
From the Web of Data to a World of Action
Alan Dix a,*, Giorgos Lepouras b, Akrivi Katifori c, Costas Vassilakis b, Tiziana Catarci d, Antonella Poggi d,

Yannis Ioannidis c, Miguel Mora e, Ilias Daradimos b,c, Nazihah Md.Akim a,, Shah Rukh Humayoun d , Fabio Terella f

a Computing Department, Lancaster University, Lancaster, UK
b Dept. of Computer Science and Technology, University of Peloponnese, Tripolis, Hellas (Greece)
c Department of Informatics & Telecommunications, University of Athens, Athens, Hellas (Greece)

d Dipartimento di Informatica e Sistemistica, Universita' di Roma "La Sapienza", Rome, Italy
e Escuela Politécnica Superior,Universidad Autonoma de Madrid, Madrid, Spain

f EXALTECH S.r.l., Rome, Italy

Abstract

This paper takes as its premise that the web is a place of action, not just information, and that the purpose of
global data is to serve human needs. The paper presents several component technologies, which together work
towards a vision where many small micro-applications can be threaded together using automated assistance to
enable a unified and rich interaction. These technologies include data detector technology to enable any text to
become a start point of semantic interaction; annotations for web-based services so that they can link data to
potential actions; spreading activation over personal ontologies, to allow modelling of context; algorithms for
automatically inferring 'typing' of web-form input data based on previous user inputs; and early work on inferring
task structures from action traces. Some of these have already been integrated within an experimental web-based
(extended) bookmarking tool, Snip!t, and a prototype desktop application On Time, and the paper discusses how the
components could be more fully, yet more openly, linked in terms of both architecture and interaction. As well as
contributing to the goal of an action and activity-focused web, the work also exposes a number of broader issues,
theoretical, practical, social and economic, for the Semantic Web.

Key words: task support, spreading activation, intelligent user interfaces

1. Introduction

From human readable web pages, to formal
semantics of linked data and the emergent social
semantics of tags and folksonomies, we routinely look

to the web as both a source of information and a place
to put data. However, the web is also a locus of
action: users want to get things done, whether booking
a hotel room, or editing an online spreadsheet.

The boundaries between web and desktop
interaction are blurring. On the one hand, the
traditional PC desktop is now inhabited by widgets
such as the Mac Dashboard, web fast-download apps
such as Java Web Start or Adobe Air, and expanded
browser functionality such as Chrome. On the other
hand, computation and applications that once were part
of the desktop are now hosted on the web (for example
word-processing with Google Docs), and various
technologies enable web applications to function even

* Corresponding author. Tel: +44 1524 510319
Email addresses: alan@hcibook.com (Alan Dix), G.Lepouras@uop.gr
(Giorgos Lepouras), vivi@di.uoa.gr (Akrivi Katifori), costas@uop.gr
(Costas Vassilakis), catarci@dis.uniroma1.it (Tiziana Catarci),
poggi@dis.uniroma1.it (Antonella Poggi), yannis@di.uoa.gr (Yannis
Ioannidis), Miguel.Mora@uam.es (Miguel Mora), drid@ee.teiath.gr
(Ilias Daradimos), nazakim@yahoo.com (Nazihah Md.Akim),
humayoun@dis.uniroma1.it (Shah Rukh Humayoun)

when users have no connectivity to the internet (for
example DojoX [Do08], Google Gears and the offline
mode of HTML5 [WE10a,WE10b]). Furthermore, in
emerging markets such as India and China, this
convergence will be total, as the sole computing
experience for many will be through mobile devices
and predominantly the web.

So far most of these web-like or web-based
applications are separate, and web activity is glued
together by the user, often through crude cutting and
pasting between web applications. This separation is
epitomised by Google Web Elements1, which embed
content in users' web pages, but, with the exception of
Google maps, are largely sealed from one another and
their context; while considerably more functional than
data feeds, in the end no more integrated than early
web syndication. Embedded applications, such as
those in Facebook or Google Widgets, are integrated
more richly with their respective underlying platforms,
but again largely firewalled from each other,
preventing synergistic interactions.

However, there is an emerging need to offer greater
support to users in performing web-based activity that
cut across individual applications, and potentially to
partially automate common tasks.

For over 20 years the dominant interface paradigm
has been instrumental: populating the interface with
virtual ‘things’ (documents, shapes, files as icons) that
are made as transparent as possible and manipulated
‘directly’ by the user [Sh82,HH85]. However, the
balance is changing and a level of ‘intelligent’,
mediated interaction is becoming more accepted. This
is partly because Moore’s law means that it is easier to
do more clever things, but more significantly because
of the changing environment.

On the big-screen web (web on a desktop or laptop
PC), this is largely due to the sheer size of data
available on the web, so that Google search or Amazon
suggestions become acceptable compared with
searching enormous directory structures.

On the small-screen web, including mobile phones,
the costs of ordinary interaction are relatively higher
and so, as pointed out by one of the authors in a
keynote even back in 1999, the advantages of using
‘intelligent’ techniques are comparatively greater
[Dx99]. Similar considerations are driving HP Labs’
“Simplifying Web Access for the Next billion”
(SWAN) project2.

In this paper we discuss several technologies
offering the user automated task support, and in

1 http://www.google.com/webelements/
2 http://www.hpl.hp.com/india/research/swan.html

particular weaving together fragments of web and
desktop interaction, so that the coherence in the user’s
mind is to some extent also reflected in the system. To
be effective, such interactions have to fit with the
human user; we are looking for ‘appropriate
intelligence’, a blend of user controlled and computer
aided activity set within a context of interaction that is
meaningful and beneficial to the user.

Some of this currently uses standard semantic
technology, some more bespoke representations. We
will describe how the shared semantic representations
promised by the Semantic Web can aid this
integration, and discuss some of the obstacles and
hence challenges for the development of core
Semantic Web technology.

The decomposition of software enabled by mash-
ups, plug-ins and widgets has tremendous potential for
the democratisation of software, offering an alternative
to behemoth applications and the stranglehold of
massive vendors. To attain this, however, we need
better ways for micro-applications to work together
rather than just plug into larger software; a sit-
alongside model for future software.

The next section will elaborate the motivation and
background for this work, presenting a motivating
scenario, a description of human activity that is both
the context and also inspiration for the automated
support we provide, and a short review of other ways
global data is used to help user interaction. Section 3
then goes on to present the four core components of
our wider vision for task support, reviewing additional
literature and related systems for each as appropriate.
In section 4, issues of integration are discussed, based
largely on two prototype systems, a web-based
application Snip!t [DC06,Dx08] and a desktop system
On Time [CG08], which bring together various of the
components discussed in section 3. This integration
experience is analysed in terms of architecture, inter-
operability and user interaction. Finally section 5
looks at implications and issues for the Semantic Web
and web-based user activity arising from the
experiences of design, development and deployment
outlined in the previous sections.

This paper is partly about our own existing work,
dating back over 10 years and its ongoing trajectory
[DB00, Dx06, DC06, DK10]. However, it is also
about a vision common with others such as the HP
SWAN project, Heath et al.'s call for a task-focused
web [HD05], and Berners-Lee's 'underground map' of
the future web landscape [BL07]; a vision of
interactions formed through small units of task-based
web activity being linked together by and for users to

create a more seamless next generation web
experience.

So, while the authors' own components, technologies
and systems are described in some detail, the intention
is not so much to promote these aspects of our own
work, but more to use them as a proof of concept of
this wider vision; using our own experiences to
populate an initial roadmap for the future.

2. Motivation and Background

2.1. Origins of the work

We have come to this work through a number of
roots, but brought together in the TIM (Task-centred
Information Management) project [LD06,CD07], part
of the DELOS EU Network of Excellence on Digital
Libraries. The backgrounds of the team included
formal ontologies, ontology visualization, databases
and intelligent internet user interfaces. Research within
the field of Personal Information Management (PIM)
[JT07], as its name suggests, is focused mostly on the
user’s information resources: calendars, files, emails,
bookmarks. In contrast, TIM took the view that what
users do, their activity, or tasks, is more often their
primary goal.

In this paper we follow the natural extension of this
vision, seeing the whole web of data, not just personal
information, as the raw material for assisted user
action.

2.2. Scenario – current fragmented interaction

Consider an imaginary user, Jane. She has just
received an email from a friend, John, about the
birthday of a mutual friend. John has noticed that the
folk group ‘The Weavers’ are playing and suggests
they all go out to dinner and a concert together.

Jane first checks the exact date of their friend’s
birthday in her address book. She then does a web
search for ‘The Weavers’, finds the page describing
their concerts, and books three tickets for the concert
near the friend’s birthday. She copies the postcode of
the concert venue and enters it into her favourite
restaurant review site, where she finds a nearby
restaurant, follows a link to its web page and re-enters
the date to book a table. So that she doesn’t forget, she
enters the information into an online diary, including
the restaurant URL, a portion of the concert page
describing how to get to the venue and a copy of the
original email message. Finally, she copies the URL

of the diary entry and pastes it into the notes field in
the address book entry for the friend.

In this scenario Jane makes use of applications both
locally on her PC (address book) and remotely on the
web (restaurant booking). She performs some
information related activities (looking up the birthday
and the web search), some ‘action’ based ones
(booking the concert and restaurant) and stores some
information in a personal store (the online diary). Note
that it was easy to link to entire web pages, but not
portions, and easy to add links to web applications in
local ones (URL of diary page stored in diary), but not
the other way round (a copy of the email, not a link to
it, in the online diary).

Some links between these individual interactions are
automatically created for her (search results and link
from review site to restaurant home page), but some
she needs to accomplish ‘by hand’ (copying friend’s
name from email to address book, and entering dates).
When she gets to a page or application, either by
following links, or by deciding where she wants to go,
she has to enter the same information (the date) several
times into different forms, and she had found the date
itself as the result of an earlier information interaction
(looked up in her address book).

For Jane these comprise a single activity, but for her
computer they are a series of largely disparate
interactions.

2.3. The nature of human action

Accounts of human activity range from very
formalized task analysis, which assumes or promotes
pre-planning [DS03]; to those who consider more
‘situated action’ [Su87], where activity is seen as
much more driven by the exigencies of the moment.

Similar to the latter, proponents of distributed
cognition regard cognitive activity itself to be ‘spread’
between our heads, the world and often other people
[HH00, Hu95]. Early studies looked at Micronesian
sailors, navigating without modern instruments for
hundreds of miles between tiny islands. They found
that no single person held the whole navigation in their
heads, but it was somehow worked out between them
[Hu83, Hu95].

