
Three DSP Tips

Alan Dix

School of Computing,

Staffordshire University

Stafford, UK

 alan @hcibook.com

http://www.hiraeth.com/alan/papers/DSP1999/

Some years ago the author was involved in a project which required the
detection and location of signals where the signal-to-noise ratio was between
0.001 and 0.0001 Ð that is, the signal was over 1000 times weaker than the
background noise. This report describes three 'tricks' used to solve this
problem: (i) hand massaging of digital filters to remove DC bias; (ii) using
time dependent filters to shift target frequencies to zero Hz and so allow
undersampling and more complex processing at slower clock speeds; (iii) non-
linear correlation filtering for stereo signals to extract common, but possibly
phase shifted, signals from multiple detectors with independent noise at each
source. Although these were employed for a specific problem, they could each
be used independently or used together for other DSP problems.

Keywords: digital signal processing, signal-to-noise ratio, covariance, band-
pass filter, Fourier analysis, stereo, real-time programming

Introduction
Some years ago, the author was involved in a project to detect and track an emitter
of fixed frequency signal using several independent detectors. With no background
noise it would have simply involved a form of triangulation between the detectors to
determine the target position. The reality was more complex than that, with
enormous (slowly changing) DC bias at each detector and noise generated by motors
and other equipment. The signals being detected were electromagnetic, but the
techniques could be used for acoustic or other types of signal.

The problem

A single emitter is producing signals at a known frequency ω0 with some slow time-
dependent amplitude change as the emitter moves relative to the detectors. There is
a large time-varying DC bias that is partly common to the detectors and partly
independent. Large here means a noise-to-signal ration of 1000 to 10 000 to 1. That is
our noise swamps the signal several thousand fold! There were also multiple
external sources of other frequency noise.

Unknown
formerly at Staffordshire University,now at Lancaster University

http://www.hiraeth.com/alan/papers/DSP1999/

Three DSP Tips 2

single
emitter

multiple
detectors

Figure 1. emitter and detectors

The circumstances are quite specific, but are not that different from, for example,
locating a mobile phone from its signal strength at several base locations. In this
case, there may well be large scale, slowly varying, electromagnetic fields caused by
atmospheric conditions. These could be many times stronger than the phone signals
and pose a similar problem.

Similarly, for stereo acoustic detection, there will be slow pressure changes in the air
caused by winds and other atmospheric effects, but also other sources of noise.

The simplifying feature of the problem dealt with here is the known fixed target
frequency, but the some of the techniques can be applied to unknown frequencies,
where the calculations are effectively reproduced in parallel for a set of Fourier
frequencies.

Critical factors

Let's look at the implications of the various factors.

fixed frequency signal

Although this frequency is known it is not possible to know that the clocks at the
emitter and detectors are 100% accurate with respect to one another. That is a
nominal 100 Hz could easily be 101 Hz or 99 Hz. Thus the fixed frequency can help
us, but an extremely narrow band pass filter could lose the signal. Although the
signal was known, it varied from emitter to emitter and so the hardware analogue
filters had to have a broad enough band-pass to cope with a range of target
frequencies Ð only at the digital stage was the exact frequency known.

amplitude modulation signal

The amplitude modulation effectively introduces a slow time-dependant phase shift
to the signal. This again means that a very narrow band pass filter would destroy
the signal.

time varying DC bias

If the DC bias were fixed it could be removed by the simplest of analogue or digital
filters. However, as the bias changes slowly with time meaning it 'leaks' into other
frequency ranges, including our target frequency. Recalling the large noise-to-signal
ratio, this is a significant effect.

Three DSP Tips 3

large noise-to-signal ratio

With 14 bit AD capture and a noise to signal ratio of up to 10 000 to 1, it is clear that
the real signal will only be able to affect the bottom few bits of the captured signal.
pre-filtering with analogue band-pass filters reduced the noise somewhat, but could
not, for various practical reasons, achieve massive reductions.

independent other noise sources

The non-DC external sources were far less strong than the DC bias (but still
significant). However, it was possible (and in some cases likely) that they would
produce noise within the target frequency range. Thus digital and analogue band-
pass filtering would tend to leave some of these in as well as the DC leakage. The
only redeeming feature is that this kind of noise was, in the particular problem
situation, largely independent at each detector. In our case this was because the
external sources of noise tended to be closer to one detector or another, but it would
also be the case for noise generated internally at the sensors.

