
Formal Methods in HCI: a Success
Story – why it works and how to
reproduce it
Alan Dix
Computing Department Lancaster University
Lancaster, LA1 4YR, UK

(unpublished manuscript Jan. 2002)

http://www.hcibook.com/alan/papers/formal-2002/

Abstract
Strong success stories of formal methods are relatively rare. This paper
discusses a case study where the use of formal dialogue specification
improved the efficiency of production by an order of magnitude. The
actual example comes from some years ago, but this paper seeks to
understand the reasons for success so that they can be reapplied to more
advanced, but still often under-utilised, methods today. Two issues are
dealt with in detail: interface state and the blending of formal and informal
representations. The issues of state are also discussed in relation to the
particular problems of web interfaces.
Keywords: formal methods, dialogue specification, web interfaces

1. Introduction
There is a strong community working on the use of formal methods within

HCI (see for example Palanque and Paterno's collection [1997] or the DSVIS
conference series). However, there is still a strong perception, both within
HCI and in computing in general that formal methods are (i) difficult and
expensive to apply and (ii) only really useful in safety critical domains such as
air traffic control. In fact, there are a significant number of commercial success
stories in formal methods in general (Clarke. 1996) and considerable interest
within commercial user-interface design, although it must be said, mainly in
the safety critical domain.

In this paper we're going to look at a case study of successful use of formal
methods in HCI in a non-safety critical area – standard data processing.
However, we'll not be looking at a recent case study using the most up-to-date
methods, but instead one from over 15 years ago, in fact before I became a
computing academic, and before I'd even heard the term HCI! At the time I
was working for Cumbria County Council working on transaction processing
programs in COBOL, the sort of thing used for stock control or point-of-sale
terminals in large organisations.

Why such an old example, rather than a more sexy and up-to-date one?
Well first because this sort of system is still very common. In addition, the

issues in these large centralised transaction processing systems are very similar
to those of web-based interfaces, especially e-commerce systems. Thirdly, it is
a resounding success story, which is not too common in this area, and a
1000% performance improvement is worth shouting about. Finally and most
significantly, because it was such a success, it gives us a chance to analyse
why it was so successful and what this tells us about using formalism today.

The other thing I ought to note is that although this was a very successful
application of formal methods in interface design, I didn't understand why at the
time. It is only comparatively recently that I've come to understand the rich
interplay of factors that made it work and so perhaps be able to produce
guidelines to help reproduce that success. So, that is why this paper is being
written today!

Most of my own work in formal methods has been on suing them to
produce general models and obtain understanding of broad issues of HCI. The
success criteria for this work is very different, measured in understanding and
insight. However, in this paper the focus is very much on the use of formal
specification within the design of specific system and success criteria is in
terms of time saved and pound notes!

We'll first of all look at the case study problem and the formal methods
solution to it. This leads to a large number of success factors. Two strands
will be examined in details – the issue of interface state, in section 4, and
blending formal and informal representation, in section 5. In section 4 we will
also look at the issue of state within web interface design.

2. Case study Ð the problemÉ

2.1 transaction processing
Transaction processing systems such as IBM CICS have been the

workhorses of large-scale information systems, stock management and order
processing since the late 1970's. They are designed to be able to accept many
thousands of active users.

Architecturally these systems are based around a central server (or cluster)
connected to corporate databases and running the transaction-processing engine.
In the system I worked with this was an ICL mainframe but in web-base
applications will simply be a web server or enterprise server. The user
interacts with a form-based front-end. In the systems I dealt with in the mid-
80s the front-end was semi-intelligent terminals capable of tabbing between
fields. Subsequently, in many areas these were replaced by PCs running 'thin
client' software and now may be web-based forms. The centralisation of data
and transaction processing ensures integrity of the corporate data, but the fact
that users interact primarily with local terminals/PCs/browsers means that the
central server does not have to manage the full load of the users interactions.

