
Chapter 3
Environments for Cooperating Agents:
Designing the Interface as Medium
A.	Dix,	J.	Finlay	and	J.	Hassell		

3.1 Introduction
Various	 interface	 styles	 suggest	 paradigms	 for	 understanding	 interaction.	 Direct	
manipulation	(OM)	suggests	the	interface	as	a	passive	entity,	providing	tools	for	the	user	
to	 control.	 Intelligent	 interfaces	 suggest	 instead	 an	 active	 interface,	 a	 colleague	which	
(or	even	who)	cooperates	with	 the	user	on	 the	 task	 in	hand.	Each	of	 these	paradigms	
seems	 useful	 in	 different	 contexts.	 Matters	 become	more	 complex	when	we	 consider	
systems	with	multiple	applications	or	multiple	users.	We	can	no	longer	see	the	interface	
as	part	of	a	two-participant	dialogue,	 involving	human	and	computer.	Instead,	we	look	
towards	 an	 environment	 where	 several	 active	 participants	 -	 some	 human,	 some	
automatic	-	cooperate.		

In	this	chapter	we	propose	that	viewing	the	interface	as	a	medium	allows	us	to	make	
sense	 of	 the	 interplay	 between	 passive	 and	 active	 components	 of	 an	 interface,	 and,	
indeed,	of	that	between	human	users.	Within	an	interface	we	will	distinguish	the	objects,	
the	 passive	 elements;	 the	 agents,	 the	 active;	 and,	 most	 importantly,	 the	medium,	 the	
environment	 within	 which	 agents	 act	 upon	 the	 objects	 and	 communicate	 with	 one	
another.	We	consider	how	this	model	can	support	our	understanding	of	the	interaction,	
taking	examples	from	intelligent	interface	design	and	Computer	Supported	Cooperative	
Work	 (CSCW).	 Consequently,	 we	 must	 design	 the	 interface	 as	 a	 medium	 of	
communication:	 an	 environment	 in	 which	 both	 human	 and	 artificial	 agents	 can	
cooperate	effectively	(for	further	discussion	of	cooperation,	see	Chapters	1,	2,	5,	6,	9,	10	
and	11).		

3.2 History
The	analysis	of	an	interface	as	composed	of	Agents,	the	Medium	and	Objects	(AMO)	was	
proposed	 by	 the	 authors	 some	 years	 ago	 as	 a	 way	 of	 understanding	 the	 interplay	 of	
passive	 and	 active	 elements	 within	 single-user	 interactive	 systems	 (Dix	 and	 Finlay	
1989).	Of	particular	importance	is	the	medium,	the	environment	within	which	the	user	
interacts	with	 the	 objects	 and	 other	 agents,	 human	 or	 automated,	 in	 the	 system.	 The	
application	of	AMO	to	single-user	systems	made	use	of	 images	drawn	from	day-to-day	
interpersonal	 communication	 to	 understand	 the	 human-	 computer	 dialogue.	We	 now	
bring	the	approach	full	circle	by	focusing	again	on	multi-user	and	multi-agent	interfaces.	
The	chapter	is	based	partly	on	older,	but	previously	unpublished,	material	and	partly	on	
more	 recent	 implementation	 and	 analytic	 work.	 Several	 ideas	 which	 seemed	 "off	 the	
wall"	 when	 we	 originally	 discussed	 the	 AMO	 model	 are	 now	 only	 relatively	 simple	
extensions	 of	 current	 systems	 and	 metaphors.	 However,	 although	 concepts	 such	 as	

Cite	as:		Dix,	A.,	Finlay,	J.,	Hassell,	J.	(1994).	Environments	for	Cooperating	Agents:	Designing	
the	Interface	as	Medium.	In:	Connolly,	J.H.,	Edmonds,	E.A.	(eds)	CSCW	and	Artificial	
Intelligence.	Computer	Supported	Cooperative	Work.	Springer,	London.	
https://doi.org/10.1007/978-1-4471-2035-3_3	

Environments	for	Cooperating	Agents	 24	

identifiable	 interface	 agents	 are	 now	 part	 of	 the	 normal	 vocabulary	 of	 Human-	
Computer	Interaction	(HCI),	the	medium	itself	is	not.	But	it	is	through	the	medium	that	
human	 users	 cooperate	 with	 artificial	 agents	 and	 with	 each	 other,	 and	 thus	 our	
emphasis	must	shift	towards	the	positive	and	explicit	design	of	the	medium	itself.		

We	 begin	 in	 Section	 3.3	 by	 discussing	 the	 background	 of	 active	 and	 passive	
paradigms	in	single-user	interaction.	This	is	used	as	a	springboard	for	the	discussion	of	
the	AMO	model	 in	Section	3.4.	The	model	 is	used	to	discuss	design	issues	for	adaptive	
interfaces	(Section	3.5),	concluding	that	the	agent	of	adaptivity	should	be	embodied	in	
some	form	within	the	interface.	In	Section	3.6	we	discuss	an	experimental	system	which	
exemplifies	 this	 principle	 of	 embodiment:	 an	 adaptive	 "buttons"	 orientated	 interface.	
We	then	shift	our	attention,	in	Section	3.7,	from	artificial	agents	to	other	people.	We	see	
how	 a	medium-orientated	 perspective	 casts	 light	 on	 some	 design	 issues	 in	 electronic	
conferencing	and	communication.	Finally,	in	Section	3.8	we	give	some	suggested	design	
heuristics	 for	 the	medium,	 incorporating	both	other	agents	and	other	users.	However,	
this	discussion	is	not	intended	to	be	complete;	the	suggestions	are,	we	hope,	useful,	but	
not	crucial.	The	primary	goal	is	to	establish	the	central	importance	of	the	concept	of,	and	
design	of,	the	interface	as	a	medium.		

3.3 Active and Passive Interfaces
Different	 interaction	 styles	 suggest	 different	paradigms	 for	understanding	 interaction.	
DM	interfaces	emphasize	the	passivity	of	the	interface:	the	user	is	interacting	with	things	
in	an	artificial	world	(for	example,	on	a	desktop).	This	interface	style	is	highly	popular,	
partly	because	of	the	naturalness	of	the	physical	metaphors	used,	partly	because	of	the	
immediacy	of	response	(if	you	want	something	to	be	done	you	do	it,	rather	then	telling	
the	system	to	do	it).	In	addition,	the	very	passivity	of	the	system	gives	the	user	a	sense	of	
control;	 the	 initiative	 lies	 with	 the	 user.	 There	 is	 a	 danger	 that	 such	 user-controlled	
dialogues	will	be	under-determined	(Thimbleby	1990),	but	this	is	largely	obviated	by	the	
graphical	presentation	of	the	objects	of	interest.		