More radically still, some philosophers talk about
our mind being embodied, not just in the sense of
being physically embodied in our brain, but in the
sense of being in our brains, bodies and the things we
manipulate in order to do ‘mind-like’ things [Cl98].

At a more pragmatic level it is clear that day-to-day
activities comprise a combination of environmentally
driven and pre-planned actions. In the scenario

presented above, the initial email is an example of the
former, where the presence of the email triggers new
activity, whereas the pattern of booking concert,
booking restaurant and storing it in her diary, may be
one that Jane has performed often before.

Both planned sequences and environmentally
triggered activity may be explicitly considered, or
more automatic or unconscious for the user. For
example, whereas the user may be explicitly aware of
the need to book the concert and the restaurant, the
low-level action of filling out search terms into Google
happens (assuming Jane is an expert user) largely
without thinking, like riding a bicycle.

Table 1. Kinds of human action from [Dx08]
 pre-planned environment-

driven
explicit (a) follow known

plan of action
(b) means–end
analysis

implicit (c) proceduralised
or routine actions

(d) stimulus–
response reaction

Table 1 summarises these kinds of action, and in

previous work we have used this classification as a
way of understanding how our different component
technologies work together to support and augment
normal user activity [Dx08]. In particular, data
detector technology (section 3.2) helps the user to
react to new data such as the name of the friend in the
mail message, whereas means to predict task sequence
(section 3.4) are largely about supporting and
potentially automating planned or routine sequences of
actions.

In general a touchstone of our work is to imagine
what a human helper would do and then, while not
trying to pretend to be human, still seek technology
which behaves similarly, including leveraging
interactivity.

Note that while there is an extensive task analysis
and cognitive modelling literature, even the most
complete task modelling notations do not encompass
all of the kinds of interactions in table 1. Indeed,
many who take a more 'situated' or holistic view of
human activity would regard such (typically rigidly
hierarchical) modelling as inappropriate, simplistic or
misguided. In our own work we have not attempted to
create such a total model of the human's activities, but
instead used more integrative understanding of tasks
and activity [Dx02, Dx08] and the framework in table
1 to broadly structure our approach.

However, when we come to the more constrained
user interactions with the system, then any sort of
assistive or predictive algorithms must perforce

contain a model of the user' tasks. Much of this is
itself implicit in individual tools and algorithms, but in
past and ongoing work we are developing more
explicit and formal representations of task structure
[CH06], in order to reason more effectively about
system inferences and actions.

2.4. The web of data for people

The web of data is a very lofty goal, turning the
human information of the web into machine
interpretable data. However, of course the ultimate
aim of this is so that this machine interpretation can
achieve things for people or with people. People do
not want clever technology; they want to get things
done.

Of course, as in any area, there are applications
where the benefit to individual users is real, yet very
diffuse and indirect; for example, e-science3 where an
ordinary person does not know about the sophisticated
management of formal ontologies and GRID services
sitting behind the science, just that it furthers
knowledge, and perhaps eventually, at some point,
contributes to the products they, or their great-great-
grandchildren, buy in the supermarket.

However, some of the most iconic web applications
harness global reasoning much more directly in order
to help personal day-to-day interactions. Google
PageRank builds a model of importance of web pages
based on vast computation over the link structure of
the entire web, effectively computing a single
eigenvector of the link structure regarded as a
transition matrix [BP98]. However, all this
sophistication and power is used simply to give you
better web search. Similarly the algorithms behind
recommender systems [RV97], found in web sites such
as Amazon and the tagging systems of del.icio.us,
harness mass data to help individuals find the right
information; and we are beginning to see Semantic
Web based applications in these areas, such as
Swoogle4, Revyu [HM08] and SIOC [BB08]

While these applications make use of web-scale data
(albeit mostly bespoke) to help individual user
interactions, they do so at an application-by-
application level with little connection between
applications except web-links (and in the case of
Amazon few of those). The user is left to thread
together the disparate snippets of interaction.

There are existing applications that address this
threading in particular domains, for example, the way

3 http://www.rcuk.ac.uk/escience/
4 http:// www.swoogle.com/

CiteULike5 recognises web-pages corresponding to
citeable reference sources and TripIt6, which
understands a range of travel sites in order to build
itineraries. The challenge, which we begin to address
in this paper, is how to achieve this in a generic way,
and so make services such as TripIt either emerge
from ordinary interactions, or at least be far easier to
produce. These existing domain specific services
demonstrate clearly that cross-application integration
of activity as well as cross-repository integration of
data is potentially both valuable and usable.

3. Components for user task support

In this section we present the core technologies we
are using or developing in order to attain automated
task assistance. First is the use of a personal ontology
as a repository and spreading activation in order to
model memory and context. Second is data detector
technology, which can be used to turn unstructured
data into the locus for interaction, thus triggering
activity. Third are algorithms to help users during
specific actions by inferring relationships between
form fields, linking data to action. Finally, we
consider methods to allow the system to propose to the
user potential actions and sequences of actions;
linking one action to another. In each case we will
present both our own technologies and systems and
also discuss related work in the area.

We note again that while we are describing our own
components and systems, we are doing so not as an
end point, but more as an exemplar of the potential for
task-based interactions.

3.1. Memory and context: personal ontologies and
spreading activation

Core to our approach has been the development of
personal ontologies, describing a user’s individual
information space, including, for example, classes
such as colleagues, work projects, friends, and events.
Some of the classes in such an ontology will be
generic (such as Person or Location), but the ontology
will also include egocentric classes (such as Friend),
which have a common meaning but are interpreted
relative to the individual; and also idiocentric classes,
which by definition don’t mean anything to others (for
example, Jane might have a subclass of Friends called
"Friday Gang" who meet to dance on Tuesdays).

5 http://www.citeulike.org/
6 http://www.tripit.com/

Our own work has initially been focused on
explicitly populated personal ontologies [KV08];
however, there has also been substantial work on
creating aspects of such ontologies automatically by
mining email, files etc., as part of Semantic Desktop
research (e.g. Gnowsis [Sa05], Nepomuk7).
Interestingly the results of this have often shown that
users make more use of their own explicit ontologies,
although the larger automatic data is clearly of value
[SH08]. This underlines the need to ensure that
underlying technologies are set within suitable user
interaction, which in this case may be as simple as
marking the provenance of data and selectively
presenting it so that users are not swamped.

Spreading activation was originally formulated as a
model of human language and memory [CL75,An83],
but applied to many areas including information
management [Cr97,Ha03], ontology engineering
[LW05], and web page adaptation [HZ08]. In our own
work, we have been using spreading activation to
model the user’s context [KV09].

Fig. 1. Spreading activation through a personal
ontology

The basic idea is simple. Suppose Alan has just had
an email from Vivi. In Alan’s personal ontology (Fig.
1), the Vivi entity will be activated. The activation on
the Vivi entity is then spread to related entities (a
colleague Costas and her institution UoA); this then
spreads further to the city where UoA is located, its
country, and eventually to quite distantly related parts
of the ontology. This means that if, for example, Alan
starts to fill out a web form to search for flights, then
Athens would be top of the list of suggested locations.

The algorithms we use modify the level of spread
depending on the fan-out of relations so, for example,

7 http://nepomuk.semanticdesktop.org/

the rate of spread from city to country is greater then
the spread from country to city, as each city has only
one country, whereas a country has many cities. This
and other parameterisation ensures that the spreading
does not ‘run away with itself’ and produces relevant
results. We have found that special care is needed
with very heavily linked ‘greedy’ nodes in the
ontology (notably ‘Me/Self’), to avoid positive
feedback effects.

It should be noted that the term 'context' is used in
many different senses for adaptive systems. At one
extreme is very long-term and almost static context
such as user profiles and preferences, which can be
used, for example, to influence ranking in search.
Then there is more dynamic, but relatively long-
lasting, such automatically muting a phone when you
are in a meeting [FY05]. Finally there are the things
that you are doing 'now', such as booking a trip to
Madrid or writing a paper on task-centred interaction.

Various frameworks have been proposed, mostly
focusing on the first two of the above. For example, in
Heath et al.'s [HM05] categorisation 'personal context'
(profile and preference) and 'knowledge context (file
system, email etc.) are largely long-term, whilst
'computing context' (e.g. state connectivity) is largely
in the middle ground. Dix et al.'s framework [DR00]
for mobile context is also focused principally on
medium term context with, as would be expected,
location being central. However, the faster timescales
are not neglected entirely and Heath et al. [HM05]
mention context-sensitive menus in the sense of
reacting differently to images or audio files, and Dey
et al.'s influential Context toolkit [DA01] includes
support for context such as "making dinner".

Within our framework we also deal with multiple
timescales. The spreading activation is used to model
short-term memory, the relatively instant reaction, so

that the next web interaction may be influenced by the
last email. Entities that receive high short-term
activation then get their medium-term activation
incremented, which is used to model aspects of context
over dozens or hundreds of interactions covering
periods of hours. Finally, sufficiently high medium-
term activation triggers long-term activation,
modelling concepts and things that have general
importance, which are also explicitly influenced by the
users as they add information to their personal
ontology.

These three levels in part have a pragmatic origin,
but they also mimic human memory. The short-term
(working memory) vs. long-term memory distinction
is well established [AS68], but the medium memory
term (or mezzanine memory [Dx06]) is clearly a
common phenomenon (“what am I currently doing”),
but less well studied, with the exception of models of
‘long-term working memory’ in text comprehension
[EK95] and situation awareness in command and
control environments [En95].

All the levels of memory have means of both being
activated and also decaying over time, but all have
essentially a single stream of context. In the future, we
also need to emulate the way humans are able to easily
swap between contexts and build up memory in each.
For example, if reading email we may swap back and
forth rapidly between several activities and yet, for us,
each activity maintains its own history of contexts and
topics. The challenge is to enable the automated
system to do the same. While we have some proposals
for this, it is currently work in progress.

The fuzziness of spreading activation is especially
useful when linking personal data into the web of
‘linked data’ [BH10]. This is because we can, in
principle, selectively pull in data from the web that is
connected to ‘hot’ topics in the personal ontology,

Fig. 2. Snip!t data detection and action suggestion

leading to a cache of activated entities from anywhere
in the web of data. The details of this are described
elsewhere [DK10]; however, early work suggests that
this is tractable so that in principle the entire web of
data can then be regarded as if it were part of the user's
personal resources. To do this requires us to accept a
level of defeasible reasoning, as only sufficiently 'hot'
web data will be in the local cache (we have termed
this warm word assumption reasoning). However, it
means that a substantial amount of common sense
knowledge virtually comes 'for free'. For example, if
Jane's personal ontology records that John lives in
Milan, then Italy can also become activated even if
the fact that Milan is in Italy is not explicitly recorded,
as the information will be drawn in from Geonames8.