Figure 1. physical architecture of transaction processing system
When the user interacts the succession of events is as follows:
� user fills in form on terminal
� terminal may perform some initial validation (e.g. number vs.

letters, range checks, date format, or, on thin PC client or Javascript
on web form, more complex validation)

� user checks and then submits form (presses special key or screen
button)

� terminal/PC/browser sends form data as a message to the transaction
processing engine (e.g. CICS or web server) on the central server

� transaction-processing engine selects appropriate application module
for message (based on last screen/web page or information in
message)

� application module interprets message (form data), does further
checks, performs any database updates, gets any required data from
the database and generates a new screen/web page as 'result'

� transaction processing engine passes this back tot he terminal
� terminal presents the screen/web page to the user

All these stages except � are managed by the transaction-processing
infrastructure. This sounds as if the job in designing this part should be
straightforward, most of the complexity of dealing with detailed user
interactions have been dealt with. But it is not quite so simple as all that ...

2.2 the problemÉ
In a GUI or any single user interface, the succession of events in the

program is straightforward:
• user event 1 arrives (e.g. mouse press)
• deal with event and update display
• user event 2 arrives (e.g. mouse release)
• deal with event and update display

• user event 3 arrives (e.g. key click)
• deal with event and update display

As we know this can cause enough problems!
In a transaction processing system, with one user, the application module

may receive messages (with form data) in a similar fashion. However, the
whole point of such systems is that they have many users. So, the module
may receive messages from different users interleaved:

• message 1 for user A received
• deal with message and generate new screen/web page for user A
• message 1 for user B received
• deal with message and generate new screen/web page for user B
• message 2 for user B received
• deal with message and generate new screen/web page for user B
• message 2 for user A received
• deal with message and generate new screen/web page for user A

The transaction processing engine deals with passing the new screens back
to the right user, but the application module has to do the right things with the
form data in the messages. In the case of simple transactions, this may not be
a problem, for example, if the application simply allows the user to enter an
ISBN number and then returns data about the book, the system can simply deal
with each message in isolation. However, a more complex dialogue will
require some form of state to be preserved between transactions. For example, a
request to delete a book may involve an initial screen where the user fills in the
ISBN, followed by a confirmation screen showing the details of the book to be
deleted. Only then, if confirmed, will the system actually do the deletion and
generate a 'book has been deleted' screen. Even a search request that delivers
several pages of results needs to keep track of which result page is required and
the original search criteria.

Getting back to Cumbria in the mid-80s, the transaction systems in place
at that stage only dealt with the simple stateless record display transactions or
multi-page search transactions ... and even the latter had problems. When
several users tried to search the same database using the system they were
likely to get their results mixed up with one another!

I was charged with producing the first update system. Whilst occasionally
getting someone else's search results was just annoying, deleting the wrong
record would be disastrous.

2.3 all about state
So what was wrong with the existing systems and how could I avoid

similar, but more serious problems? In essence, it is all about state.
In most computer programs you don't need to worry too much about state.

You put data in a variable at one stage and at a later point if you require the
data it is still there in the variable. However, in the case of transaction
processing modules the module may be re-initialised between each transaction
(as is the case with certain types of web CGI script), so values put in a
variable during one transaction won't be there at all for the next transaction.
Even worse, if the same module is dealing with several users values left behind
from a transaction for one users may still be 'lying around' when the next
user's transaction is processed. This is precisely what was happening in the

search result listings. Some of the state of the transaction (part of the search
criteria) was being left in a variable. When the system was tested (with one
user!), there was no problem, but when several users used the system their
search criteria got mixed up. Although it was possible to explicitly save and
restore data associated with a particular terminal/user, the programmers had
failed to understand what needed to be stored. Instead, the exiting programs
coped by putting state information into fields on the form that were then sent
back to the next stage of the transaction. With web-based interfaces similar
problems occur with session state.

However, there is also a second, more subtle part of the state the current
location in the human–computer dialogue.