Successful	as	such	interfaces	are,	 the	concept	becomes	dangerously	stretched	when	
extended	beyond	 those	 applications	which	 are	most	well	 suited,	 such	 as	drawing	 and	
simple	word	processing.	 In	an	application	such	as	statistical	analysis	you	clearly	want	
the	 machine	 to	 do	something	 for	you	 rather	 than	 you	 doing	 it	 for	 yourself.	 DM	 is	 an	
excellent	paradigm	 for	 the	production	of	 tables	of	data,	but	when	 faced	with	analysis,	
especially	non-standard	analyses,	the	limitations	become	obvious.	DM	techniques	can	be	
used	 to	 draw	 a	 diagram	 describing	 the	 statistical	 processes	 required,	 and	 enabling	
intermediate	 results	 to	 be	 seen,	 so	 encompassing	many	 of	 the	 positive	 points	 of	 DM.	
However,	in	the	end,	you	want	the	machine	to	do	the	actual	calculations:	after	all	that's	
why	you're	using	it.		

Even	the	classic	what-you-see-is	-what-you-get	(WYSIWYG)	word	processor	starts	to	
fail	 when	 more	 complex	 facilities	 are	 demanded	 of	 it:	 style	 sheets	 are	 added	 to	
paragraphs,	 and	 alternative	 views	 may	 even	 be	 given,	 containing,	 essentially,	 text	
formatting	 languages.	 Basically,	 when	 the	 issue	 is	 simple	 page	 layout	 or	 simulated	
typewriting	then	DM	is	sufficient.	However,	as	soon	as	 the	 focus	changes	to	document	
processing	 then	 issues	 such	 as	 consistency	 of	 style	make	 us	 demand	 that	 (again)	 the	
computer	works	for	us.		

Intelligent	interfaces,	on	the	other	hand,	emphasize	the	active	nature	of	the	interface.	
The	 interface	 sits	 between	 the	 user	 and	 the	 application,	 and	 uses	 its	 knowledge	 of	
system	semantics	and	(possibly)	of	user	understanding	to	present	the	application	to	the	
user	 in	 what	 it	 deems	 is	 an	 appropriate	 fashion.	 Adaptivity	 may	 identify	 the	 user's	

Environments	for	Cooperating	Agents	 25	

understanding	 of	 a	 topic	 in	 order	 to	 provide	 a	 restricted	 functionality	 (d.	 Training	
Wheels,	 Carroll	 and	 Carrithers	 1984)	 or	 alter	 the	 presentation	 of	 the	 system's	
functionality	 according	 to	 commonly	 used	 commands	 (Mason	 and	 Thomas	 1984).	
Alternatively,	an	adaptive	system	may	alter	 the	view	of	 the	domain	 in	order	 to	reflect	
the	 user's	 actions	 (Greenberg	 and	 Witten	 1985).	 Regardless	 of	 the	 aspect	 of	 the	
interaction	which	 is	 adapted,	 there	 is	 a	danger	 that	 the	user	will	 suffer	due	 to	 loss	of	
control	over	the	interface	and	a	sense	of	instability.		

Traditional	 User	 Interface	 Management	 Systems	 (UIMS)	 fall	 between	 these	 two	
paradigms.	 They	 act	 as	 a	 bridge	 between	 the	 user	 and	 some	 set	 of	 underlying	
functionality	 (of	which	 the	 statistical	 system	would	 be	 a	 good	 example).	 Applications	
know	little	about	the	specific	user	interface	and	are	addressed	purely	at	the	application	
domain.	The	job	of	the	UIMS	is	then	to	produce	a	means	of	accessing	the	functionality,	
and	presenting	and	manipulating	the	objects	in	the	application	domain.	This	philosophy	
of	 interface	 independent	 applications	 (and	 even	 sometimes	 application	 independent	
interfaces!),	 and	 the	 language	 models	 that	 underlie	 it,	 has	 been	 the	 subject	 of	 an	
extensive	 critique,	which	more	modern	UIMS	are	attempting	 to	address.	 In	particular,	
many	try	to	be	more	"OM-ish",	but	of	course	they	are	addressing	the	application	areas	
where	OM	has	trouble.		

One	issue	that	has	been	a	problem	with	older	UIMS	is	that	the	UIMS's	knowledge	of	
the	application	was	restricted	to	a	type-syntactic	description	of	function	calls	available.	
In	order	to	produce	sensible	interfaces,	deeper	semantic	knowledge	is	often	needed.	To	
address	 this,	 several	 recent	 UIMS	 proposals	 include	 knowledge	 bases	 and	 expert	
systems	 components	 which	 overlap	 to	 some	 extent	 with	 the	 intelligent	 and	 adaptive	
interfaces.		

In	both	the	traditional	UIMS	and	the	intelligent	interface	the	user	interface	is	seen	as	
a	mediator	between	the	user	and	application.	The	user	communicates	 intentions	to	the	
interface	agent,	which	 then	processes	 these	and	passes	 them	on	 to	 the	application.	 In	
order	 to	obtain	 reasonable	performance,	many	UIMS	allow	direct	 semantic	 feedback	 -	
the	 user	 talks	 directly	 to	 the	 application	 -	 largely	 obviating	 the	 original	 intentions	 of	
separation.	In	each	case	we	have	a	three-agent	communication.		

3.4 The Interface as Medium
In	Section	3.3	we	saw	two	very	conflicting	views	of	the	interface.	One,	OM,	emphasizes	
the	 system's	 passivity,	 but	 has	 difficulty	 coping	 with	 active	 applications.	 The	 other,	
represented	by	both	the	adaptive	interface	and	the	UIMS,	has	a	far	more	active	interface	
component,	but	 lacks	that	 feeling	of	directness	and	control	that	makes	OM	so	popular,	
especially	among	the	computer	naive.		