3.2. Triggering activity: data detectors

Data detector research dates back to the late 1990s,
including the Intel Selection Recognition Agent
[PK97], Apple Data-Detectors [NM98], CyberDesk
[WD97] and onCue [DB00]. Data detectors use some
form of textual analysis to look for data types or key
terms in text such as names, dates or locations, which
are then used to suggest possible actions.

One of the authors was involved in the development
of onCue. This analysed clipboard contents using
simple heuristics to determine the type of data that had
been copied/cut. Depending on the kind of data found
in the clipboard, onCue changed icons in a sidebar
representing different tools and actions available for
the data, both on the PC and on the web. For example,
a personal name would mean various directory web
services were suggested, whereas a table of numbers
could be inserted into Excel or used to generate an
interactive visualization.

Earlier work, in particular the Microcosm
hypermedia system developed in the late 1980s
[HD96], can also be seen as examples of a wider class
of systems that automatically look for data values in
text to be used as a source of either simple hyperlinks,
or user activity.

Simple data-detectors to create live links from URLs
and email addresses are common in many applications,
although more sophisticated versions less so. Apple
Data Detectors are still in the Mac OS infrastructure,
but are rarely included in applications. This may be
because of the complexity of installing new data
detectors compared with the ease of Dock widget and
iPhone app downloads, but also because the more
'incidental' interaction [DF04, Chap. 18] of data

8 http://www.geonames.org/

detectors, where the system offers help
opportunistically, does not fit with the traditional
download/install model for software.

More recently a number of systems have arisen in
this broad area including Microsoft SmartTags,
Citrine, an intelligent clipboard transformer [SM04],
and CREO, which uses a large semantic database to
find potential topics in web pages [FL06]. A number
of commercial systems offer ways for blogs and web
pages to create dynamic links to eCommerce sites (e.g.
for books or music), usually requiring some level of
hand-annotation rather than automatic target detection.

In the Semantic Web arena, microformats and
RDFa, whilst also requiring explicit markup, offer
ways to ‘late bind’ content to other potential data
sources, and services such as OpenCalais9 offer a level
of automatic markup. The WordPress plug-in zLinks10,
requires the blog author to manually mark potential
link text in a post, but then the system dynamically
connects this to matching data using its own RDF
services. Magpie [DM07] is a totally automated
browser plug-in, which scans web pages for terms that
occur in a number of knowledge sources, very similar
to the early visions of the way Microcosm could be
scaled for the web [CH94]. Like Microcosm, these
Semantic Web systems link to data whilst data-
detectors tend to be more focused on linking to
actionable resources.

Each of the above, both data detectors and related
systems, is based either on some form of syntactic
matching of the text (e.g. regular expressions, BNF),
or on literal matching against large corpora. In our
own work on data detectors within the Snip!t system
[DC06,Dx08], we have combined corpus lookup with
syntactic rules. For example, if a single name in the
text (such as “Alan”) is found in a list of common
given names, this can trigger a syntactic rule to match
the whole of the name (“Dix, Prof. Alan”), using a
form of inside-outwards parsing.

In Fig. 2, we see an example of Snip!t in action. The
user has selected a portion of a web page (1) and
‘snipped’ it, forming a sort of bookmark entry that also
includes part of the text of the page. The snipped
section contains a postcode which the recogniser
component in Snip!t has identified and so the snip
page (2) includes ‘actions’ for the postcode, including
linking to mapping sites, local weather and news.

Snip!t uses a bipartite architecture for its data
detectors, inherited from onCue. Most data-detector
technology, including Apple Data-Detectors, specify a

9 http://www.opencalais.com/
10 http://zitgist.com/

pattern to be detected and some action to be performed
based on the action in one unit. In contrast, onCue and
Snip!t have two separate kinds of component:
recognisers that map syntactic patterns or table lookup
results to semantic data types; and services that are
triggered by particular data types and link to web or
desktop resources that can deal with that kind of data.

This separation has proved very powerful in terms of
reuse of components, as a single recogniser can
provide data that can be used by many services: note
that in figure 2 there are five actions triggered by the
postcode. Furthermore, the linkage between the two is
a form of semantic annotation, so that there is the
potential for inter-operability with other Semantic Web
technology, for example, provider-side annotations in
the form of microformats or RDFa.

Snip!t has an API for writing more complex
recognisers and services, but simple components can
be specified using XML description files. Fig. 3
shows the description file for the UK postcode
recogniser. We shall step through the main features.

<simpleregexprecogniser>
 <name>ukpostcode_recogniser</name>
 <title>UK Postcode recogniser</title>
 <keyed>
 <keys>MIXED</keys>
 </keyed>
 <pattern>
 <pre_context>\W</pre_context>
 <match>([A-Za-z][A-Za-z0-9]{1,3})[
\t]{1,6}([0-9][A-Za-z]{2})</match>
 <post_context>\W</post_context>
 </pattern>
 <fields>
 <field name="postcode" value="ALL" />
 <field name="outer" value="REGEX 1" />
 <field name="inner" value="REGEX 2" />
 </fields>
 <match>
 <type>ukpostcode</type>
 <description>UK Postcode
$$</description>
 </match>
</simpleregexprecogniser>

Fig. 3. Snip!t recogniser description file

The initial tag says that this is a regular expression-
based recogniser and the regular expression to be
matched can be seen inside the <pattern> tag. The
pre and post context say that a valid postcode must
begin and end at word boundaries.

The <keyed> tag is more interesting, declaring that
a simpler type 'MIXED' triggers this recogniser. A
lower-level recogniser scans for words that contain a
mixture of letters and numbers (and are thus likely to
be parts of various forms of codes). The postcode
recogniser is only activated when a MIXED word has

already been spotted in the text, making scanning large
texts more efficient. The same mechanisms can be
used hierarchically for more complex types; for
example, triggering the address recogniser only when a
postcode has been matched. The name recogniser also
uses this mechanism and is only triggered when a
word has been found in lists of common given names
or family names, which in this case also helps to
reduce false positives.

Note also that the recogniser not only matches the
text as a postcode, but also has sub fields ‘inner’ and
‘outer’. These terms are not commonly used, but are
the official terms to represent the two halves of a UK
postcode, e,g, in "LA1 4WA" the inner part is "LA1"
and the outer part is "4WA". These subfields are
identified by the portions of the regular expression that
match them: "REGEX 1" denoting the text that was
matched by the first bracketed term "([A-Za-z][A-
Za-z0-9]{1,3})". Similarly a person name has
subfields for title, given name, and family name, and a
date has year, month and day.

Fig. 4. shows a similar description file used for one
of the postcode services. It is a URL-based action
(basically creating a URL from a pattern specified in
the <urlpattern> tag), and specifies the type that is
required, ‘ukpostcode’, the URL pattern and also a
pattern for text to use in presenting the action to the
user. Note that the outer and inner subfields are both
used in the URL pattern, whereas the description uses
the postcode as a whole.

<urlservice>
 <name>bbc_postcode</name>
 <type>ukpostcode</type>
 <title>bbc.co.uk UK</title>
 <description></description>
 <icon>http://www.bbc.co.uk/favicon.ico</
icon>
 <descpattern>local BBC news for area
including UK PostCode
"$postcode"</descpattern>
 <urlpattern>http://www.bbc.co.uk/cgi-
bin/whereilive/query/runquery.pl?loc=$oute
r+$inner</urlpattern>
</urlservice>

Fig 4. Snip!t service description file

3.3. Linking data to action: inference and support
for form filling

Browsers perform a level of automatic form filling
using a combination of the URL of the page and the
names of input fields. Research systems, including that
of the Simplicity project [RS04], W3C draft “Client
Side Automated Form Entry” [WD96] and

Hausenblas' "profile auto-complete" [Ha09], have
extended this to include mappings between specific
form’s field names and user profile data.

Our own work has extended this by automatically
inferring rich ontological type tags such as “name_of
Friend” over an unconstrained personal ontology, and
furthermore linking the semantics of multiple fields of
the same form or even fields in separate forms within a
task sequence [DK07,DK08].

The first time a user encounters a web form, the
system will only be able to offer suggestions based on
any implicit or explicit data type information already
in the form, for example, using the names of the fields
as in standard web-browser pre-filling. However, the
spreading activation means that suggestions can be
tailored to the current context. In the case when there
is insufficient data to produce an acceptable suggestion
the user may explicitly choose values from the
ontology or simply enter text by hand.

When the form is complete, the system matches the
text in the fields against strings in the ontology and
this identifies candidate entities and property slots
corresponding to the individual fields. The inference
algorithm then looks for ‘least cost’ paths through the
ontology between candidate entities for the field.

Figure 5 shows a simple example. On the left is a
form consisting of two fields, "Name" and "Org.". If
the '"Name" field is already semantically tagged to say
it is a Person name, then the system can simply
suggest the names of people in the personal ontology.
Alternatively, if the web form is not annotated (which
is usually the case), the user may simply type the name
"Alan Dix". At this point the system matches the text
"Alan Dix" against strings in the personal ontology
and finds a match with the name property of the entity
'ADix', which is a Person. Simple generalisation then
allows us to infer a type for the "Name" field
"name_of Person".

However, the form contains both a name and a
university name, and a knowledgeable human assistant
would notice that the institution was the one where
"Alan Dix" worked. The algorithm we use does the
same reasoning. Having found an entity ‘ADix' (or
possibly several) with property "Alan Dix" and
another 'ULanc', with a property matching "Lancaster
University", the algorithm looks for paths through the
ontology linking 'ADix' and 'ULanc'.

In fact, in figure 5 two such paths between the
entities have been found in the personal ontology. One
path is directly through the ‘ADix’ entity to the
institution 'ULanc'. The second path is indirect
through a colleague of Alan Dix, ‘Devina’, who also
works at Lancaster University. The system will

choose the former as the preferred path as it has ‘lower
cost’ where cost is based on the length and the fan-out
of the relations traversed, and potentially weighted
based on the current levels of activation.

Fig. 5. Form-field inference: (i) match terms in form
to ontology (ii) look for ‘least cost’ paths

The concrete paths through the ontology are then
transformed into rules by treating internal entities as
wild cards, generalising from a single case. So the
preferred path for figure 5 would become:
name_of > Person(p) > member

 > Inst(i) > name
When the user next starts to fill in a name, for

example, “George Lepouras”, the system can pre-fill
or suggest “University of Peloponnese” by following
the rule.