In traditional computer algorithmics, the location in the program is
implicit. It is only when one starts to deal with event-driven systems, such as
GUIs, network applications and transaction processing, that one has to
explicitly deal with this. And of course traditional computer science training
does little to help. Not only are the principle algorithms and teaching
languages sequential, but also the historical development of the subject means
that sequential structures such as loops, recursion, etc. are regarded as critical
and in lists of essential competency whereas event-driven issues are typically
missing. Even worse, event-based languages such as Visual Basic and other
GUI development languages have been regarded as 'dirty' and not worthy of
serious attention. Possibly this is changing with Java becoming a major
teaching language, but still the event-driven features are low on the computer
science agenda!

So, computer programmers in the mid-80s as well as today are ill prepared
both conceptually and in terms of practical skills to deal explicitly with state,
especially flow of control.

This was evident in the buggy transaction modules I was dealing with.
The flow of the program code of each module looked rather like a twiggy tree,
with numerous branches and tests that were effectively trying to work out
where in the flow of the user interaction the transaction was situated.

if confirm_field is empty // can't be confirm screen
 // or user didn't fill in the Y/N
box
then if record_id is empty // must be initial entry
 then prepare 'which record to delete' screen
 else if valid record_id
 then read record and prepare confirm screen
 else prepare error screen
else if confirm_field = "Y'
 then if record_id is empty // help malformed
 then prepare error screen
 else if valid record_id
 else do deletion
 then prepare error screen
 else if confirm_field = "N'
 then prepare 'return to main menu' screen
 else prepare 'must answer Y/N' screen

No wonder there were bugs!

Of course, if one looks at many GUIs or web applications the code looks
just the same ... Try using the back key or bookmarking an intermediate page
in most multi-stage web forms and you'll probably find just how fragile the
code is.

3. Case study Ð the solution

3.1 Flowcharts of dialogue
A flow chart of the program looked hideous and was very uninformative

because the structure of the program was not related to the structure if the user
interaction. So, instead of focusing on the code I focused on the user
interaction and produced flowcharts of the human–computer dialogue. Figure 2
shows a typical flowchart.

Figure 2. flow chart of user interaction

Each rectangle represents a possible screen and a miniature of the screen is
drawn. The angled boxes represent system actions and the 'tape' symbols

represent database transactions. Note that this is not a flowchart of the
program, but of the human–computer dialogue – it is a formal dialogue
notation (although I didn’t know the term at the time). Note also that the
purpose is to clarify the nature of the dialogue, so the system side is only
labeled in quite general terms (e.g. 'read record'). These labels are sufficient to
clearly say what should happen and does not give all the details of how the
code to do this works in details. This is because the difficult thing is getting
the overall flow right.

Notice also that each major system block and each screen is labeled: D1,
D2, D3 for the screens, C1, C2, C3 for the system code blocks. These are
used to link the flowchart to boilerplate code. For each screen there is a
corresponding block of code, which generates the screen and, very importantly,
stores the label of the next system block against the terminal/user. For
example, screen D3 will save the label 'C2'. The first thing the module does
when asked to deal with a message is to retrieve the label associated with the
user. If this is blank it is the start of the dialogue (generate screen D1 in this
case), otherwise the module simply executes the code associated with the
relevant system block.

This all seems very mundane, but the important thing is that it worked.
Systems that were taking months to develop could be completed in days and
the turnaround time for upgrades and maintenance was hours. That is systems
were being produced at least 10 times faster than previously and
furthermore with less bugs!