Solution architecture

In order to deal with the above problem a five stage solution was used:

(i) analogue band-pass filter (broad)

(ii) digital band-pass filter (tuned to target frequency)

(iii) single point time-dependent Fourier filter

(iv) correlation filtering

(v) triangulation (using the recovered signal)

The first stage is standard and the last stage particular to the application domain and
commercially sensitive. The middle three stages are discussed in this report. These
techniques could be used together or independently for different kinds of problem.

In the system we developed stage (i) was performed in hardware. The analogue
signal was captured using 14 bit A-D converters. Stages (ii) and (iii) were performed
within an interrupt handler which had to be guaranteed to finish within the
sampling period τ . Any complex processing had to be avoided. The interrupt
routine therefore passed values for each sensor through to a main program loop in
which subsequent processing of stages (iv) and (v) was performed. This main loop
operated at a slower rate than the interrupt routine due to undersampling between
stages (iii) and (iv).

Technique 1 Ð hand massaging digital filters
Problem: automatically generated integer digital filters

Solution: modify integer coefficients to improve specific DC attenuation

The digital filters in stage (ii) were generated using a computer package. Given
parameters, such as a band-pass window, tolerance at the edges of the window,
choice of filter type (including several types of both IIR and FIR), the package found
an optimal filter and could then output this in a number of forms including

Three DSP Tips 4

calculations using integer coefficients. The latter was chosen for the target
application because the integer calculations on the chosen DSP chip were far faster
than its floating point calculations.

The generated filter was a multi-stage IIR type where stage 0 was the input signal
and each stage(x[i]) was calculated from the previous stage (x[i-1]) using a
calculation of the form:

x[i]t = (a x[i]t-1 + b[i]0 x[i-1]t + b[i]1 x[i-1]t-1 + b[i]2 x[i-1]t-2) / scale[i]

The rescaling at the end was included by the package to obtain a unit gain in the
filter overall. However, because the signal was only being captured in the lowest
bits of the A-D it was desirable to add gain wherever possible and the scale factor
was reduced accordingly. (N.B. the scale factor was, of course, chosen to be a power
of two and implemented as a shift!) However too much gain would lead to integer
overflow. The faster the initial stages could reduce the noise level, the higher the
gain could be in these stages increasing the sensitivity of the device.

A close examination of the coefficient triples b0, b1, b2 were typically values like:

643, -1285, 643 or 1013,-2027,1013

From the mathematics of the chosen filters and examination, it was clear these were
intended to be of an elliptic form: b, -2b, b, but that rounding to integers gave the
slight discrepancies. The pure filter would of course destroy a DC bias completely,
but the rounded one merely attenuated it. A simple hand editing of these
coefficients to values such as:

643, -1286, 643 or 1013,-2026,1013

Killed the troublesome DC bias and led to an instant 10 fold increase in sensitivity of
the filter!

Although the precise circumstances were particular to our problem, the general
advice is to look carefully at such automatically generated figures. A small tweak
can lead to massive improvements.

Technique 2 Ð time dependent Fourier filter
Problem: need more filtering then CPU time available

Solution: use time-dependent filter and under-sampling

After the above digital filtering there was still a significant amount of noise (recall
that the original noise-to-signal ratio was 10 000!). Furthermore some of this noise
was within the target signal band. More sophisticated filtering was obviously
required. However, CPU resources were near their limits. The problem was, how to
do more filtering with only a small amount of free time resources. Processing at the
full signal rate was impossible.

The solution adopted was, once every cycle of the target frequency, to do a one point
Fourier transform of the signal and use the output of this as a new, signal with a
slower rate.

Given the target frequency w0, assume that its period is exactly n of the underlying
clock ticks. That is if the sampling period is τ:

Three DSP Tips 5

n τ =
1
ω0

Then every n ticks, two values S and C are calculated from the filtered signal xt.

S = ∑
k=0

n-1
xt-k sin(

2πk
n))

C = ∑
k=0

n-1
xt-i cos(

2πk
n))

As is evident, this constitutes a single value from the full Fourier transform over the
n samples of the signal.

The resulting values S and C, sampled once every n ticks of the underlying sample
rate, become the signal for future processing.

The process of generating S and C can be seen as a form of band pass filter in itself.
More important the combined effect of multiplying by a sine/cosine filter and
undersampling at the cosine frequency has the effect of shifting the frequency of the
signal.