Note that the results of this process are different
from those obtained from more common probabilistic
techniques. For example, if a form has a field for
'name' and for 'place', then a simple system might pre-
fill both fields based on past form filling, but of
course, not be able to deal with unseen forms. A more
complex system might be able to pre-fill the 'place'
field with 'Lancaster' after the name field had been
filled out with 'Alan Dix' as the place 'Lancaster' is
often associated with the name 'Alan Dix', but only
after being presented with training. In contrast, the
form field inference can offer useful suggestions after
only one user-completed form and furthermore, once
the field relationship has been inferred for one user,
could be used for others with no training. Furthermore
more complex relationships, such as triads that would
be require very large training sets for probabilistic
methods are no more difficult for the form-field
inference. When linked to the spreading activation,
suggestions can also influenced by recent activity. So
if the most recent email was about 'Scottish folk
dancing' and from someone connected with Alan's
personal rather than professional activities, then the
spreading activation would be more likely to propose
'Tiree' as the place even if Lancaster is more likely
ignoring context.

The fact that the fields are linked presents some
interesting interaction issues, as the set of suggestions
for one field various depending on what others have

already been filled. For example, in Figure 5 the
options for the “Org.” field, changes if the user first
selects or enters data for the “Name” field and vice
versa. In fact, this happens already in many (non
intelligent) web forms, such as aircraft booking: as one
selects the departure location the arrival location
choices are filtered to only show those where the
airline offers flights.

In the airline example, the rule limiting the arrival
location is fairly obvious; indeed the reverse is
annoying when an (even less intelligent) form allows
one to enter impossible combinations. However, it is
not clear how complex this can become without
confusing the user. If we have a whole sequence of
forms that are going to actioned, then a ‘filling in
fields’ metaphor may break down and instead it may
be preferable to cycle through a set of fully completed
(but editable) options, as this would expose the
interactions between fields more clearly. Long-term
deployment studies will be needed to answer some of
these questions.

More generally, users appear to be willing to accept
assistance, defaults or suggestions, even if they are not
immediately comprehensible, so long as the impact of
wrong decisions is not too great (see section 4.2
below). Hence offering suggestions, or pre-filled
sequences, seems appropriate as long as the user can
freely edit them when the inference is not to their
liking.

To some extent, form filling seems a limited form of
interaction, although, as is evident, it offers significant
technical and interaction challenges itself. However, it
is representative of any kind of user action that
requires ‘parameters’, whether this is a file being
dragged over an application icon or an image being cut
and pasted between drawing and word-processing
applications. Of course, form-based interaction is very
important on the web and probably more so on mobile
devices, and is also common in other task automation
systems, not least Apple Automator.

3.4. Linking action to action: inferring task
sequences

Data detectors help the user initiate action based on
automatic semantic annotation of text such as email
messages or human-readable web pages. If instead the
user has chosen for herself a form to complete, then
the form-filling algorithms help her to complete the
chosen action. The remaining piece is to help the user
in selecting actions, and potentially automating
common sequences of actions for the user.

Task sequence and structure inference has a long
pedigree (e.g. Cypher’s work [Cy91], Beale and
Finlay’s 1992 edited collection [BF92], and more
recently Lieberman’s “Your Wish is My Command”
[Li01]), but has never ‘made it’ into mainstream
interfaces. This is partly because, as a formal problem,
grammar induction is ‘hard’ and computationally
expensive. This is made more difficult because users
may interleave several tasks, confounding sequence
predications based on Markov models or n-grams
[HS07]. At a human level it is easy to leave the user
more confused than supported.

An interesting recent example is DabbleDB’s
magic/replace11, a web-based application to help users
clean up tables of data prior to import into an online
database. Users perform sequences of edit operations
on sample records and the magic/replace infers the
general transformations, such as changing
capitalization. The algorithms are simpler than many
used in intelligent user interface research and the
application is further simplified by being data-focused
rather than based purely on sequences of actions, yet it
is surprisingly powerful. However, despite the
potential demonstrated by DabbleDB, it is rare to see
inference at even this basic level of sophistication in
production systems.

While DabbleDB demonstrates that domain-specific
inference can be of substantial value, we aim to
address more generic domains. Our own preliminary
work suggests that techniques to ‘thread’ low-level
actions may be combined with interactive and
incremental learning, to offer a way to cut through the
Gordian knot of task inference.

We have two basic strategies. The first simply uses
the existing mechanisms. If the result of an action is
semantically marked up (e.g. XML from a web
service, microformat-annotated HTML), then we can
use it to propose other web forms where one of the
input fields matches the type of an output value from
the previous step. Alternatively, if the output is human
readable only, then we can use the Snip!t recognisers
to annotate on the fly. This means that the outputs of
one action can be used to propose the next action, so
that a sequence can be suggested step by step. It is
limited as it only allows single-step proposals, but
leverages the existing tools.

However, we are also working on more
sophisticated task-sequence inference. Happily the use
of the ontology makes this easier too. Assume the user
is performing a task, such as the scenario in section
2.2, involving a number of web applications. If only

11 http://cleanupdata.com/

one web application is involved then the application
will take the user from form to form using its own
business logic. However, when users are dealing with
several sites they have to maintain this linkage
themselves. Given several such form-based actions,
we try to match the input or output fields of one form
(assuming suitable markup of the output) with the
inputs of a subsequent form in the user's task
sequence.

Sometimes the connection is very direct, for
example the same text (such as a date) is being used on
several forms. For other pairs of forms, we might see
the user entering the date of a meeting into one form,
and then the location into a different form soon after
receiving an email from the meeting convener. In this
case we may generate indirect links through the
ontology using the algorithm outlined in the previous
section. Finally the user might drill down through the
personal ontology from an input/output that already
exists in it, and choose the new input this way, giving
a clear link between the actions.

In all cases, the end effect is to have the trace of user
interactions linked together through the ontology.
Whilst actions from different user tasks may be mixed
up chronologically, there is a semantic link between
actions relating to the same task. The semantic links
can then be used to create threads through the trace,
which will correspond to different tasks or sub-tasks
the user is engaged in.

Figure 6 depicts this. The darker and lighter squares
represent two sequences of actions. Of course, the
system would not be aware of this difference, and
indeed without the linkage might need many exposures
to say "ACB", "ADB" "AXB" to work out that action
'B' frequently follows action 'A'; precisely the problem
of dealing with interleaving.

Fig. 6. Teasing apart task threads from interleaved
user actions

At the top of Figure 6 we see the two traces mixed
together chronologically, as they would initially
appear to the inference system, with semantic links

going from action to action. The lower 'frames' show
the two tasks being 'pulled apart' using the semantic
linkage. This effectively finesses the problem of
interleaving: instead of being a computationally hard
problem, it is simply a matter of chasing links.

Once the two sequences have been disentangled it is
easy to use task prediction rules such as Markov
models or grammar induction, or even very simple
rules with single-step learning: if in a previous task
sequence form A was followed by form B and C then
we can offer these as a suggestion when the user next
chooses form A.

Furthermore, the concrete linkage between the
actions in the original task sequence can be generalised
in the same way as the within-form field relationships
described in the previous section. This means we can
not only propose form B followed by form C, but pre-
fill some or all of the fields of B and C based on the
inputs and outputs of A.

Note particularly that this form of task inference
allows single-step learning, unlike Markov or similar
techniques that typically require substantial corpora of
examples.

4. Putting it together

Having seen the different component technologies,
we now discuss how they fit together architecturally
and in terms of user interaction.

4.1. Architecture

Fig. 7. shows a simplified view of how these
different technologies fit together. The solid arrows
represent ‘control’ flows, which influence the choice
of the next action, whereas the dashed arrows
represent information flows, although the information
of course influences the decisions.

On the left we have incoming emails, active files,
web pages or other kinds of documents and data that
the user encounters. This may have existing markup,
but if not, or in addition to the existing markup, data
detectors are used so that we have semantically
annotated text. This is then matched against actions in
service descriptions as in Fig. 4. Alternatively the user
may spontaneously decide to perform some action.

The form inference engine is used to both to learn
from user interactions and to make suggestions to pre-
populate parameterised actions. The task-sequence
inference process then records interactions in order to
learn patterns and also makes suggestions based on
prior learning drawing on a stored history of past user
action. Note, this history is shown as a separate store,

but will typically be closely linked to, or part of, the
personal ontology.

Underlying all of these is the personal ontology
itself and spreading activation. These may influence
the initial data detectors, for example, ‘Prince’ may be
interpreted differently if the user has been having an
email discussion about pop stars than if the
interchange concerned Buckingham Palace. They will
also influence the choices of actions, and the form and
task-sequence inference processes.

Note that this ontology may have different levels of
reasoning and this will influence other aspects of the
picture. Snip!t uses a simple form of forward chaining
so that, for example, when a 'date' is detected it is
compared with the current date and one of the
subclasses 'today', 'future date' or 'past date' is also
asserted. In contrast, On Time (see below) uses a
more sophisticated underlying reasoning engine
supporting the DL-Lite ontology language [CD07].

While this is the planned picture and all the
individual components exists, not all the interactions
are currently in place. Snip!t includes data detectors
and action selection. Also the form-inference has been
linked to the personal ontology, but not currently
integrated with Snip!t. The most extensive integration
is through a desktop prototype system, 'On Time'
[CG08]. On Time includes visualisation of the
personal ontology, and spreading activation initiated

by data found using data detectors on recently active
files. The spreading activation is used to propose
actions based on the most active entities as well as to
pre-fill forms. However, in all of these, task sequence
support is limited to at best rudimentary chaining
through data detectors and the spreading activation.

A key issue, as we move from individual
components to an integrated system, is to retain and if
possible increase the independence of the components
so that we can eventually seek inter-operability
between alternative technologies, for example, server-
side markup vs. client-side data detectors for initial
semantic annotation. In a web paradigm, integration is
as much about deconstruction as combination; for
example, the data detectors in the Snip!t application
were originally closely tied to the core code base, but
this has now been separated into three parts: (i) the
core websnip application, (ii) data detection using
recognisers, and (iii) action suggestion using services.
We follow a general restructuring pattern of ‘interface
drift’ [Dx89], initially separating code by moving it
behind internal APIs followed by radical excision into
web services.

Nevertheless, while we are seeking to retain
independence of components, we also wish to create a
more integrated user experience. This seems to be a
core challenge for all web interaction.