We	take	a	third	view	of	the	interface,	as	a	medium,	which	allows	us	to	make	sense	of	
the	 interplay	between	 the	passive	and	active	 components	of	 an	 interaction.	The	word	
"medium"	here	is	taken	to	include	the	whole	software/hardware	amalgam,	with	both	its	
functional	 and	 aesthetic	 attributes.	 In	 particular,	 it	 is	 not	 limited	 to	 the	 information	
theoretic	concept	of	a	channel	or	the	physical	characteristics	of	a	device,	although	these	
will	both	be	facets	of	the	medium.	In	this	paradigm,	we	decompose	a	system	into	agents	
(human	or	machine),	the	medium	and	objects	(Dix	and	Finlay	1989).		

Objects	here	are	not	those	of	an	object-oriented	system;	only	the	agents	are	capable	
of	autonomous	action.	The	image	is	of	a	physical	object:	it	doesn't	do	anything	but	it	is	
manipulated	 by	 the	 various	 agents	 in	 the	 environment.	 The	 term	 "medium"	 is	 drawn	
wider	 than	 its	use	when	we	say	 that	oils	are	an	artistic	medium.	We	would	also	call	a	

Environments	for	Cooperating	Agents	 26	

style,	 such	 as	 Cubism,	 a	 medium	 encompassing	 a	 whole	 set	 of	 conventions	 and	
constraints.	Similarly,	television	as	a	medium	includes	not	only	the	technical	limitations	
but	 also	 the	 cultural,	 legal	 and	economic	 constraints.	The	medium	 through	which	you	
communicate,	and	in	which	you	operate,	determines	the	way	in	which	you	frame	your	
actions	and	interpret	your	perceptions.	 In	our	context	the	medium	is	the	environment	
through	which	agents	interact	with	one	another	and	with	objects.	We	are	interested	in	
both	qualitative	and	quantitative	attributes	of	this	medium.		

A	 motivating	 example	 for	 this	 approach	 is	 traditional	 mail	 and	 communication	
systems.	 Clearly	 when	 viewed	 as	 theoretical	 communication	 channels	 most	 such	
systems	 are	 similar:	 they	 differ	 more	 in	 the	 qualitative	 aspects	 of	 the	 interface.	 The	
important	thing	to	note	is	that	these	non-functional	differences,	such	as	pace	and	ease	of	
interaction,	 can	 make	 profound	 differences	 to	 the	 content	 of	 communication.	 This	 is	
typified	 by	 the	 differences	 between	 face-to-face,	 telephone	 and	 paper	 mail	
communication.		

In	the	mail	example,	the	total	system	consists	of	the	medium	and	the	people	who	are	
communicating.	 The	medium	 is	 (relatively)	 passive	 and	 the	 people	 active.	 In	 general,	
systems	 have	 active	 members	 other	 than	 the	 humans	 and	 we	 refer	 to	 both	 types	 of	
active	 member	 as	 agents.	The	 final	 classification,	 objects,	refers	 to	 those	 components	
that	are	passive,	but	not	merely	artefacts	of	the	interface,	for	instance	data	files.	As	with	
many	such	classifications	it	can	be	carried	out	at	various	levels	in	the	system	description.	
For	 example,	 at	 one	 level	 the	 postal	 system	 is	 a	 medium	 through	 which	 agents	
communicate,	 whereas,	 at	 another	 level,	 it	 involves	 the	 letters	 as	 objects	 being	
manipulated	by	the	postman,	an	agent.	Another	example	is	a	washing	machine:	this	is	an	
object	when	it	is	being	lifted	out	of	a	van,	but	an	agent	when	washing	clothes.		

When	we	 first	used	 the	AMO	model,	 the	principal	agents	within	a	 system	were	 the	
applications	and	perhaps	other	users.	The	term	was	a	way	of	identifying	the	active	parts	
within	systems,	but	was	not	normally	used	by	the	systems	themselves.	Now,	of	course,	
the	idea	of	agents	has	become	commonplace,	but	it	is	still	important	to	look	for	interface	
elements	that	are	not	designated	"agents"	by	the	developer	and	yet	exhibit	autonomy	-	
we	will	see	examples	of	this	later.		

It	is	also	important	to	note	that	agents	within	the	system	may	have	different	levels	of	
autonomy	 and	 intelligence.	 An	 automatic	 mail	 reply	 tool	 is	 an	 agent	 which	 acts	
autonomously,	 but	without	 intelligence.	 An	 adaptive	macro	 generator	 acts	with	 some	
intelligence.	Human	agents	obviously	are	fully	autonomous	and	intelligent!		

3.5 Adaptive Interfaces
The	distinctions	introduced	can	be	used	purely	descriptively	or	normatively	in	judging	
existing	or	putative	systems.	An	example	of	an	interface	issue	that	can	be	addressed	is	
that	 of	 adaptive	 or	 intelligent	 interfaces	 (see	 also	 Chapter	 10).	 These	 are	 sometimes	
justified	 by	 analogy	 with	 human	 dialogue	 (Kass	 and	 Finin	 1988)	 .	 When	 we	 enter	 a	
dialogue	with.	other	human	agents	we	expect	them.	 .to.	adapt	the	level	and	style	of	the	
dialogue	 to	 their	 perception	 of	 our	 abilities,	 knowledge	 and.	 alms;	 the	 same	 type	 of	
adaptive	dialogue,	 it	 is	argued,	should	be	possible	with	computers.	On	the	other	hand,	
such	adaptive	systems	may	be	unpredictable	to	use,	leaving	the	users	feeling	lacking	in	
control,	 as	 the	 system	 continually	 tries	 to	 second	 guess	 them,	 and	 unsure	 of	 the	
response	from	(and	even	the	method	of	achieving)	system	operations.	Again,	we	see	the	
conflict	 between	 a	 user-controlled	 passive	 (but	 stupid)	 interface	 and	 a	 more	 active,	
intelligent,	 and	 independent	 one.	 Can	 the	 AMO	 distinctions	 help	 us	 to	 resolve	 this	
conflict?		

Environments	for	Cooperating	Agents	 27	

By	analysing	appropriate	real-world	situations	in	terms	of	agents	and	media,	we	can	
make	 recommendations	 as	 to	which	 parts	 of	 a	 computer	 system	 should	 be	 subject	 to	
adaptivity.	If	we	examine	again	the	analogous	human-	human	dialogue,	it	consists	of	two	
agents,	the	participants,	and	the	medium	through	which	they	communicate.	In	the	case	
of	face	-to-face	conversation	the	medium	would	include	the	air	through	which	the	sound	
waves	travel,	the	language	used,	the	non-verbal	visual	cues,	and,	in	a	wider	setting,	the	
room	in	which	the	conversation	is	taking	place.	The	important	thing	to	note	is	that	it	is	
the	other	participant	(the	agent)	who	adapts	and	the	medium	which	remains	relatively	
stable.	We	would	 find	 it	extremely	disconcerting	 if	 the	air	around	us	began	to	vary	 its	
properties	in	sympathy	with	its	model	of	us,	perhaps	reducing	the	speed	of	sound	to	a	
few	centimetres	per	second	in	order	to	slow	the	rate	of	dialogue	down,	or	adding	echoes	
if	 it	 thought	 we	 were	 missing	 things.	 The	 closest	 effect	 one	 could	 imagine	 would	 be	
chatting	next	to	a	sound	sensitive	disco	light	controller!		