This can most easily be seen using a complex Fourier transform. Imagine we are
calculating the output at every time step, not just once per period. Consider the

component of the input signal,ÊX(ω)ei2πω t, at frequency ω. We imagine we are
multiplying the signal by time dependent filter with period ω0. Because we are
undersampling this has exactly the same effect as our sine/cosine convolution. The
filtered value of X(ω) is:

X(ω) ∑
k=0

n-1
 ei2πω (t-kτ)ei2πω0(t-kτ) = X(ω) ei2π(ω+ω0)t ∑

k=0

n-1
 eÐi2π(ω+ω0)kτ

The last term of this:

G(ω) = ∑
k=0

n-1
 eÐi2π(ω+ω0)kτ

Is the gain at frequency ω.

The first part is the time varying signal. But note it is at ω+ω0 rather than ω. In fact,
a real signal at frequency ω will have complex components at frequency ± ω, so the
real signal will end up with components at (ω+ω0) and (ω-ω0).

The result of all this is that part of the target signal at ω0 is transformed to zero Hz!1
This means our original fast varying signal is now slowly varying and we have far
more time to do complicated filtering.

1 To be honest there is a bit of slight of hand here. The undersampling on its own has the effect of
aliasing the signal at ω0 with zero Hz. This would be the case with any form of intermediate
convolution filter, not just the sine./cosine filter, indeed true even if there were no filtering
whatsoever. Because of the previous band-pass filtering the frequencies that would alias with those
near the target are all much weaker.

Three DSP Tips 6

Technique 3 Ð correlation filters
Problem: multiple data streams with correlated signal and uncorrelated noise

Solution: build signal correlation at specific frequency

We now have a slowly varying signal operating near zero Hz. One solution would
be to simply average the signal over a long time period. Alternatively we could
have performed some more band pass filtering at 0 Hz (averaging is effectively a
simple band pass filter for 0 Hz anyway!). However, we have 3 problems:

(i) aliased noise Ð There is some noise at the target frequency. One of the
potential target frequencies happened to be 50 Hz, which of course is the
normal AC operating frequency in the UK, so there would be much
interference from AC motors etc.

(ii) target accuracy Ð There may be a small difference between clock used to
drive the signal emitter and the clock at the detectors, meaning the signal
could end up just outside a very narrow band pass filter.

(ii) signal modulation Ð The signal is slowly changing in amplitude and phase
due to movement of the detectors relative to the emitter. This means that
the signal is effectively spread over a slightly wider bandwidth and
would again be destroyed by a very narrow band pass filter, even if both
emitter and detectors have perfect frequency match.2

With a single detector we would probably have to content with the level of signal we
had. There would be no way of distinguishing the emitter's signal from other noise
at the target frequency. However, we have one advantage Ð multiple detectors. In
our application, the signal was common to all detectors (although there would be
amplitude and phase differences) and the main noise sources were different for each
detector.

If we treat the C and S values at each detector, d, as a complex signal sd(t), we can
model the signals as:

sd(t) = kde(t) + nd(t)

where e(t) is the emitter signal, kd is the (complex number representing) the phase
and amplitude shift of e(t) at detector d, and nd(t) is the noise at detector d.

Note that kd is precisely the value we would like to recover. The difference in
amplitude is precisely the information required to perform triangulation.. In our
case, the phase difference was largely due to sampling strategy, but with acoustic or
seismic signals the phase difference could also be useful information.

In fact, the k values themselves vary slowly over time (problem iii), but (happily) it
turned out that the timescale for (iii) was slow enough to be ignored in this stage of
processing. This effectively puts a time limit on the whole process Ð results need to
be delivered at a pace similar to the rate of change of the measured phenomena!

2 This is a standard problem (but often overlooked) Ð a 'perfect' filter would only detect an infinitely
long, stable, sinusoid source!

Three DSP Tips 7

The noise from each detector is assumed to be independent. This means that the
correlation between two detectors' noise is zero:(averaged over a sufficiently long
period):

E (nd(t) × nd(t)) = 0

N.B. E is the statistical 'expected' value and this means that over a sufficiently long
time the average will be approximately zero

∑
t

Ênd(t)Ê×Ênd(t) ≈ 0

In addition, there will be no correlation between the noise and the target signal e(t):

∑
t

Ênd(t)Ê×Êe(t) ≈ 0

(If there were, then it would not be noise!)