Fig. 7. Interaction between component technologies

4.2. Interfaces for intelligent interaction

There are several major interaction challenges in the
work that will arise principally as we tackle full
integration into a single open system. The
implementation of efficient presentation and
interaction techniques is as crucial as the algorithms
for correctly identifying users’ actions and
understanding the context of their actions. One issue is
how to present support ‘tips’ or suggestions to the
user. This clearly should not interrupt the user’s work,
which would be worse than the absence of any
support, but should be readily available.

The Microsoft Office Assistant, 'Clippy', is a prime
example of what can go wrong in automation. It is
based on sound recognition algorithms that can
potentially be useful in helping the user compose
letters or do other Office tasks. However, it is modal
and pops up in the middle of typing. Even if the
advice is useful it has broken the user's flow of
thought, but if it is wrong the user is left very annoyed.
Hatred of 'Clippy' has spawned numerous web pages
and blogs, and has even been the topic of an Honors
Thesis at Stanford [Sw03].

Snip!t avoids this kind of problem by having a
separate tab for suggested actions, but this has the
disadvantage that it can easily be missed. In contrast,
onCue, the early data-detector web assistant that one
of the authors worked on, was more proactive,
continually monitoring the user’s clipboard activity
and using an ‘always on top’ side palette (Fig.8) that
adapted to the clipboard contents [DB00]. However,
to avoid a ‘Clippy’ scenario, onCue was designed
according to core principles of ‘appropriate
intelligence’:

1. it should do good things when it works
2. it should not do bad things when it doesn’t.

The first is the obvious rule for making good demos
of clever things. The second takes as given that any
sort of intelligent support will sometimes be wrong.
This acceptance that intelligent algorithms will often
be wrong is crucial for making intelligent user
interfaces (and indeed any user interface) acceptable
for long-term use without becoming annoying.

As an example of appropriate intelligence, contrast
Clippy, which annoyingly interrupts typing, with
another feature of Microsoft Office, the Excel sum
(sigma) button. When the user presses the sum button
the formula function 'sum()' is entered, and some cells
are preselected. The preselected cells are based on
very simple heuristics, first scanning above the current
cell for a contiguous vertical set of numeric cells, or
failing that scanning to the left. If the pre-selected
cells are not what the user requires than she can simply

select other cells. The normal action
of selection means that this requires
no more effort than selecting the cells
with no pre-selection – the only cost
of failure for the sum button is that
the user has to check visually whether
the selection is correct.

onCue was explicitly designed with
these rules in mind. The onCue
palette was always on top and hence
potentially distracting, but it was not
modal, so it never ‘stole’ keyboard
focus (as ‘Clippy’ does), and when
the icons changed due to changes in
the clipboard content, this was faded in over a period
of about one second, which was sufficient to prevent
visual distraction yet fast enough to ensure they were
always ‘up to date’ with the current clipboard [DB00].

In general, ‘appropriate intelligence’ is about
detailed interaction design that
embeds intelligence within a
forgiving interaction framework.
Such design has an emphasis on
user control and transparency of
computer activity (not just data),
which minimises the cost of
corrective actions. This then has a
knock-on effect on underlying
algorithms where the critical
criteria are not about maximising
accuracy (although this is still
important), but more about the
comprehensibility of results and
‘good enough’ measures.

In our own work, in both
spreading activation and form
inference we are producing
multiple weighted results, not
single ‘best’ values, so that it is
possible to present alternatives to
the user, not “all or nothing”
proposals. Furthermore, this
means that we can in the future
use the results of user actions as
explicit or implicit input into
further reasoning – for example,
using the fact that a user has
accepted a suggestion as an
indication that it was a correct
inference.

On Time follows a similar
principle of offering proactive
suggestions in a non-modal side

Fig. 8.
onCue
toolbar

Fig 9. On Time

AppBar

bar (see Fig. 9). This includes suggestions for the next
task (top), and also items detected in recently active
files with suggestions of how these can be stored in the
personal ontology.

onCue, Snip!t and On Time are all offering single
actions. When the suggestions or support offered by
the system are more complex (and probably potentially
most valuable), they will need to be presented in a way
that is comprehensible, both in terms of what is going
to happen, and why it is appropriate. However,
traditional expert-system style explanations are clearly
not going to be appropriate in the midst of ordinary
user interaction. It is likely that techniques should
exploit the interactive and action-based environment;
for example, animating what is happening/will happen,
and perhaps allowing the user to play/rewind these
automated actions, or see them laid out spatially (as in
Apple Automator) and select which to accept.

Support presentation must also work well for both
the small screens typically found in mobile phones and
PDAs and the big screens used in many PCs. As we
adapt to these, we will need to consider alternative
approaches including drill-down, cue-card paradigms
and multi-modal interfaces. As noted, it is perhaps
with small screens that intelligent interaction
techniques are likely to be most valuable, yet it is also
precisely here that the presentation and integration
challenges are most demanding.

4.3. Evaluation and scaling

As described in the introduction, our main aim is to
establish feasibility and proof of concept, so we do not
expect to have fully polished user interfaces.

Snip!t has been deployed now for over six years and
used regularly by a small number of users. It has not
been subject to formal evaluation, however we have
had user feedback and bug reports. The main
feedback has been feature request (e.g. Unicode
support and wish for it to operate on PDF documents
as well as web pages) and problems with the
classification interface for the bookmarks (it predated
tagging), but there has been no explicit feedback or
problems related to the more intelligent behaviours.
However, we are aware that the latter is limited to the
recognisers and services pre-programmed into the
system as described in section 3.2. Hence there is
clearly a need for more ground-up learning of services
such as the form-field inferencing.

On Time has not been subject to extensive user
evaluation however preliminary formative user studies
have been performed using cooperative evaluation
techniques [WM89] with six users. Simple

quantitative measures (errors and timing) were used
for two closed tasks, involving the creation and
modification of entities in the personal ontology, and
in addition some qualitative responses were collected.
While the users were satisfied with the overall system
concept, the tests did reveal a number of more
peripheral usability issues, leading, for example, to the
redesign of some icons, and also some issues related to
visualisation of the ontology.

However, while the usability of the final systems
will be essential, our main concerns have been
thinking towards scalability; things may work well
with a single user and small test-case personal
ontology, but fail under real volume use. This has
influenced algorithm design throughout. For example,
in Snip!t, the use of triggered recognisers was partly
driven by this consideration. Most of the syntactic
recogniser are only applied when triggered by a
previous table-lookup recogniser; this means that very
large numbers of recognisers can be included without
needing to execute regular expression scans for all of
them (or compiling them into a single monster
machine).

The form-field inference component was deployed
as a stand-alone tool for a period of three months, with
an initial ontology containing near 500 instances of
personal information. During the three months of use
over 371 instances were recorded covering 31 different
web forms, based on which the inference algorithm
produced 76 different rules, processing each instance
in less than 60ms. The performance of the algorithm
that chooses and executes rules is able to find the set
of values for each field in 3.11ms for each web form
instance. This performance allows us to use these
algorithms interactively with larger ontologies in a
common personal computer.

Table 2. Form-fill inference accuracy
 Rule Match

 Value
Found

Not Found

No Match

Single Result 25.0% 3.13%

List of
Suggestions 34.4% 15.6%

21.9%

Total 59.4% 18.7% 21.9%

as % of Rule
Matches 76% 24%

In order to test the accuracy of the algorithm, after

the deployment (when all the correct field values were

known), the data was split into training and test sets
and evaluated (see Table 2). In 22% of cases there
was no suitable rule (either the form was only seen
once, or the algorithm was unable to construct rules
due to unavailable paths in the ontology). However of
the 78% with a matching rule, more than 3/4 of cases
had the correct value as the single suggestion or one of
the suggestions. Note too that this interface is simply
suggesting auto-fill values, hence, following the
principle of appropriate intelligence, in 60% of cases is
helpful, but in the 20% of cases when there is a false
positive does not unduly hinder the user.

For the spreading activation, our aim is to be able to
include links to arbitrary web data and so we have
developed caching-based variants of spreading
activation that pull in data from external sources only
when needed; in broad terms when an entity's
activation exceeds some limit then all related triples
are fetched. To test this we used a data set of
programmes and music released as part of the BBC
Backstage initiative [BB09]. This includes
approximately 20 million triples describing
approximately half a million entities accessed via a
SPARQL endpoint [Do09].

The results of this showed that the working set of
active entities could indeed be kept manageable and
capable of sub-second response times by choice of
suitable thresholds, and furthermore by modifying the
algorithm in this way the results were not significantly
impacted in terms of the choice and ranking of the
more highly activated entities [DK10]. Figure 10
shows an example of the results obtained. Each data
point represents a single entity/URI: the x-coordinate
is effectively unconstrained activation and y-
coordinate is the activation using caching and
threshold. The points to the left along the horizontal
axis have zero activation in the modified algorithm due
to the threshold. Critically the rank-order and numeric

activation of the higher-activation entities to the right
is virtually unchanged, thus demonstrating robustness
of the algorithm.

In addition, the working set of active entities that
resulted ranged from a few hundred to two thousand
despite a virtually unlimited data set. This means that
many other parts of the system, such as the form-field
inference component, need only operate on this
restricted set of entities rather than the complete web
of data, further enabling efficient scaling.

Fig. 10. Spreading activation on BBC data set (from
 [DK10]). Axes are log10(activation+0.01)

5. Challenges for a web of action

Each core technology has its own challenges, as
does the integration process. Some of these are made
simpler by a more pragmatic approach (e.g. making
multiple suggestions to the user in cases of
uncertainty), but others are made more complex. In
this section we will consider some of the issues that
are highlighted by work in the area to date, and those
that are likely to become important in the near future.

<SearchPlugin>
 <ShortName>PHP Manual</ShortName>
 <Description>PHP Manual Search</Description>
 <InputEncoding>UTF-8</InputEncoding>
 <Image width="16" height="16">
  …
 </Image>
 <Url type="application/x-suggestions+json" method="GET"
 template="http://www.php.net/manual-lookup.php?pattern={searchTerms}"/>
 <Url type="text/html" method="GET" template="http://www.php.net/manual-lookup.php">
 <Param name="pattern" value="{searchTerms}"/>
 </Url>
</SearchPlugin>

Fig. 11. Firefox search plugin for the PHP online manual (https://addons.mozilla.org/firefox/)

5.1. Meta-information on human web sources

The service descriptions used by Snip!t (Fig. 4) are
effectively providing meta-information about web
applications intended for human use. This drew on a
light-weight XML framework used in onCue. Similar
meta-description formats are found in other
applications such as those (like Firefox and A9) using
OpenSearch plugins; these meta-descriptions include
parameters and types of GET and POST requests for
web forms (see Fig. 11), and sometimes also
information on how to parse resulting human readable
web pages. Similarly OExchange12 offers a way for
online bookmarking and related service to publish
their services.

