Boston, ACM Press.
pp. 299–300.

S. J. Payne and T. R. G. Green (1986). Task action
grammars: a model of mental representation of task
language. Human–Computer Interaction,  2 (2): 93–
133.

P. Reisner (1981). Formal grammar and human factors
design of an interactive graphics system. IEE
Transactions on Software Engineering,  7(2): 229–240.

G. G. Robertson, S. K. Card and J. D. Mackinlay (1991).
Cone Trees: Animated 3D Visualisation of
Hierarchical Information. Proceedings of CHI’91
Conference of Human Factors in Computing Systems,
ACM Press. pp. 184–194.

A. Shepherd (1995). Task analysis as a framework for
examining HCI tasks. Perspectives on HCI: Diverse
Approaches ,  Eds. A. Monk and N. Gilbert. London,
Academic Press.  pp. 145–174.

R. Stevens and A. Edwards (1994). Analysis of audio
approaches.  MATHS Project Internal Report, IR-6,
University of York.

L. A. Suchman (1987). Plans and Situated Actions.
Cambridge, Cambridge University Press.

E. R. Tufte (1990). Envisioning Information.  Cheshire, CT,
Graphics Press.