3.2 Why it worked É
So why is it that such a simple formal method worked so well and can we

use this to assess or improve other formalisms or develop new ones?
Let's look at some of the features that made it function well:

useful – addresses a real problem!
The notation focused on the overall user-interface dialogue structure that
was causing difficulties in the existing systems. So often formalisms are
proposed because they have some nice intrinsic properties, or are good for
something else, but do not solve a real need.

appropriate – no more detailed than needed
For example, there was no problem in producing the detailed code to access
databases etc., so the formalism deals with this at a very crude level 'read
record', 'delete record' etc. Many formalisms force you to fill in lots of
detail which makes it hard to see the things you really need it for as well as
increasing the cost of using it.

communication – mini-pictures and clear flow easy to talk through with
client
Formal methods are often claimed to be a means to improve
communication within a design team, because of their precision. However,
when precision is achieved at the cost of comprehensibility there is no real
communication. Note also this was appropriate for communication with
developers as it used a notation they were familiar with.

complementary – different paradigm than implementation
It is quite common to use specification methods that reflect closely the
final structure of the system. For example, object-oriented specification for

object-oriented systems. Here however, the specification represents the
structure of the dialogue which is completely different from the structure of
the code. This is deliberate, the notation allows one to see the system
from a different perspective. In this case one more suitable for producing
and assessing the interface design. The relationship between the structure
of the notation and the structure of the code is managed via simple rules,
which is what formalisms are good at!

fast pay back – quicker to produce application (at least 1000%)
I have been involved in projects where substantial systems have been fully
specified and then implemented and have seen the improvements in terms
of quality and long-term time savings. However, I still rarely use these
methods in practice even though I know they will save time. Why?
because I, like most people, like instant pay-back. Spending lots of time
up-front for savings later is very laudable, but when it comes to doing
things I like to see results. Not only that, but clients are often happier to
see a buggy partial something than to be told that ,yes, in a few months it
will all come together. The dialogue flowcharts didn't just produce long-
term savings, but also reduced the lead time to see the first running system.

responsive – rapid turnaround of changes
The feeling of control and comprehension made it easier to safely make
changes. In some formal methods, the transformation process between
specification and code is so complex that change is very costly (see [Dix
1989]). The assumption underlying this, as in much of software
engineering, is that well specified systems will not need to be changed
often. Of course, with user interfaces, however well specified, it is only
when they are used that we really come to fully understand the
requirements.

reliability – clear boiler plate code less error-prone
Although the transformation process from diagram to code was not
automated, it was a fairly automatic hand process applying and modifying
boiler plate code templates. This heavy reuse of standard code fragments
greatly increases the reliability of code.

quality – easy to establish test cycle
The clear labeling of diagrams and code made it easy to be able to track
whether all paths had been tested. However, note that these are not just
paths through the program (which effectively restarted at each transaction),
but each path through the human–computer dialogue.

maintenance – easy to relate bug/enhancement reports to specification and
code
The screen's presented to the user included the labels making it easy to
track bug reports or requests for changes both in the code and specification.

In short the formalism was used to fulfil a purpose, and was, above all, neither
precious nor purist!!

4. More about state

4.1 Is state really that difficult?
When the bugs found in the system were described in section 2.3, did you

think "obviously not very good developers that could make that sort of
mistake"? In fact, these are not just common problems, but normal ones.

A simple example I use with students and in HCI tutorials is a four
function calculator. What is in the state? Clearly there is a number that is
currently displayed, but many students get stuck there. The parts that have no
immediate display are harder think about as a designer. However, this hidden
state is also more confusing for the user when it behaves unexpectedly, so it is
more important that the designer gets it right.

Some of the extra detail becomes apparent when you think about particular
user actions – when the '=' key is pressed the calculator must know what
operation to do (+,-,*,/) and what the previous value was, so the state must
record a 'pending' operation and a running total.

Another method, which I find very useful, is to play through a scenario
annotated with the values of various state variables. Doing this to the
calculator shows that an additional flag is needed to distinguish the case when
the display says '2' because you just typed '2' or because you just typed '1+1'.
In the former case typing '3' would give you '23', in the latter it would be '3'.