Taking a long-term pure Semantic Web vision, one
could argue that web developers of human-usable web
services should provide parallel semantic services
delivering RDF results, with some form of meta-
description (e.g. WSDL or some variant of VoiD13)
alongside, or alternatively annotate human-readable
result pages with semantic markup (e.g. with
microformats or RDFa). So it could be argued that
third-party meta-descriptions, as used by OnCue,
Snip!t and data-detectors in general, in some way run
counter to this more semantic goal.

In fact, wrappers of various sorts have been around
as long as the web itself, and continue today,
especially in the context of the deep web [AK97,
Ku98, CM04]. This is partly an essential
bootstrapping exercise: unless semantic content is
sufficiently universal, then users will not rely on it,
and if users do not expect it providers will not supply
it; external meta-data and inference at the time of use
can effectively transform the human web to semantic
form and break the impasse.

Looking longer term it is likely that even in fully
semantic services, ontologies will evolve or local
ontologies will be used that require meta-description in
the form of mappings. However, it also seems likely
that many web resources will direct themselves
primarily towards human readership, with semantic
markup as a secondary goal. This has certainly proved
the case on the Macintosh where Apple Event support
in applications (at least for recording) is still at best
partial despite 15 years of promotion.

In the medium term, at least, it is reasonable to
assume that many different kinds of Semantic Web
application will require meta-information, possibly
supplied by third parties. So some form of shared
repositories and shared standards for representing this

12 http://www.oexchange.org/spec/
13 http://semanticweb.org/wiki/VoiD

meta-information is needed. There were calls for such
standardisation and repositories many years ago, but at
the stage when wrappers were bespoke code [Ku98].
Now with existing XML standards and a growing
Semantic Web infrastructure, it is possible to create
such wrappers in declarative formats and with shared
semantics given by standard ontologies. Given this the
time seems ripe to revive these efforts at establishing
meta-information repositories.

5.2. Ontology issues: higher order reasoning, value
classes and query types

In fitting our work into formal ontologies we have
encountered a number of issues.

One such complication is that humans often think in
ways that are considered ‘hard’ or ‘high-level’ in
ontologies, for example, the class ‘Friend’ in a
personal ontology is effectively ‘friends_of Me’. A
deep theoretical challenge will be to allow some of
these hard-for-machine/easy-for-human steps, but in
constrained ways to prevent the full costs or semantic
issues that otherwise would arise. A similar problem
occurs with the spreading activation. This effectively
involves following potentially any relation and, hence,
requires second-order ability to quantify over relations,
whereas, typically, second-order features are not
natively provided by tractable ontology languages
based on Description Logics14. In both cases there
seem to be patterns of human-like reasoning that
appear to be tractable, but cut across the standard
onion-skin layers of logics.

We have also encountered interesting issues with
more complex structured data inferred using the Snip!t
data detector. As we saw, a postcode has ‘inner’ and
‘outer’ parts and a date includes ‘year’, ‘month’ and
‘day’. In the original code these were simply an
associative array in the data type representing the
recognised elements. On the other hand, when
representing these in the personal ontology we found
we needed to create entities to represent a ‘person
name’ or a ‘date’, even though these represented
values not things. The person referred to by the name
is of course the ‘thing’, as is the day referred to by the
date, but these are different from the name (which
could refer to several people) or the date (which could
be wrongly attributed to a day).

These values could have been represented as
serialised strings, and then re-parsed when needed, but
this seems to run counter to explicit semantics and
would create additional problems, for example making

14 http://www.w3.org/Submission/owl11-tractable/

it hard to search for all dates in a certain year. Perhaps
the most common representation is to ‘flatten’ the
values so that a person has individual properties
‘family-name’ and ‘given-name’, but again this
obscures the fact that these are linked.

Our solution has been to label these as ‘value
classes’ where the implication is that instances of such
a value class are defined by some of their properties,
and cannot be updated. This seemed to be closest to
preserving the semantics and is similar to decisions
made in the RDF vCard standard (see Fig. 12), or,
even more generally, in common object-oriented
programming best practice.

<vCard:N rdf:parseType="Resource">
 <vCard:Family> Crystal </vCard:Family>
 <vCard:Given> Corky </vCard:Given>
 <vCard:Other> Jacky </vCard:Other>
 <vCard:Prefix> Dr </vCard:Prefix>
</vCard:N>

Fig. 12. Example RDF for vCards (fragment) [Ia01]
note ‘N’ (name) property introducing a blank node.

There are also some interesting data typing issues
that became apparent when we looked at the inferred
rules for form filling. Internally the rules are
represented by path expressions through the ontology
that specify which relations should be traversed.
However, the meaning of the rule corresponding to the
form in Fig. 5 is something like:

 FORM (?persname, ?orgname)
 FOR SOME ?p:Person, ?i:Institution
 (?p name ?persname)
 (?i name ? orgname)
 (?c member ?i)

On the surface, this is similar to the pattern of a
SPARQL query and its operational semantics is also
similar in that the rule effectively picks out matching
tuples from the personal ontology in order to select the
best candidates for the ‘Org’ field (orgname) if the
‘Name’ field (persname) has been filled (or vice
versa). However, note that whereas the ostensive data
typing of RDF is through classes, the form rule
effectively introduces what in type theory is termed a
'dependent type'. Once the 'Name' field has been
prefilled, the type of the 'Org' field is not simply names
of the instances of a particular class, but instead the
names of the instances that satisfy a particular
constraint. Dependent types have been studied
extensively in mathematics, in particular in Martin-Löf
intuitionistic type theory and also embedded into
programming languages [MM04]. As a higher order
construct they are usually regarded as complex

computationally and semantically and yet arise
naturally in the semantics of user interaction.

5.3. Linking to the desktop

Note that while Snip!t is operating on web resources,
On Time is primarily operating on the desktop (though
it can invoke web actions). For the user these two
worlds would ideally be seamless; indeed, many users
quite reasonably have a very hazy understanding of the
differences, especially now that email, office
documents, etc., may be accessed on the web or on the
desktop with very similar interfaces.

A problem we have faced, which has also been
encountered in Semantic Desktop projects, is that
while resources on the web are referred to in a
standard way through a URL, there is no such means
to reliably and uniformly refer to desktop objects.
Files can be accessed by the "file:" URI protocol, but
other objects to which one might wish to refer, such as
email messages or address book entries, have no
similar standard scheme. Looking more closely, some
applications do have their own scheme (e.g. Apple
Mail's "message:" protocol), but there is no standard
scheme and one cannot rely on being able to create a
reference. Furthermore, the URIs generated by the
“file:” and “message:” protocols are only meaningful
on the machine on which they were formed. So, for
example, if a file URI were stored in de.licio.us, it
would dereference differently depending on the
machine on which it was invoked … it lacks the ‘U’ in
URI!

This problem was recognized in the Gnowsis project
[Sa05], and arising from this Sauermann has made a
proposal for Desktop URIs [Sa08]. However, because
this was framed in the context of a single Semantic
Desktop, like the “file:” protocol, these Desktop URIs
are not usable off the target machine. The Magnet URI
scheme [M02] would partially address this as it allows
references to resources by content-related information
such as an SHA digest. However, a Magnet URI
effectively references a single version of an object, so,
it would no longer refer to a file if the contents change.
We have made our own proposal for Globally
Accessible Local URIs, using proxies to allow
obfuscated (and hence) private, yet dereferenceable
URIs for local resources [DK08]. However, this
seems an important issue for web–desktop integration
in general, and clearly needs community agreement, as
well as retrofitting of plug-ins and adaptors for
common desktop applications before new integrative
applications can reliably operate across domains.

5.4. Sharing and community, risks and rewards

Designing a component-based architecture allows
the integration of ready-made tasks from a variety of
sources. For example, a user may download a new data
detector or a ready-made action, or even exchange
custom made tasks with friends. This raises issues both
for the user and for service providers. Any framework
that allows the distribution of custom tasks, especially
when these may be invoked semi-automatically, needs
to preserve the user’s privacy, and to ensure data and
information security – what if one downloads a task
for travel booking only to find out it embezzles credit
card numbers?

There is also the potential to share inferred
information. The form-field inference is effectively
producing meta-descriptions of web forms ‘for free’. If
this were shared we would have the opportunity for
mass user-powered bootstrapping of Semantic Web
content, without those involved having to see a line of
RDF! Similarly, the results of spreading activation
could be shared between friends, organizations or the
world, allowing popularity to be assessed at a far finer
level than is possible in traditional recommender
systems. This kind of ‘behind the scenes’ sharing is
potentially very powerful, as it requires no explicit
effort except the user’s, but has corresponding issues:
to make sure that any shared information neither
compromises individual privacy, nor has the potential
for misuse such as popularity ‘spamming’.

At a business level, we need to ensure that the
integration and automation does not undermine the
business models of the service providers on which it
depends. For example, if web forms are automatically
filled in and the resulting web pages parsed and only
‘relevant’ data extracted, this may give a better
experience for the user. Then again, if this means that
users are not exposed to advertisements or branding
then the service providers will lose income and
eventually discontinue their services.

A similar problem occurred in the early days of
WAP where the telecoms operators were able to
charge for WAP use through data volume or
subscription payments, but WAP information
providers had little opportunity to monetise unless they
were explicitly selling products or services. Not
surprisingly, this early WAP provision was largely
limited to operators’ own portals and shopping.

Of course, much software is produced gratis,
especially micro-applications such as iPhone Widgets
and FaceBook apps. However, the success of the
iPhone as a platform is surely also because Apple has
provided an appropriate remuneration scheme through
iTunes.

6. Summary and Ongoing Work

This paper has presented technology targeted at
producing a web of action, where our day-to-day
activities not only have information at hand, but also
are actively supported as activity, not merely
information seeking. We have presented a number of
technologies, which address different aspects of
automated task support based on the categorisation of
human activity in table 1.

The personal ontology is used to enable the system
to share some of the user’s knowledge of the world,
assisted by spreading activation to model a degree of
contextual awareness. We have noted how the use of
Semantic Web linked data can be used to give this a
degree of ‘common sense’ or world knowledge in
addition to the more individual knowledge of the
personal ontology itself. We are, however, still
looking at ways to allow the form of rapid switching
between multiple contexts that we do (relatively)
easily as human beings.