Of	course,	changes	of	medium	do	occur.	However,	 these	tend	to	occur	at	a	 low	rate	
and/or	 under	 the	 mutual	 agreement	 of	 the	 parties.	 For	 instance,	 if	 telephone	
conversations	are	 interspersed	with	written	 letters,	 the	change	 in	pace	and	context	of	
the	 medium	 is	 rather	 obvious.	 One	 can	 consider	 more	 dynamic	 situations,	 such	 as	 a	
technical	 "brainstorming",	which	 swap	between	use	of	direct	 speech,	whiteboard,	 and	
pencil	and	paper.	However,	in	this	case,	the	alternative	media	are	supplementary	rather	
than	representing	a	total	change	in	the	medium	of	dialogue.		

If	 we	 look	 again	 at	 adaptive	 interfaces,	 the	 situation	 is	 similar	 to	 human-	 human	
dialogue	-	we	have	two	agents,	the	user	and	the	application,	and	the	interface,	which	is	
the	 medium	 between	 them.	 However,	 in	 this	 case,	 it	 is	 not	 the	 other	 agent	 (the	
application)	which	adapts	but	the	medium	itself.	That	is,	the	supporting	analogy	breaks	
down	on	who	and	what	is	adapting.	It	is	not	surprising,	then,	that	the	user	may	feel	out	
of	control,	as	the	very	means	of	communicating	with	the	system	is	neither	predictable	
nor	 stable.	 Users	must	 possess	 such	 a	 deterministic	ground	in	 order	 to	 have	 a	 context	
from	which	to	view	and	interact	with	the	less	predictable	parts	of	a	system	(Dix	1990,	
1991).	 A	 possible	 solution	 is	 to	 introduce	 an	 active	 agent	 into	 the	 system	which	will	
cooperate	with	the	user	on	the	task	in	hand.	The	adaptivity	is	thereby	shifted	from	the	
medium	(the	 interface)	 to	another	agent.	The	 interface	retains	 its	 consistency	and	 the	
adaptivity	is	localized.		

We	can	 think	of	 this	 approach	as	embodied	adaptivity.	There	are	 two	ways	 in	which	
adaptivity	 can	 be	 embodied	 in	 the	 interface.	 The	 first	 is	 if	 the	 adaptive	 agent	 itself	 is	
given	 an	 embodiment.	 Hewlett-Packard's	 New	 Wave	 agents	 are	 an	 example	 of	
autonomous	 agents,	 embodied	 in	 an	 icon	 in	 the	 interface.	 One	 can	 imagine	 similar	
agents	given	an	element	of	 intelligence	and	thus	being	a	 focus	 for	 interface	adaptivity.	
An	 example	 of	 an	 existing	 system	 where	 the	 adaptivity	 is	 given	 such	 an	 iconic	
embodiment	 is	 EAGER	 (Cypher	 1991).	 This	 system	 looks	 for	 commonly	 occurring	
command	 sequences	 and	when	 it	 thinks	 that	 it	 can	 predict	 your	 future	 commands,	 a	
smiling	cat	appears,	highlighting	its	suggestion	for	your	next	command	(menu	selection	
etc.).	This	can	either	be	ignored	or	the	prediction	confirmed.		

The	second	way	of	embodying	adaptivity	is	to	embody	the	results	of	adaptivity.	In	the	
Xerox	 Buttons	 environment	 snippets	 of	 Lisp	 code,	 which	 act	 on	 the	 user's	 electronic	
environment,	 are	 attached	 to	 on-screen	 buttons	 (MacLean	 et	 a1.	 1990).	 When	 the	
buttons	 are	 clicked,	 the	 Lisp	 code	 is	 executed	 on	 the	 user's	 behalf,	 a	 form	 of	
sophisticated	macro.	Buttons	 can	be	 copied	and	amended	by	 the	user,	making	 them	a	
focus	for	the	user's	own	adaptation	of	the	interface.	However,	although	the	buttons	are	
autonomous,	 in	 that	 they	 perform	 tasks	 for	the	 user,	 they	 are	 not	 intelligent,	 and	 are	
thus	 adaptable	 but	 not	 adaptive.	 Similar	 facilities	 are	 now	 becoming	 available	 on	
commercial	word	processors	and	spreadsheets,	but	with	more	limited	macro	languages,	

Environments	for	Cooperating	Agents	 28	

and	tied	to	particular	applications.	As	well	as	being	more	 flexible,	 the	buttons	are	 first	
class,	 that	 is,	 they	 are	 manipulable	 items	 in	 the	 interface.	 In	 particular,	 they	 can	 be	
mailed	(locally)	from	person	to	person.	This	happens	frequently	because	the	users	who	
require	adaptation	may	not	always	be	sufficiently	proficient	Lisp	programmers,	so	one	
user	may	produce	a	button	and	then	give	 it	 t6	another	user.	Thus,	 the	button	has	also	
become	 a	 focus	 of	 adaptivity	 within	 the	 social	 group.	 The	 agent	 of	 adaptivity	 is	 the	
colleague,	 a	 human	 agent.	 It	 is	 only	 a	 small	 step	 to	 consider	 using	 the	 non-intelligent	
button	as	 the	embodiment	of	 the	results	of	an	adaptive	 interface.	This	 is	precisely	 the	
approach	taken	in	the	experimental	system	described	in	Section	3.6.		

3.6 An Experiment in Embodied Adaptivity
Current	 work	 in	 user	 modelling	 for	 adaptivity	 has	 mostly	 been	 restricted	 to	 the	
application	level,	despite	the	fact	that	much	of	the	 information	contained	in	the	model	
has	a	wider	applicability	than	the	scope	of	the	application	domain	in	question.	It	seems	a	
waste	 that	 this	 domain-independent	 information,	 which	 has	 been	 acquired	 at	 some	
considerable	cost,	is	only	allowed	to	affect	the	operation	of	the	application	in	which	its	
model	resides.		