Calculator scenario

user types: 1 + 2 7 = Ð 3

start after 1 + 2

action display pend_op total

2 + 1
digit(7) 2 7 + 1
equals 2 8 none 2 8
op(Ð) 2 8 Ð 2 8
digit(3) 283 !!! Ð 2 8

Figure 3 Calculator scenario

Let's just recap on this. I said that many students get stuck on at a single
state variable for current display. Furthermore, in a group, even of computing
masters students, typically none of them get all three of the state variables
(display, running total and pending operation) without prompting from me to
use one of the above methods. Remember too that most of these students will
have had training in areas such as object oriented methods that should help in
isolating state variables. And as for the 'am I in the middle of typing a
number' flag – not only have I never found anyone who has produced this,
when I originally started using this example I missed it and only noticed when
I ran through the above scenario.

Recall that when we discussed the state of the transaction processing
system in section 3.3 there were two kinds:

• temporary values such as the current location in a search result display
• the value representing the current location in a dialogue
The three 'easier' state variables were of the first kind. The flag, that even I

forgot, was of the second.
So clearly state is very difficult to understand, and 'where we are' state is

most difficult of all.
In section 2.3, I noted that this was partly because computing training does

not focus on the sorts of systems where you need to think so explicitly; on
state. When you want a variable you just name it and, most of the time, it has
the right lifetime without worrying too much. (In fact, many Java programs
are full of variables declared at an object level that should really be method
variables, exactly the same problem as in the TP systems. It doesn't show up
as a bug unless the object is used simultaneously by several threads.)

The second type of state, 'where we are', is represented explicitly in the
computer itself in the form of the program counter. However, the programmer
see the text of the program as a whole, the program counter is implicit.

In real life too we find that state which is apparent in the external attributes
of an object (such as the size of a balloon, or the height of a ball) are easy to
think about, whereas those that are hidden (such as the velocity of the ball) are
much more difficult.

4.2 The Hydra model of interface state?
When Hercules fought the nine-headed Hydra he at first thought it easy, one

by one he chopped off the venomous heads. But, from each bloody stump two
new heads grew …

Early user-interface architecture models, in particular the Seeheim model
[Pfaff, 1985], were monolithic. Driven partly by object-oriented programming,
this was superceded by more component based models such MVC (Model-
View–Controller) [Lewis, 1995]. The PAC
(Presentation–Abstraction–Control) model [Coutaz, 1987] was developed partly
to deal with the problematic dependencies between view and controller, but also
in order to better model the hierarchical composition of components and sub-
components within an interface. Similarly, MEAD captures aggregate objects
in shared-state collaborative systems [Bentley, 1994].

However, there is also dynamic level of state decomposition within most
interactive systems.

Imagine you are using a word-processor. There are immediately two
distinct kinds of state: (i) the text and formatting of the document which will
be saved; and (ii) the current selection, cut-paste buffer, etc. which will
disappear when you exit the application.

Now suppose you open a tabbed dialogue box. There will be additional
state connected with this dialogue box: (i) the formatting options you select
typically do not have immediate effect, but instead are copies or ghost values
that will overwrite the 'real' values only if the dialogue box is conformed; and
(ii) the current selected tab or cursor position in a text box only have meaning
during the life time of the box, as soon as you OK or cancel the box they are
forgotten.

Notice the pattern: (i) a temporary copy of part of a deeper state (the file
system, the current formatting); and (ii) some additional interaction state.

Suppose the dialogue box has a very long pull-down menu selection
(perhaps font choice) that doesn’t fot on the screen and so scrolls. Even this
has a similar structure: (i) the currently selected menu item; and (ii) the current
scroll position.

Now let's imagine we are editing some form of record either in a TP
system as described in section 2 or in a web system. The original contents of
the record are displayed and we edit them (with various levels of interaction
state maintained by the web browser). There may be several screens related to
the record, perhaps for multiple addresses, additional information. Possibly
also when we 'submit' screens there may be validation errors. So, we have
many web/TP transaction, but one higher-level user transaction 'edit the
record'.