Semantically tagged data can be used as a locus for
environmentally triggered actions. However, as much
of the data encountered by users is not of this form,
data detector technology can be used to effectively
allow semantic annotation at the point of use. For the
results pages of web applications, it is a moot point
whether eventually all web applications will provide
suitable annotation at the provider-side or whether
some form of data detector will always be needed for
non-semantic applications. There is always a tension
because the cost of adding semantics is often at the
provider end whereas the benefits typically accrue to
the user. Certainly this is likely to be needed
indefinitely for more ‘light weight’ content such as
email messages, blog postings, and even files such as
this paper.

We also saw how the use of semantics in a (web
linked) personal ontology can be used not only to help
users to complete web forms, but also to effectively
create an automatic semantic markup. Again it is a
moot point whether all web forms will at some point
have such annotation, rendering the need for automatic
markup redundant. However, the same underlying
algorithms can also be used to track not just what
connections are possible by matching types, but how
connections are actually used between forms and
actions.

This leads to task-sequence inference, which, as we
have noted, has a long track record, although it is not
seen, to date, in commonly available systems. We
have seen how semantic markup could radically
impact this inference, making possible much more
reliable single-step learning and generalisation.

However, this component has, so far, not been
prototyped in our systems with the exception of single-
step suggestions based on matching input types.

As well as these component technologies, we have
presented two integration platforms, one, Snip!t,
predominantly web-based, the other, On Time more
desktop-based. This integration raises its own
challenges, both architecturally and in terms of
appropriate user interaction methods. In addition, in
the previous section, we saw how both individual
component technologies and their integration highlight
various issues for Semantic-Web-based interactions.
Some of these are technical, including the need for
dereferenceable desktop URIs and inference/typing
issues. Some require standards and sharing, in
particular meta-information repositories. Finally, some
are more about the human side of the web, not least the
need to ensure adequate rewards for those producing
both information and services.

There is a tension in our approach to integration,
which aims both to be open and yet to produce a
consistent user experience. However, this reflects the
entire web experience, which is both unified through
the browser and linking, and yet presents a
smorgasbord of different page and interface styles. In
contrast traditional applications strive to produce fluid
consistent interface styles, yet are set amongst other
applications unified only by platform style guides,
which, paradoxically, those applications striving to
produce the most optimal user experience are most
likely to flout.

This brings us back to some of the broader issues
that motivated this paper. The movement towards, at
one level, more fragmented interaction, a world of
mash-ups and widgets, seems not just a temporary
aberration, but a necessary step. Traditional
applications appear to be stagnating, with little new
functionality and much apparent fragility, so that each
new release brings surface changes, but as many new
bugs as benefits. Indeed, ten years ago, a member of a
major software company told one of the authors that
the graphics engine in their core product was so
ossified that it was impossible to add new interactive
features. In contrast, Google Docs encourages third
party graphics add-ons through Gadgets, working in
the same spirit as social networking applications such
as Facebook; both are prepared to sacrifice total
control over user experience to gain variety and
individuality in that experience – post-modern
interaction?

We certainly do not have a solution let alone a
complete understanding, of these issues, but the
various technologies and prototypes discussed in this

paper do suggest that it is possible to conceive of a
future web that not only hosts global human
knowledge, but also supports individual human action.

7. Acknowledgements

Parts of this work were supported by the Information
Society Technologies (IST) Program of the European
Commission as part of the DELOS Network of
Excellence on Digital Libraries (Contract G038-
507618). Thanks also to Emanuele Tracanna, Marco
Piva, and Raffaele Giuliano for their work on On
Time.

8. References

[AS68] C. R. Atkinson, M. R. Shiffrin, Human memory: A
proposed system and its control processes. in The
psychology of learning and motivation, ed. K.W.
Spence and J.T. Spence, vol. 8. (Academic Press,
1968).

[An83] J. R. Anderson, A Spreading Activation Theory of
Memory, Journal of Verbal Learning and Verbal
Behaviour, 22 (1983) 261-295

[AK97] Ashish, N. and Knoblock, C. A. 1997. Semi-
Automatic Wrapper Generation for Internet
Information Sources. In Proceedings of the Second
IFCIS international Conference on Cooperative
information Systems (June 24 - 27, 1997). COOPIS.
IEEE Computer Society, Washington, DC, 160-169.

[BB09] BBC Backstage. British Broadcasting Corporation,
dated 2004-2005, Accessed 6/7/2009.
http://backstage.bbc.co.uk/

[BF92] R. Beale and J. Finlay, Eds. 1992 Neural Networks
and Pattern Recognition in Human-Computer
Interaction. Ellis Horwood.

[BH10] C. Bizer, T. Heath and T. Berners-Lee (to appear)
Linked Data - The Story So Far. International Journal
on Semantic Web and Information Systems, Special
Issue on Linked Data. Preprint at:
http://tomheath.com/papers/bizer-heath-berners-lee-
ijswis-linked-data.pdf

[BL07] T. Berners-Lee (2007). Looking Back, Looking
forward: The process of designing things in a very
large space. Inaugural Lecture, Southampton
University, 14th March 2007.
http://www.w3.org/2007/Talks/0313-bcs-tbl/

[BP98] S. Brin, and L. Page, The Anatomy of a Large-Scale
Hypertextual Web Search Engine, in Proc. of Seventh
ACM International World-Wide Web Conference
(WWW ‘98), Brisbane, Australia, 1998

[CD07] T. Catarci, A. Dix, A. Katifori, G. Lepouras and A.
Poggi (2007). Task-Centered Information
Management. In First International DELOS
Conference, Pisa, Italy, February 13-14, 2007, Revised
Selected Papers. , C. Thanos, F. Borri and L. Candela
(eds.). LNCS 4877, Springer, pp. 197-206.

[CD07] D. Calvanese, G. De Giacomo, D. Lembo, M.
Lenzerini, and R. Rosati. Tractable Reasoning and
Efficient Query Answering in Description Logics: The
DL-Lite family. Journal of Automated Reasoning,
volume 39, number 3, pages 385-429, 2007.

[CH94] Carr, L. A., Hall, W., Davis, H. C., DeRoure, D. C.
and Hollom, R. (1994) The Microcosm Link Service
and its Application to the World Wide Web. In:
Proceedings of the First WWW Conference, Geneva..

[CH06] T. Catarci, B. Habegger, and A. Poggi (2006).
Intelligent User Task Oriented Systems. Proceedings
of the Second SIGIR Workshop on Personal
Information Management (PIM), 2006.

[CG08] T. Catarci, R. Giuliano, M. Piva, A. Poggi, F.
Terella, E. Tracanna (2008). The On-TIME user
interface. In the 5th Conference of the Italian Chapter
of AIS (ItAIS 2008), Paris, France, 2008.

 [Cl98] Clark, A.: Being There: Putting Brain, Body and the
World Together Again. MIT Press, Cambridge, MA
(1998)

[CL75] A. M. Collins and E. F. Loftus. A spreading-
activation theory of semantic processing.
Psychological Review, 82:407–425, 1975.

[CM04] Crescenzi, V. and Mecca, G. 2004. Automatic
information extraction from large websites. J. ACM
51, 5 (Sep. 2004), 731-779. DOI=
http://doi.acm.org/10.1145/1017460.1017462

[Cr97] F. Crestani, Application of spreading activation
techniques in information retrieval, Artificial
Intelligence Review 11(6) (1997) 453–482.

[Cy91] Cypher, A. 1991. EAGER: programming repetitive
tasks by example. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems:
Reaching Through Technology (New Orleans,
Louisiana, United States, April 27 - May 02, 1991). S.
P. Robertson, G. M. Olson, and J. S. Olson, Eds. CHI
'91. ACM, New York, NY, 33-39. DOI=
http://doi.acm.org/10.1145/108844.108850

[DA01] Dey, A. K., Abowd, G. D., and Salber, D. 2001. A
conceptual framework and a toolkit for supporting the
rapid prototyping of context-aware applications. Hum.-
Comput. Interact. 16, 2 (Dec. 2001), 97-166.

 [DS03] Diaper, D. and Stanton, N. The Handbook of Task
Analysis for Human-Computer Interaction, CRC Press,
2003

[Dx89] A. J. Dix (1989). Software engineering implications
for formal refinement. Proceedings ESEC'89, Ed. C. G.
&. J. McDermid. Springer-Verlag. 243-259.
http://www.hcibook.com/alan/papers/ESEC89/

[Dx99] A. Dix (1999). Hazy, Crazy, Lazy Days are Over -
time for designers to think. keynote Designing
Information for Mobile and Broadband Network Users,
London, 15th December 1999.
http://www.hcibook.com/alan/papers/mobile-and-b-99/

[DB00] Dix, A., Beale, R., Wood, A.: Architectures to make
Simple Visualisations using Simple Systems. In: Proc.
of. Advanced Visual Interfaces (AVI 2000), pp. 51–60,
ACM Press (2000)

[DR00] Dix, A., Rodden, T., Davies, N., Trevor, J., Friday,
A., and Palfreyman, K. 2000. Exploiting space and
location as a design framework for interactive mobile
systems. ACM Trans. Comput.-Hum. Interact. 7, 3
(Sep. 2000), 285-321. DOI=
http://doi.acm.org/10.1145/355324.355325

 [DF04] A. Dix, J. Finlay, G. D. Abowd and R. Beale (2004)
Human-Computer Interaction, third edition. Prentice
Hall.

[Dx06] A. Dix, The brain and the web: intelligent
interactions from the desktop to the world. In
Proceedings of VII Brazilian Symposium on Human
Factors in Computing Systems, IHC'06, vol. 323.
(2006) 142. DOI=10.1145/1298023.1298080

[DC06] Dix, A., Catarci, T., Habegger, B., loannidis, Y.,
Kamaruddin, A., Katifori, A., Lepouras, G., Poggi, A.,
and Ramduny-Ellis, D. 2006. Intelligent context-
sensitive interactions on desktop and the web. In
Proceedings of the international Workshop in
Conjunction with AVI 2006 on Context in Advanced
interfaces (Venice, Italy, May 23 - 23, 2006). CAI '06.
ACM, New York, NY, 23-27. DOI=
http://doi.acm.org/10.1145/1145706.1145710

[DK07] A. Dix, A. Katifori, A. Poggi, T. Catarci, Y.
Ioannidis, G. Lepouras and M. Mora, From
Information to Interaction: in Pursuit of Task-centred
Information Management, in Proc. of DELOS
Conference 2007, Pisa, Italy, 2007.