The	 different	 levels	 of	 generality	 of	 the	 information	 stored	 in	 the	 model	 seem	 to	
indicate	that	the	information	should	be	stored	in	a	hierarchical	structure	with	the	more	
application-independent	information	further	up	the	hierarchy	and	the	more	application-
specific	information	being	stored	closer	to	the	leaves	(which	in	this	case	could	contain	
information	 relating	 to	 the	 current	 instance	 of	 the	 application	 usage,	 for	 example,	
information	specific	to	the	current	document	being	worked	upon).		

This	 hierarchical	 structure	 provides	 an	 efficient	 way	 of	 storing	 user	 modelling	
characteristics	 and	 also	 allows	 for	 inheritance	 of	 general	 characteristics	 by	 any	 new	
tools	 introduced	 to	 the	 system.	 The	 reverse	 operation	 -	 of	 specific	 information	
propagating	up	 the	hierarchy	as	 it	 is	 inferred	 to	be	more	general	 than	 the	 level	of	 the	
hierarchy	 at	 which	 it	 resides	 -	 also	 aids	 the	 process	 of	 task	 recognition	 in	 a	 global	
system-wide	context.		

The	 advantages	 of	 this	 structuring	 are	 obvious.	 With	 current	 advances	 in	 multi-
window,	multi-tasking	operating	systems,	people	are	adopting	a	more	concurrent	tool-
based	approach	to	work.	The	boundaries	between	applications	are	no	longer	rigid,	and	
interfaces	are	becoming	more	data-orientated	rather	than	application-orientated.	These	
new	work	styles	require	adaptation	 to	break	out	of	 its	application-specific	 role	and	 to	
have	 effect	 on	 the	 system	 as	 a	 whole	 if	 it	 is	 to	 be	 useful	 in	 any	 real	 sense.	 The	
hierarchical	structuring	of	the	information	parallels	closely	the	way	in	which	tasks	are	
repeatedly	 broken	 down	 into	 subtasks,	 until	 the	 subtasks	 can	 be	 achieved	 by	 an	
application.		

This	approach	to	whole-system	modelling	allows	any	agent,	whose	job	is	to	perform	
adaptation,	 to	 range	 over	 the	 entire	 user	 environment	 (the	 medium),	 thus	 giving	 it	
scope	to	provide	a	consistent	adaptive	interface	to	the	system	as	a	whole.		

As	 an	 initial	 trial	 of	 the	 ideas	 presented	 here,	 an	 experimental	 system	 has	 been	
designed.	The	domain	 chosen	 for	 the	prototype	 is	 that	 of	 document	processing	under	
LaTex	on	UNIX	graphic	workstations.	There	were	a	number	of	reasons	 for	 this	choice:	
firstly,	 this	 is	 the	 environment	 that	 a	 good	number	of	 the	 researchers	 at	York	use	 for	
their	document	processing	requirements;	secondly,	the	production	of	documents	using	
the	 system	 requires	 the	 use	 of	 many	 diverse	 tools,	 and	 the	 set	 of	 these	 and	 the	
environment	 in	which	 they	 are	 used	 has	 been	 shown	 through	 questionnaires	 to	 be	 a	

Environments	for	Cooperating	Agents	 29	

matter	 of	 personal	 preference;	 and	 finally	 the	 complexity	 of	 mastering	 the	 tools,	
methodologies	and	command	syntax	is	substantial.		

The	concept	of	the	system	is	essentially	simple	-	a	button-dock	is	 introduced	to	the	
machine's	 work	 surface	 with	 buttons	 that	 automate	 the	 user's	 habitual	 tasks	 (for	
example,	 there	may	be	buttons	 for	print,	spell-check	and	preview).	These	buttons	can	be	
seen	as	intelligent	agents	working	in	the	environment.	Buttons	are	created	or	destroyed	
automatically	by	an	adaptive	filter	working	on	a	trace	of	the	user's	interaction	with	the	
command	 line	 and	 also	 with	 the	 buttons	 themselves	 (the	 collection	 of	 which	 is	
transparent	to	the	user).		

The	 filter	 builds	 up	 a	 hierarchical	 model	 of	 the	 user's	 interaction,	 starting	 at	 the	
lowest	level	of	the	tree	-	the	specifics	of	the	document	in	question.	Commands	that	are	
used	habitually	are	migrated	to	a	button	with	a	script	specific	to	the	current	document.	
Over	 time,	 inferencing	 techniques	within	 the	 agent	 recognize	 similarities	between	 the	
scripts	 of	 buttons	 at	 the	 same	 level	 in	 the	 hierarchy	 and	 automatically	 form	 a	 more	
general	 script	 at	 a	 level	 one	 higher	 than	 the	 specific	 scripts.	 Any	new	document	 then	
inherits	the	general	buttons	of	the	 levels	above	it	 to	give	a	default	button-dock	for	the	
new	instance.	As	buttons	are	created	automatically,	so	their	traced	use	is	also	subject	to	
adaptation,	and	buttons	that	are	not	used	will	gradually	be	destroyed	and	replaced	by	
others.		

To	 ensure	 stability	 of	 the	 interface,	 and	 to	 comply	 with	 the	 argument	 that	 the	
medium	should	not	be	subject	to	adaptation,	the	addition	of	the	buttons	to	the	interface	
does	not	in	any	way	change	the	methods	with	which	the	user	can	get	the	job	done.	The	
buttons	are	a	simple	adaptive	addition	to	the	interface,	the	introduction	of	new	agents,	
and	can	be	completely	ignored	by	the	user	if	he	or	she	so	wishes.		

The	 application	 of	 the	 AMO	 paradigm	 to	 this	 area	 provides	 important	 design	
heuristics	 to	 constrain	 the	 adaptivity	 in	 the	 system	when	 the	 agents	 in	 question	 are	
autonomous	adaptive	 agents.	 In	 Section	3.7	we	 change	our	 focus	 to	 consider	how	 the	
paradigm	can	be	used	to	analyse	human-	human	communication	in	computer	supported	
conferencing	systems.		