There is interaction state associated with this high level transaction,
namely the temporary, part-edited contents of the record. This interaction state
must be somehow passed on between individual web/TP transactions. In the
case of single page records, this may often be managed without any explicit
storage, just using the fact that the values are on screen and resubmitted with
each transaction. For multi-page screens this is more complicated. To
consider this we'll need to look more deeply at where systems store state.

4.3 State of the web
In the TP case study many of the original problems were due two things:
• understanding the issue of state
• recording and recalling the state

We'll assume that a better understanding of state may be engendered by
appropriate education, appropriate techniques (such as scenario walkthroughs)
and appropriate notations. This leaves the latter.

In the TP system there were various factors that simplified the problem:
• there was only one path of activity per user (no multiple windows)
• it was easy to identify the current user and terminal (given by the TP

system)
• there was an easy way to store state associated with a particular

terminal
Between them, these two allowed a specification style that assumed a

single-threaded interaction per user and encoding of that.
In the web things are more difficult again!
Users may have multiple windows open, may 'duplicate' windows, may

involve multiple frames. Furthermore the back and history functions allow
users to revisit previous parts of the dialogue. So even when we think we
understand the state of a dialogue we may find it spawning and duplicating
itself in very strange manners. This is a big issue in itself and we won't deal
with it further in this paper.

The web also has a variety of means whereby state information is preserved
between user interactions.

(a) Some technologies preserve variables between interactions (e.g. JSP),
but this has the same problems of accidental sharing as in the TP
systems, so is only suitable for things like usage counters and cached
values of persistent data.

(b) Data can be stored in various forms of persistent storage, sometimes
in memory, more often in a database or other repository such as
enterprise Java beans (EJB) in an enterprise server.

(c) Cookies can be set on a user's machine
(d) Hidden values can be set on web forms
(e) Links can be created on the web page with values encoded into the urls
The last two are equivalent in many ways, but the fact that you need to

encode the same information differently in different context may well cause
bugs!

If we look at different web applications we find state stored in each of these
ways, but in an ad hoc fashion, some in hidden variables, some in cookies.
Many systems give support for session variables – data associated with a
continuous period of use of the system (typically demarcated by some period of
inactivity or through a login/logout). However, as we noted at the end of the
previous section, one of the more common lifetimes for interaction state is the
high-level user transaction, such as editing a record. This is shorter than a
session, but for more complex interfaces cannot simply be carried with options
(d) or (e). The typical progression seen in many systems is an initial coding of
high-level transaction state in (d/e) followed by 'fixes' as this proves
unsuitable, pushing it into session state, with further fixes to deal to deal with
state that gets inappropriately stored too long!

The combination of a difficult distributed model, complex window
management and incompatible versions of buggy browsers means that user
interface development on the web will not be easy and this is reflected in the
interfaces one encounters. However, understanding the nature of interface state
does make this easier – both broad understanding of issues and more
application specific knowledge based on using simple formalisms.

Looking forward there is clearly a need for the user interface community to
investigate more appropriate formalisms, architectural frameworks and tools to
support web and related interfaces.

5. Linking the formal and the informal
The flowcharts used in section 3.1 are composed of alternating user screens

and system actions. Note again that the user screens are represented as a small
sketch of the screen and the system actions are not complete, just a few words
to give the reader an idea of what should happen. These seem like trivial
things, but are crucial.

(i) mini-sketch of screen (ii) system action

Figure 4. main elemnts of flowchart

5.1 A picture tells É
An example I've used frequently when demonstrating formal methods in

HCI is an extract from the instructions of a digital watch (figure 5). This is a
form of state transition network for the watch – yes formal dialogue notation
in a user manual! However, note also what makes it a very comprehensible
notation for the user – little pictures of the watch represent the states!