[DK08] A. Dix, A. Katifori, G. Lepouras (2008). Globally
Accessible Local URIs - discussion ideas.
http://www.hcibook.com/alan/projects/TIM/docs/gloi/

[Dx08] Dix, A. 2008. Tasks = Data + Action + Context:
Automated Task Assistance through Data-Oriented
Analysis. In Proceedings of the 2nd Conference on
Human-Centered Software Engineering and 7th
international Workshop on Task Models and Diagrams
(Pisa, Italy, September 25 - 26, 2008). P. Forbrig and
F. Paternò, Eds. Lecture Notes In Computer Science,
vol. 5247. Springer-Verlag, Berlin, Heidelberg, 1-13.
DOI= http://dx.doi.org/10.1007/978-3-540-85992-5_1

[DK10] Alan Dix, Akrivi Katifori, Giorgos Lepouras,
Costas Vassilakis. Spreading Activation Over
Ontology-Based Resources: From Personal Context To
Web Scale Reasoning. International Journal of
Semantic Computing, Special Issue on Web Scale
Reasoning: scalable, tolerant and dynamic (in press)
2010.

[Do09] L. Dodds, Understanding the Big BBC Graph, dated
11th June 2009. Accessed 10/08/2009.
http://blogs.talis.com/n2/archives/569

[Do08] The Dojo Foundation. The Book of Dojo, 1.3.
http://docs.dojocampus.org/

[DM07] M. Dzbor, E. Mottaa, and J. Dominguea, (2007).
Magpie: Experiences in supporting Semantic Web
browsing. Web Semantics: Science, Services and
Agents on the World Wide Web, 5(3), Pages 204-222

[En95] Endsley, M. (1995). Toward a theory of situation
awareness in dynamic systems. Human Factors, 37(1),
32-64.

[EK95] Ericsson, K., and Kintsch, W. 1995, Long-term
working memory. Psychological Review, 102, 211-
245.

[FL06] Faaborg, A., Lieberman, H.: A Goal-Oriented Web
Browser. In: Proc. of the Conference on Human
Factors in Computing Systems (CHI 2006), pp. 751–
760, ACM Press (2006)

[FY05] Fallman, D. and Yttergren, B. 2005. Meeting in
quiet: choosing suitable notification modalities for
mobile phones. In Proceedings of the 2005 Conference
on Designing For User Experience (San Francisco,
California, November 03 - 05, 2005). Designing For
User Experiences, vol. 135. AIGA: American Institute
of Graphic Arts, New York, NY, 55.

[HD96] Hall, W., Davis, H., Hutchings, G..: Rethinking
Hypermedia: The Microcosm Approach. Kluwer
Academic Publishers, Norwell, MA, (1996)

[HS07] M. Hartmann, and D. Schreiber: Prediction
Algorithms for User Actions. Workshop on “Lernen,
Wissen und Adaptivität" (Learning, Knowledge, and
Adaptability), LWA 2007, German Society for
Informatics, pp. 349-354

[Ha03] M. Hasan, A Spreading Activation Framework for
Ontology-enhanced Adaptive Information Access
within Organisations. in Proc. of the Spring
Symposium on Agent Mediated Knowledge
Management (AMKM 2003), Stanford University,
California, USA, 2003.

[Ha09] M. Hausenblas. Having your profile forms automatic
filled in … Blog post dated 5th April 2009.
http://webofdata.wordpress.com/2009/04/05/pac-intro/

[HD05] Tom Heath, Martin Dzbor, and Enrico Motta (2005)
Supporting User Tasks and Context: Challenges for
Semantic Web Research. In Proceedings of the
Workshop on End-user Aspects of the Semantic Web
(UserSWeb), European Semantic Web Conference
(ESWC2005), Heraklion, Crete.
http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS//Vol-
137/11_heath_final.pdf

[HM05] Tom Heath, Enrico Motta, and Martin Dzbor
(2005) Context as Foundation for a Semantic Desktop.
In Proceedings of the 1st Workshop on The Semantic
Desktop, International Semantic Web Conference
(ISWC2005), Galway, Ireland.
http://tomheath.com/papers/heath-motta-dzbor-
semdesk2005-context-semantic-desktop.pdf

 [HM08] T. Heath and E. Motta (2008) Revyu: Linking
reviews and ratings into the Web of Data. Journal of
Web Semantics, Vol. 6 (4).

[HH85] Hutchins, E. L., Hollan, J. D., and Norman, D. A.
1985. Direct manipulation interfaces. Hum.-Comput.
Interact. 1, 4 (Dec. 1985), 311-338.

[HH00] Hollan, J., E. Hutchins and D. Kirsh (2000)
‘Distributed cognition: toward a new foundation for
human-computer interaction research’. ACM
transactions on computer-human interaction, 7(2), 174-
196.

[HZ08] Hussein, Tim; Ziegler, Jürgen: Adapting web sites
by spreading activation in ontologies. In: ReColl '08:
Int. Workshop on Recommendation and Collaboration
(in conjunction with IUI 2008) Gran Canaria (2008)

[Hu83] Hutchins E. Understanding Micronesian navigation.
In D. Gentner & A. Stevens (Eds.), Mental models.
Hillsdale, NJ: Lawrence Erlbaum, pp 191-225, 1983.

[Hu95] Hutchins E. Cognition in the Wild. MIT Press,
1995.

[Ia01] Renato Iannella, Representing vCard Objects in
RDF/XML, W3C Note, 22 February 2001.
http://www.w3.org/TR/vcard-rdf

[JT07] W. Jones, J. Teevan (eds), Personal Information
Management, University of Washington Press, 2007.

 KV08] A. Katifori, C. Vassilakis, I. Daradimos, G.
Lepouras, Y. Ioannidis, A. Dix, A. Poggi, T. Catarci,
Personal Ontology Creation and Visualization for a
Personal Interaction Management System, in Proc. of
PIM Workshop, CHI 2008, Florence, Italy, 2008.

[KV09] A. Katifori, C. Vassilakis and A. Dix, Ontologies
and the Brain: Using Spreading Activation through
Ontologies to Support Personal Interaction. Cognitive
Systems Research (in press) (2009)

[Ku98] Kushmerick, N. (1998) , (Toward) an extensible
wrapper repository standard. Workshop on AI &
Information Integration, AAAI-98 (Madison).

[LD06] G. Lepouras, A. Dix, A. Katifori, T. Catarci, B.
Habegger, A. Poggi, Y. Ioannidis (2006). OntoPIM:
From Personal Information Management to Task
Information Management Personal Information
Management, SIGIR 2006 workshop, August 10-11,
2006, Seattle, Washington.

[Li01] Lieberman, H.: Your wish is my command:
programming by example. Morgan Kaufmann, San
Francisco (2001)

 [LW05] W. Liu, A. Weichselbraun, A. Scharl, and E.
Chang, Semi-Automatic Ontology Extension Using
Spreading Activation, Journal of Universal Knowledge
Management, 0(1) (2005), 50 – 58.

[MM04] McBride, C. and McKinna, J. 2004. The view from
the left. J. Funct. Program. 14, 1 (Jan. 2004), 69-111.

[M02] Gordon Mohr. MAGNET v0.1, (Created 2002-06-12;
Revised 2002-06-17, Accessed June 2008).
http://magnet-uri.sourceforge.net/magnet-draft-
overview.txt

 [NM98] Nardi, B., Miller, J., Wright, D.: Collaborative,
Programmable Intelligent Agents. Communications of
the ACM, 41(3), 96–104 (1998)

[PK97] Pandit M., Kalbag, S.: The selection recognition
agent: Instant access to relevant information and
operations. In: Proc. of Intelligent User Interfaces (IUI
97), pp. 47–52 ACM Press (1997)

[RV97] P. Resnick and H. R. Varian (Eds.), Special Issue on
Recommender Systems, Communications of the ACM,
40(3) (1997) 56–89

[RS04] E. Rukzio, A. Schmidt, H. Hussmann, Privacy-
enhanced Intelligent Automatic Form Filling for
Context-aware Services on Mobile Devices, in Proc. of
workshop on Artificial Intelligence in Mobile Systems

2004 (AIMS 2004), in conjunction with UbiComp
2004, Nottingham, UK, 2004.

[Sa05] L. Sauermann, The Gnowsis Semantic Desktop for
Information Integration, in Proc. of the 3rd Conference
Professional Knowledge Management, Kaiserslautern,
Germany, 2005.

[Sa08] Leo Sauermann (ed.). Desktop URIs. (accessed May
2008).
http://aperture.wiki.sourceforge.net/SemdeskUris

[Sh82] Shneiderman, B. (1982). The future of interactive
systems and the emergence of direct manipulation.
Behavior and Information Technology, 1, 237-256.

[SH08] L. Sauermann and D. Heim, Evaluating Long-Term
Use of the Gnowsis Semantic Desktop for PIM, in
Proc. of the 7th international Conference on the
Semantic Web, Karlsruhe, Germany, 2008, 467-482.

[SM04] Stylos, J., Myers, B., Faulring, A.: Citrine:
providing intelligent copy-and-paste. In: Proc. of the
17th Symposium on User Interface Software and
Technology (UIST 2004), pp. 185–188, ACM Press,
(2004)

[Su87] Suchman, L. (1987). Plans and Situated Action, MA:
Cambridge University Press.

[Sw03] Luke Swartz (2003). Why People Hate the Paperclip:
Labels, Appearance, Behavior, and Social Responses
to User Interface Agents. Honors Thesis, Symbolic
Systems Program, Stanford University

 [WD97] Wood, A., Dey, A., Abowd, G.: Cyberdesk:
Automated Integration of Desktop and Network
Services. In: Proc. of the Conference on Human
Factors in Computing Systems (CHI 97), pp. 552–553,
ACM Press (1997)

[WM89] Wright P. C. and A. F. Monk, A cost-effective
evaluation method for use by designers. International
Journal of Man-Machine Studies, 35, 1989.

[WD96] W3C draft, Client Side Automated Form Entry,
W3C Working Draft WD-form-filling-960416,
http://www.w3.org/TR/WD-form-filling.html

[WE10a] W3C Editor's Draft. Web Storage. dated 4th Feb.
2010. http://dev.w3.org/html5/webdatabase/

[WE10b] W3C Editor's Draft. Web SQL Database. dated 4th
Feb. 2010. http://dev.w3.org/html5/webdatabase/