3.7 Conferences and Cooperation
Imagine	a	physical	conference	room.	What	is	it	like?	Typically,	you	would	expect	to	see	
chairs	 and	 tables,	 an	 overhead	 projector,	 a	 whiteboard,	 a	 screen,	 and,	 if	 it	 is	 in	 use,	
people	with	many	bits	of	paper.	They	do	not	 constitute	a	conference	 in	 the	same	way	
that,	 say,	 a	 collection	 of	 pipes,	 boilers	 and	 turbines	 might	 constitute	 a	 power	 plant.	
Instead,	the	conference	room	is	a	medium	in	which	the	participants	are	able	to	make	for	
themselves	a	conference.	Often,	the	basic	geometry	of	the	room	is	varied	from	meeting	
to	meeting,	 some	 groups	 opting	 for	 a	 linear	 "boardroom"	 effect,	 others	 placing	 chairs	
and	 tables	 in	 a	 circle,	 others	 stacking	 the	 tables	 and	 having	 ranks	 of	 chairs	 looking	
forward	 at	 the	 speaker.	 It	 is	 usually	 the	 case	 that	 such	 furniture	 shuffling	 takes	place	
prior	to	the	meeting	proper.	That	is,	the	meeting	has	two	phases:	in	the	first	the	room	is	
the	medium	and	the	chairs	and	tables	are	objects	to	be	manipulated;	in	the	second,	the	
conference	proper,	the	geometry	becomes	part	of	the	medium	itself.		

In	special-purpose	rooms,	such	as	 lecture	theatres	or	boardrooms,	where	the	range	
of	use	is	well	understood,	the	geometry	may	be	fixed.	This	usually	renders	such	rooms	
virtually	 unusable	 for	 other	 purposes.	 This	 has	 been	 recognized	 in	 many	 areas,	 for	
example	in	church	interiors,	where	the	fixed,	forward	facing	Victorian	pew	is	now	often	

Environments	for	Cooperating	Agents	 30	

replaced	by	movable	 chairs	 to	 allow	different	 geometries	 for	 Sunday	worship	 and	 for	
alternative	weekday	activities.		

Occasionally	technical	constraints	may	force	the	room's	designer	to	fix	the	geometry.	
This	was	 the	 case	with	 the	design	of	Capture	Lab	 (Mantei	1988),	 a	 computer	assisted	
meeting	 room.	Mantei	 describes	 how	 difficult	 this	 design	 process	was,	 and	 the	many	
different	 design	 options	 that	 were	 considered.	 However,	 the	 eventual	 design,	 the	
product	 of	 much	 careful	 thought,	 still	 conflicted	 with	 the	 participants'	 social	
expectations	-	the	participants	had	to	learn	the	new	positions	of	power	and	cooperation	
that	 went	 with	 the	 new	 environment.	 To	 some	 extent	 this	 re-orientation	 was	 an	
inevitable	 consequence	 of	 new	 technology,	 but	 it	 underlines	 the	 complexities	 of	
designing	 a	 system	 for	 conferencing,	 even	where	 the	main	 elements	 are	 physical	 and	
well	understood.		

A	 medium-orientated	 approach	 to	 electronic	 conferencing	 would	 suggest	 that	 the	
emphasis	should	be	on	producing	a	medium	for	communication,	which	the	participants	
should	shape	to	their	needs,	 like	the	conference	room	with	chairs	and	tables;	that	is,	a	
collection	 of	 shared	 items	 and	 tools	 that	 the	 participants	 can	 structure	 to	 their	 own	
needs.	One	would	not	dream	of	designing	a	physical	conferencing	room	around	a	model	
of	 a	 typical	 meeting	 agenda.	 However,	 that	 is	 precisely	 the	 approach	 of	 structured	
communication	systems	such	as	Coordinator	(Flores	et	al.	1988).	More	in	line	with	the	
medium-orientated	approach	would	be	locally	structured	conferencing	systems	such	as	
the	 Amsterdam	 Conversation	 Environment	 (Dykstra	 and	 Carasik	 1991),	 where	 the	
system	 has	 minimal	 structure,	 allowing	 the	 participants	 to	 build	 the	 conversation	 or	
conference	of	their	choice.		

On	 the	 whole,	 conferencing	 and	 communications	 systems,	 even	 the	 most	 loosely	
structured,	stand	apart	 from	normal	single-user	 interaction.	However,	 the	participants	
in	the	physical	room	would	bring	in	objects	from	other	work	contexts:	briefcases,	piles	
of	 papers,	 overhead	 acetates.	 Similarly,	 we	 should	 eventually	 look	 towards	 a	
communication	medium	which	is	seamless	with	the	normal	single-user	medium,	rather	
than	 a	 conferencing	 "application"	 separate	 from	 the	 rest	 of	 the	 interface.	 The	 closest	
extant	 system	 to	 this	 ideal	 is	 probably	 the	 Doors	 metaphor	 (Cook	 and	 Birch	 1991),	
which	is	similar	to	Rooms	(Henderson	and	Card	1986).	As	in	the	Rooms	metaphor,	the	
user	can	move	between	several	virtual	rooms,	but,	unlike	the	original	metaphor,	some	of	
the	rooms	are	private	works	paces	-	normal	electronic	desktops	-	and	some	are	shared.	
The	user	can	carry	objects	back	and	 forth	between	these	private	and	shared	rooms.	A	
more	 mundane,	 but	 more	 prevalent,	 example	 is	 the	 growing	 sophistication	 of	
"enclosures"	mechanisms	in	commercial	LAN-based	email	systems.		

3.8 Designing the Medium
We	have	seen	how	important	it	 is	to	distinguish	the	adaptive	agents	from	the	medium	
within	 an	 interface,	 and	 discussed	 a	 medium-orientated	 approach	 to	 electronic	
communication.	 We	 now	 address	 the	 more	 general	 question	 of	 how	 to	 design	 the	
interface	as	a	medium	within	which	the	user	can	cooperate	with	other	users	and	with	
electronic	 agents	 in	 a	 unified	 manner.	 The	 medium	 should	 be	 invisible	 to	 the	 users	
themselves:	it	is	the	environment	within	which	they	work	-	natural	and	transparent.	But	
to	obtain	that	effect	it	must	be	highly	visible	to	the	designer.	All	interfaces	constitute	a	
medium	-	the	issue	for	the	designer	is	not	whether	to	design	a	medium,	but	whether	the	
design	 should	 be	 implicit,	 an	 accident,	 or	whether	 to	make	 the	 design	 of	 the	medium	
explicit.		