S M T W T F S S M T W T F S

STP

S M T W T F S

SET

A

Time display Stop watch

Time setting Alarm setting

A

AA
Depress
 button A
 for 2 seconds

S M T W T F S

ALM

AM

Figure 5 User instructions for wrist watch

Just imagine if the person producing the watch had instead decided to
produce a more abstract STN (figure 6). Doesn’t really work!

Time
display

Stop
watch

Time
setting

Alarm
setting

A

A A

A

Depress
 button A
 for 2 seconds

Figure 6 abstract instructions

This form of mini-screenshot is quite common in web-navigation design,
certainly in paper-based design. In dialogue design tools it is more common to
see simulated screens associated with 'playing' the formal description, for
example, in Thimbleby's Hyperdoc [Thimbleby, 1993]. For micro-dialogue a
thumbnail of the whole screen would be inappropriate as the critical features
may be indiscriminable – the same problem also holds for automatically
produce web page thumbnails. Note however, that the flowchart does not
produce thumbnails of the (80x25) screen, but instead is a sketch, showing

enough details to make the different screens clear. For example, in screen D2
there would be far more employee details, but instead just enough are shown to
give the general idea, but the crucial items is the prompt for 'Y/N'. Note also
that screen D3 is shown with the extra reminder to distinguish it from D2.
This is because it is a design notation, and intended to communicate between
people as well as having a formal content.

5.2 Words too
Turning now to the system actions in figure 4.ii. As we've already

discussed this deliberately doesn't give a great deal of detail. This is because
the difficult area is in the large-scale dialogue structure not the internal details.
The words used are sufficient to say what is required, but assume the developer
knows how to program!

There is a temptation when working in formal domains to strive for
completeness, in the sense of wanting to include everything within the
formalism. However, the case study is a good reminder that formal precision
is needed in some areas, but not everywhere.

This use of selective detail is more common among graphical formalisms,
both in dialogue specification and task analysis, than in more 'mathematical-
looking' notations, although this is no intrinsic reason for this.

ConcurTaskTrees (CTT) are an interesting example [Paternò, 2000]. They
are related to CNUCE's LOTOS-based interactor model [Paternò, 1992]. The
use of LOTOS implicitly encourages a much more detailed specification
compared with the more top-down approach suggested by CTT. However,
CTT is also like standard hierarchical task analysis [Shepherd, 1989]. In HTA,
the decomposition of tasks is made precise but the relative ordering is left to
less well formalised plans. CTT uses LOTOS operators to make this ordering
precise, choosing an aspect of LOTOS that complements HTA. However, it
still retains the important ability to leave sub-tasks undecomposed and then
later refined. CTT has also been augmented by various tools that increase the
pay back from the approach [Paternò, 1999].. So, CTT satisfies many of the
criteria in section 3.2, and is enjoying a fair degree of external adoption
compared with other user interface specification techniques.

5.3 But still formal
If you take the boxes in the flowchart and remove the annotations, just

leaving the labels you get figure 7. You would never need to actually do this
reduction, but this represents the part of the flowchart that can be analysed
without further human interpretation. So, if one were to run the system and
get the sequence of screens D1, D3, D2, one could tell, without knowing what
input the user typed, that there was something wrong with the implementation
if the dialogue.

D1

D2 D3

C1

C2

C3

Finish

Finish

Figure 7 formal part of flowchart

It is possible to have diagrammatic notations for which it is not possible
to extract formal properties. Furthermore, the formal interpretation of 'gaps'
requires some care. For example, box C2 represnts the system examining the
user input and making some choice. The actual choice depends on whether the
user enters Y, N or something else. This is made clear in the human readable
annotation, but in the strictly formal part of the flowchart this is non-
deterministic, and without further information should be assumed to be
demonically non-deterministic (that is always choosing the path you don’t
want!). In other words, one could not say definitively from figure 7 that it is
possible to ever reach box C3, although this is evident reading (as a human)
the full flowchart. This level of formal description is also suitable for
automatic analysis such as the graph properties checked by Thimbleby [2001],
or formal model checking.