This gives us the means to perform a 'correlation' filter. For each pair of complex
signals we compute a time averaged product. This builds a covariance matrix:

md,d' = ∑
t

Êsd(t)Ê×Êsd'(t)

Expanding this we get:

md,d' = ∑
t

Êkde(t)Ê×Êkd'e(t)Ê+Êkde(t)Ê×Ênd'(t)Ê+Ênd(t)Ê×Êkd'e(t)Ê+Ênd(t)Ê×Ênd'(t)

The latter three terms average to zero over a long period meaning that the calculated
covariance matrix becomes an accurate estimate of the matrix obtained by
multiplying the k values together (outer product of the 'k vector'):

md,d' ≈ kd × kd' × |e|2

The scaling factor is simply the overall signal strength, which was measured
independently using simpler algorithms! The matrix values allow the comparative
values of the k's to be recovered.

The only complication in recovering the k values is that the matrix values
corresponding to signals at the same detector had to be ignored. We actually had
x,y,z channels at each detector, which of course would be subject to potentially
correlated noise. These values were discarded, leaving a partial matrix (Fig. 2).
Happily, the out product matrix is so redundant it is still easily possible to recover
the k values. Either using a least squares solution, or a simpler closed solution such
as:

k1 = m12 .
m'12
m'21

where m'ij = ∑
k≠i,j

ÊmikÊ

Three DSP Tips 8

detector 1 detector 2 . . . detector n

x y z x y z x y z

detector 1
x
y
z

discard valid . . . valid

detector 2
x
y
z

valid discard . . . valid

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

detector n
x
y
z

valid valid . . . discard

Figure 2. partial covariance matrix

Summary
The three 'tips' presented here were developed as part of a solution to a specific
problem. They each address different aspects of the problem and so may be useful
in other circumstances.

1. hand tweaking of digital filters Ð A good idea for any automatically generated
integer coefficient filter. You can then use automatic tools or analytic
calculations to test which of the 'close' digital versions is best.

2. frequency shifting using Fourier filter and undersampling Ð This can be used in
any application where pre-filtering can reduce the bandwidth to avoid
aliasing.

3. correlation filtering Ð This can be used wherever there is stereo or other multi-
detector input .

To the best of my knowledge (3) is a completely original method, (2) is a different
way of looking at undersampling and (1) is sheer computer hackery!

However, as an academic, DSP is not my specialist area Ð I am simply a practitioner,
so I would welcome any information on similar techniques used elsewhere.

The take away message is not just that there are three useful techniques, but that for
a specific problem one cannot simply take pre-packaged techniques of the shelf.
Instead, one needs to look at the particular conditions of the situation, both its
problems and its opportunities. An appropriate solution will often involve tweaking
existing methods or developing tailored ones for the problem at hand.

Three DSP Tips 9

Bibliography
I've read many books on aspects of Fourier analysis, but own few. The best
introductory ones usually have titles like "Mathematics for Engineers". The book I
use as a basic reference is:

¥ O. L. R. Jacobs (1974). Introduction to Control Theory. Oxford University Press.

For coding examples of Fourier transforms, digital filters and much else, the only
place is:

¥ ???? (19XX). Numerical recipies in C ZZZZ Press.

Finally for information about physical tranducers:

¥ C. Loughlin (1993). Sensors for Industrial Inspection. Kluwer Academic Publishers.

Appendix Ð some more tips for real time programming
If you are implementing DSP algorithms you will probably be trying to write fast
code, often with real-time constraints, such as catching interrupts. So, as well as the
DSP tips there are a few real computer hacker ones as well, for tight real-time
systems programming.

¥ know your platform ÐÐ rules change so check them out!

¥ you should know this, but ... where possible use shifts instead of multiply and divide

¥ where possible use integers instead of floats

¥ favour integer sizes that match the platform Ð not necessarily the smallest. Memory
access and arithmetic operations will usually be most efficient at the machine's
natural precision.

¥ inlining functions does not always make code faster Ð I don't know why, I guess
compilers do worse register allocation!

¥ loop unrolling does not always make code faster Ð For the same reason as above, also
if the machine has an instruction cache a small loop may fit entirely in the cache
whereas the unrolled loop will demand constant memory accesses.

¥ write the slowest code possible not the fastest Ð Wait do I really mean that? Well, not
quite ...

¥ write code with predictable timings Ð In real time processes don't have lots of clever
conditions that make the code faster most of the time, but sometimes leave a
slower alternative. When you test the code you will hit the fast ones and only
when it is deployed will the slow case occur, possibly forcing missed interrupts,
lost data etc. etc. If the code always runs the same speed testing gives you
accurate timings Ð if it runs fast enough during testing, it won't fail in the field!