Environments	for	Cooperating	Agents	 31	

In	many	circumstances,	 the	medium	is	 largely	"given",	part	of	 the	operating	system	
or	window	manager.	Developers	can	build	upon	this	given	medium,	as	an	artist	adopts	a	
particular	style	in	the	use	of	oils,	but	they	operate	under	strong	constraints	-	the	effect	
on	 the	 medium	 of	 these	 pervasive,	 underlying	 systems	 is	 enormous.	 However,	 these	
pervasive	 media,	 designed	 for	 single-user/single-application	 interaction,	 will	 become	
increasingly	strained	as	integration	between	users	and	between	applications	increases,	
and	 autonomous	 agents	 (surrogates,	 filters,	 helpers)	 become	 commonplace.	 To	
encompass	 these	 diverse	 developments	 we	 need	 a	 fresh	 look	 at	 the	 design	 of	 these	
underlying	systems	and	the	media	they	portray.		

We	 do	 not	 attempt	 a	 complete	 answer	 to	 the	 difficult	 problem	 of	 designing	 the	
medium,	but	suggest	a	 few	useful	heuristics	and	directions:	active/passive	separation,	
equal	 access,	 use	 of	 existing	multi-user	 and	 of	 single-application	media.	However,	 the	
important	issue	is	that	the	medium	needs	to	be	designed.		

3.8.1 Separation

One	issue	that	has	already	arisen	 is	 the	separation	of	 the	active	and	passive	parts	of	a	
system.	 It	is	easy	 to	 let	active	 functionality	"creep"	 into	 those	parts	 that	ought	 to	 form	
the	 user's	 deterministic	 ground.	 This	 is	 frequently	 a	 problem	 in	 modern	 hypertext	
systems.	Early	descriptions	of	hypertext	gave	the	impression	of	a	passive	system,	a	sort	
of	highly	 connected	electronic	book.	This	 is	 still	 the	 impression	given	by,	 say,	 address	
book	applications	and	is	largely	the	model	portrayed	to	the	hypertext	viewer.	However,	
in	many	authoring	systems	the	implementation	is	very	different.	Each	button	on	a	card	
triggers	a	piece	of	code,	one	possible	action	of	which	 is	 to	move	 to	another	card.	This	
allows	more	complex	systems	than	the	simple	book	metaphor	would	suggest.		

For	an	example	of	this	problem	consider	a	tourist	information	system.	It	has	one	card	
in	which	hotels	are	listed	alphabetically,	but	the	user	can	also	look	at	an	area	map	and	
then	navigate	 to	a	 list	of	all	 the	hotels	 in	 that	area.	 If	 you	 take	a	passive	model	of	 the	
hypertext,	 then	 you	 know	 that	 every	 time	 you	 return	 to	 the	 hotel	 listing	 the	 same	
information	will	 be	 displayed,	 but	 you	 have	 no	 guarantee	 (except	 the	 accuracy	 of	 the	
data	 input)	 that	 the	 alphabetic	 and	 the	 area	 listings	 are	 consistent.	 An	 active	 view,	
where	 the	 lists	are	seen	as	computed,	does	guarantee	consistency	between	views,	but	
not	necessarily	through	time	-	we	all	know	systems	where	each	time	we	ask	the	same	
thing	we	 get	 a	 different	 answer.	Which	model	 should	 the	user	 adopt?	The	 clues	 as	 to	
which	is	the	appropriate	model	are	often	absent	and	yet	the	models	make	very	different	
predictions	about	the	system.	If	the	developer	is	careful,	a	hypertext	need	not	suffer	this	
problem,	but	it	is	an	easy	trap	to	fall	into.		

Designers,	whether	of	hypertext	or	any	other	interface,	should	be	clear	in	their	own	
minds	as	to	which	elements	of	the	interface	are	active	and	which	passive.	This	should	be	
communicated	to	the	users,	by	documentation	and	by	clues	in	the	presentation	as	to	the	
affordances	of	the	objects.		

3.8.2 Access

In	real	 life,	 through	social	and	physical	constraints,	we	do	not	have	equal	access	 to	all	
objects.	 However,	 when	 cooperating	 closely	 with	 others	 it	 is	 often	 the	 case	 that	 the	
principal	 objects	 and	 the	medium	of	 communication	 itself	 are	 equally	 available	 to	 all.	
This	is	close	to	Thimbleby's	principle	of	Equal	Opportunity	which	suggests	(among	other	
things)	 a	 blurring	 between	 the	 items	 in	 the	 interface	 used	 for	 input	 and	 output	
(Thimbleby	1986,1990).	If	we	design	the	interface	as	a	medium,	we	expect	it	to	behave	
in	roughly	similar	ways	when	sending	information	to	and	from	the	user.	However,	the	

Environments	for	Cooperating	Agents	 32	

facilities	normally	available	to	the	user	and	to	the	application	are	very	different.	Happily,	
there	are	some	exceptions.		

Took's	Presenter	system	(Took	1990)	treats	the	interface	graphics	as	a	data	structure.	
Items	may	be	moved,	resized	and	edited,	by	the	application	and	by	the	user.	This	is	not	
an	anarchic	situation	as	the	movability	constraints	and	the	groupings	of	items	can	be	set	
so	 as	 to	 mimic	 standard	 interface	 widgets	 (and	 novel	 ones).	 However,	 the	 overall	
impression	is	that	the	surface	interface	is	an	area	of	negotiation	between	the	user	and	
application,	a	medium	of	communication.		

Another	example	of	good	practice	is	the	HyperCard	development	environment	(Apple	
1987).	If	the	programmer	wants	a	script	to	draw	a	filled	circle,	then	the	script	selects	the	
circle	 from	 the	 toolbox,	 clicks	 at	one	 corner,	 clicks	 at	 the	other	 (drawing	 the	outline),	
then	selects	the	paint	can	from	the	toolbox	and	clicks	in	the	middle	of	the	circle	(filling	
it).	 The	 script	 performs	 exactly	 the	 same	 actions	 as	 the	 developer	would	 to	 paint	 the	
circle	by	hand.	The	card	surface	is	the	common	object	upon	which	the	programmer	and	
the	programmer's	scripts	are	working,	using	the	shared	medium	of	the	toolbox.	This,	of	
course,	is	the	situation	for	the	HyperCard	programmer;	the	user	may,	depending	on	the	
skills	of	the	programmer,	suffer	exactly	the	paradigm	problems	described	earlier.		