Of course, one does not have to only verify the fully formal parts of a
mixed formal-informal representation. Indeed, when the flowcharts were used
in anger this was the case. During testing the flowchart could be used (as in
formal testing regimes for programs), to determine all paths to test and and
exhaustive test producer was performed. Although the formalism didn't 'know'
which path through C2 should happen, the human tester did! Again, it is so
easy to assume and all or nothing approach of completely automated or
completely human analysis, whereas automatic analysis can be used most
effectively to support human design.

6. Summary
The quite massive improvements made by formal dialogue specification in

this case study show beyond doubt that formal methods can be of great value in
user interface design … and in areas other than those it is usually assumed to
cover.

Although this is an old example, the lessons are very pertinent. We
haven’t been able to discuss all of the lessons listed in section 3.2 in this
paper, but there do seem to be many ways in which these can be applied.

The issue of state seems to be both generally difficult and also particularly
difficult within user interfaces. Within web interfaces it begins to look well
neigh intractable. Unfortunately, badly managed interface state is at best
extremely confusing for users and at worst causes errors and bugs. Dealing
with this through training, appropriate methods and appropriate support tools
is therefore essential. Some suggestions are mode in this paper, for example,
the use of rich scenarios alongside with formal state descriptions, this seems an
area worthy of further study.

Perhaps the main failing of the formal methods community has been to be
too precious about our formalisms. There is both a usability challenge (that is
usability of formalisms) and a theoretical challenge in producing formalisms
that can be used flexibly and profitably.

However, computer systems are the most formal systems produced by
humankind, far more formal than diagrams or mathematics. So those
eschewing formalism in HCI delude themselves. We all deal with formal
methods in HCI, the ultimate challenge is to do it well.

References
Bentley R, Rodden T, Sawyer P, Sommerville, I. Architectural support for
cooperative multi-user interfaces. IEEE COMPUTER special issue on CSCW, 1994;
27(5). pp 37-46.
E. M. Clarke, J. M. Wing (1996). Formal Methods: State of the Art and Future
Directions. ACM Computing Surveys, Vol. 28, No. 4, December 1996. pp. 626-643.
Coutaz J. PAC, an object oriented model for dialogue design. In: Bullinger H-J,
Shackel, B. (eds) HumanÐComputer Interaction Ð INTERACT'87. Elsevier (North-
Holland), 1987. pp 431-436.
Dix, A.J. and M.D. Harrison, Interactive systems design and formal development are
incompatible?, in The Theory and Practice of Refinement, J. McDermid, Editor.
1989, Butterworth Scientific: p. 12-26.
Lewis The Art and Science of Smalltalk. Prentice Hall 1995.
Pfaff G, Hagen PJW. (eds) Seeheim Workshop on User Interface Management
Systems. Springer-Verlag, Berlin 1985.
Palanque, P. and Patern�, F., editors (1997). Formal Methods in Human Computer
Interaction. London, Springer-Verlag
Patern�, F. and G. Ballardin (1999). Model-Aided Remote Usability Evaluation. In
Proceedings of Interact'99, pp. 434Ð442.
Patern�, F. and G. Faconti. On the use of LOTOS to describe graphical interaction.
in Proceedings of HCI'92: People and Computers VII. 1992. Cambridge University
Press. p. 155Ð173.
Patern�, F. (2000). Model-Based Design and Evaluation of Interactive
Applications. London, Springer-Verlag
Shepherd. Analysis and training in information technology tasks. In D. Diaper,
editor, Task Analysis for Human-Computer Interaction, chapter 1, pages 15-55.
Ellis Horwood, Chichester, 1989
Thimbleby, H. W. (1993). Literate using for finite state machines. University of
Stirling.
Thimbleby, H., P. Cairns, and M. Jones (2001). Usability Analysis with Markov
Models. ACM Transactions on Computer-Human Interaction, Vol. 8, No. 2, June
2001, Pages 99Ð132.