3.8.3 Using Models of Interpersonal Communication

One	 way	 to	 design	 the	 medium	 is	 to	 take	 an	 existing	 electronic	 human–human	
communication	 mechanism	 and	 use	 this	 for	 communication	 with	 other	 non-human	
agents.	Email	systems	are	an	obvious	candidate,	and,	indeed,	it	is	possible	to	send	email	
messages	to	special	mailboxes	which	act	as	"servers",	perhaps	mailing	back	a	document,	
or	 adding	 you	 to	 a	 distribution	 list.	 Structured	mail	messages,	 such	 as	 those	 in	 LENS	
(Malone	 et	 al.	 1986),	 offer	more	 opportunities	 for	 communication	with	 other	 agents.	
Indeed,	the	Mailtrays	system	(Rodden	and	Sommerville	1991)	is	described	in	terms	of	"a	
federation	 of	 cooperating,	 distributed	 agents"	 which	 communicate	 using	 structured	
email	-	the	medium.	For	example,	to	compile	a	program,	one	mails	a	"compile"	form	to	a	
compiler	agent,	which	returns	a	"report"	form	when	the	compilation	is	(successfully	or	
otherwise)	complete.		

To	 return,	 yet	 again,	 to	 hypertext,	 this	 is	 used	 as	 the	 object	 of	 cooperation	 or	 the	
medium	of	communication	in	several	conferencing	and	shared	editing	systems	(e.g.	ACE	
or	 Quilt).	 The	 hypertext	 in	 such	 systems	 is	 clearly	 passive	 -	 the	 agents	 of	 change	 are	
other	participants.	Social	protocols,	 locking	schemes	or	automatic	change	notifications	
are	used	to	inform	the	participants	of	one	another's	actions.	This	suggests	that	hypertext	
may	 be	 used	 as	 a	 medium	 itself	 between	 user	 and	 intelligent	 agents.	 This	 gives	 a	
possible	way	forward	for	the	separation	problem	in	hypertext:	the	text	itself	is	passive,	
but	it	is	altered	in	specific	places	and	times	by	a	cooperating	agent.		

3.8.4 Using Models from Application Interfaces

One	 can	 also	 look	 at	 application	 interface	 paradigms	 and	 ask	 whether	 these	 can	
generalize	to	ways	of	communication	with	other	users,	or	multiple	agents.	In	the	earliest	
interfaces,	 the	 interaction	was	 restricted	 to	 a	 single	 application.	 This	 single	 focus	 has	
been	 developed	 in	 two	 quite	 different	 directions	 in	 more	 modern	 multi-window	
graphical	interfaces.		

One	 paradigm	 is	 seen	 in	 Macintosh	 and	 Next	 systems:	 the	 screen	 has	 windows	
representing	 objects	 from	 different	 applications,	 but	 only	 one	 application	 is	 active.	
There	is	an	implicit	address	to	the	user's	actions,	the	current	application.	One	can	view	

Environments	for	Cooperating	Agents	 33	

this	in	two	ways,	either	as	looking	through	the	application	to	the	desktop	(as	suggested	
by	the	Macintosh's	menu	border),	or	as	looking	at	the	windows,	with	the	application	by	
one's	 side.	 This	 "over	 the	 shoulder"	 view	 of	 the	 application	would	 suggest	multi-user	
interfaces	of	the	"shared	window"	or	"shared	screen"	type.		

The	other	paradigm	is	exemplified	by	the	many	UNIX	window	systems.	In	these,	the	
application	 is	embodied	within	a	window.	There	 is	still	a	single	active	application,	but	
this	is	within	the	active	window.	The	visual	clues	which	emphasize	this	are	the	fact	that	
menu	bars	and	status	information	tend	to	be	placed	within	the	windows,	as	opposed	to	
on	the	desktop.	The	interpersonal	communication	suggested	by	this	paradigm	would	be	
where	a	user	was	embodied	within	a	window,	basically	a	"phone"	type	connection.		

Both	paradigms	have	the	data	objects	within	the	applications.	This	is	less	clear	in	the	
Macintosh	 type	 interface,	 but	 true	 of	 both.	 Indeed,	 this	 is	 how	 applications	 are	
traditionally	coded,	 the	data	 is	 read	(in	a	proprietary	 format)	 into	 the	application,	 the	
application	 portrays	 the	 object	 to	 the	 user	 and	 updates	 the	 object	 for	 the	 user,	 and	
finally	the	object	is	saved.	This	paradigm	does	not	easily	admit	cooperation	either	with	
other	users	or	with	autonomous	agents.		

The	emergence	of	various	forms	of	object	linking,	the	embedding	of	objects	produced	
by	one	application	with	those	of	another,	may	change	these	paradigms.	However,	this	is	
changing	 the	 way	 one	 looks	 at	 documents;	 they	 no	 longer	 "belong"	 to	 a	 single	
application.	At	present,	the	outcome	of	editing	an	embedded	object	is,	in	effect,	to	flip	to	
that	application,	 focusing	on	the	embedded	object,	but	this	accommodation	of	the	new	
paradigm	 within	 the	 old	 is	 rather	 strained.	 A	 new	 paradigm	 is	 needed	 where	 the	
applications,	 together	 with	 the	 users,	 look	 at	 and	 act	 upon	 the	 document.	 Such	 a	
medium-orientated	paradigm	will	make	 it	 easier	 to	 include	 other	 users	 and	 agents	 in	
this	cooperation.		

3.9 Conclusions
We	have	 seen	 how	 the	 AMO	model	 has	 allowed	 us	 to	 analyse	 several	 areas,	 often	 by	
structuring	analogies	with	physical	examples.	In	particular,	it	has	suggested	an	approach	
to	adaptive	interface	design,	and	gives	us	a	basis	for	evaluation	of	conferencing	systems.	
However,	 the	 general	 approach	 is	 wider	 in	 scope	 than	 these	 examples.	 As	 computer	
systems	begin	 to	 incorporate	 various	 active	 agents,	 and	 as	we	 expect	 to	work	 closely	
with	other	people,	the	electronic	environments	in	which	we	work	must	change.		

Such	environments	must	be	places	where	cooperating	agents	can	work	together	and	
yet	must	 retain	 the	 advantages	 of	 the	 OM	 paradigm.	 To	 do	 this,	 we	must	 design	 the	
interface	as	a	medium.		

		

Acknowledgements	Alan	Dix	is	funded	by	SERC	Advanced	Fellowship	B/89/ITA1220,	
and	Jonathan	Hassell	by	a	CASE	studentship	from	SERC	supported	by	DEC.	

