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Abstract

Undo is seen as essential element of interactive systems. However, despite
its prevalence users are often confused by its behaviour and developers often
apply undo inconsistently within their systems. This report focuses on single-
user linear undo/redo systems It presents an abstract formal framework for
modelling undo and related system extensions, a classification and taxonomy
of undo and redo, and formal specifications of each class of undo/redo. This
combination of formal and informal analyses clarifies the different kinds of
undo/redo that are to be found in interactive systems and helps shed light on
the fundamental reflexive nature of undo.

URL for related work: http://www.soc.staffs/ac/uk/~cmtajd/topics/undo/

1 Introduction and background

1.1 Undo

The issue of undo in user interfaces has been studied by several authors over many years (e.g.
[2, 13, 21, 19, 15]). This has included both work aimed at understanding the problem, and
work on implementation structures. Despite this, experiments have shown that experienced
users of Microsoft Word, which has a relatively simple and easy to use undo function, still
have great difficulty in working out what undo will do in some contexts [16]. Is this because
we still do not have a clear idea of what undo should do, or is it simply that undo is
intrinsically complex?

This is not simply a matter of theoretical interest. At the time of the earlier formulations
of undo, the users of most interactive systems were either expert, or at least computer literate.
Even if the users of a system with complex undo mechanisms, such as Emacs [18], did not
fully understand its semantics, at least they would not be too intimidated by its often erratic
behaviour. Now sophisticated multi-step undo is available on standard office systems such
as Microsoft Word 6, and indeed the ability to undo with ease (not necessarily with an undo
command) is seen as one of the key features of the direct manipulation paradigm [17].

In this report, we seek to clarify some of these issues by:

• building a structured taxonomy of possible linear undo/redo mechanisms;
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• formalising a fully abstract model of undo, that is, a model of classes rather than
specific undo mechanisms;

• clarifying the reflexive nature of undo and redo and how these relate to different
notions of ‘state’.

We deliberately do not demonstrate any new mechanisms or implementation methods; our
aim is to understand what undo should do.

In recent years there has been substantial interest in non-linear or selective undo [3];
that is the ability to undo arbitrary commands in the interaction history. This is particularly
important in multi-user undo where other users may have performed actions on a shared
object between when a user performs and incorrect action and when he decides to undo it
[1, 4, 6]. This report does not deal with these cases as there are enough complex issues to
consider in the ‘simple’ case of linear single-user undo!

1.2 The nature of undo

So, what is undo? Abowd and Dix [1] make a strong distinction between the meaning of
undo from the user’s and system’s point of view. From the system’s point of view, undo is
a function, and as one, does something; from the user’s point of view, undo is an intention,
the intention to recover a past situation. This recovery can be done employing any system
function, not only undo. Nevertheless, it is often useful for the user to have a suitable tool
helping him in pursuing his aim. This tool is the undo function; whether accessed via a
button, function key or a menu option.

So undo is a user intention facilitated by a system function. What then does the undo
function do? In most systems undo allows the user to reach the immediately previous state,
so one could regard undo is a function which allows the user to delete, or remove the
effect of the previous action. However, what happens if the previous action is an undo?
Some systems do not allow you to perform the undo of the undo, some others allow it.
In the latter case there are further possibilities: the undo of the undo may be used as a
backtracking tool successively moving the user further into the past history of his interaction;
alternatively, successive undos may make the system oscillate between two states. Moreover,
other systems allow to reach not only the immediately previous state, but also choose any
one in the past history.

A weak definition, which includes all the above possibilities, may be to say undo is a
system function that allows the user to reach some state in the past history. This means that
undo may be considered as a special case of reachability [9]. The reachability property is
said to hold for a system if, starting from any system state, it is possible for the user to reach
any other state by using appropriate commands. If reachability holds for a system, the user
can reach any state, both ones that have previously been reached (already present in the
action history) or ones not yet reached (possible future actions). So, reachability allows the
user to move in both the directions of the action history, past and future. Undo is a special
case of reachability, in the sense that it allows the user to move only in one direction of the
action history, the past.

Among all the functions that a user can perform while interacting with a computer, undo,
as we will explain in the following sections, is one of the most complex and its behaviour is
different from any other system function. In particular, after performing an undo, the user
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may find the state the system reaches is different from what he would have predicted. This
inconsistency arises from several causes, some are to do with the precise function of undo.
As is already evident, there are several such interpretations, and in the rest of this report
we shall try to clarify these different interpretations. In addition, there are often problems
due to the way undo treats the granularity of data or user actions. This inconsistency arises
because undo shows something of the internal functioning of the system, of which the user
is otherwise unaware.

From the above considerations we can see that the world around undo is very confused.
Given the range of interpretations of undo in different applications, it is clear that there is no
common understanding or definition of undo. If applications differ between one another,
it is no wonder users become confused.

1.3 Models of undo

Different formal models have been proposed in the literature in order to describe undo
in interactive systems [2, 13, 19, 20]. One of the most influential is the ‘script’ model of
Archer, Conway and Schneider [2], which we will refer to as the ACS model. This is based
on three streams of actions: the User History, the Active Script and the Pending Script.
The User History is simply a list storing all the user’s actions. Sequences of commands
produce scripts; there is an immediate mapping between each script and a state as the object
visualised on the screen. The Active Script is the list of those user commands which are
taken into account in the current state. The Pending Script is the list of commands deleted
in the Active Script by undo which are ‘available’ for redo (where there is a redo command).

This model can be used to discuss most (but not all) undo systems. As an example, let
us consider text editor with both undo and redo. We can trace the various scripts as the
user enters the actions: ‘type(hi), type(everybody), undo, redo’. We will start off from an
empty state. Then as the user types words they become part of the User History and also
the current Active Script:

User History type(hi)
Active Script <type(hi)>
State hi
Pending Script < >

User History type(hi) type(everybody)
Active Script <type(hi), type(everybody)>
State hi everybody
Pending Script < >

When the user performs the undo action, it become part of the User History, but the previous
command is removed from the Active Script (it is undone) and the state reflects this:

User History type(hi) type(everybody) undo
Active Script <type(hi)>
State hi
Pending Script <type(everybody)>
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Notice how although the command ‘type(everybody)’ has been removed from the Active
Script it is still recorded in the Pending Script. This is so that we know what a successive
redo action should do:

User History type(hi) type(everybody) undo redo
Active Script <type(hi), type(everybody)>
State hi everybody
Pending Script < >

This model emphasises several other points which we will address in progressive detail
through the report:

• We must consider two kinds of history, one recording all user actions (which is always
added to by user actions), the other recording the actual ‘script’ of commands which
are deemed to have happened to give rise to the observed state of the system.

• We must also consider two kinds of commands, normal commands (such as ‘type(hi)’)
and extra ones to allow undoing (such ‘undo’ and ‘redo’).

• The scripts used in the model are not necessarily recorded in actual undo systems –
they serve to describe the behaviour, not the implementation of such systems.

• The ‘state’ in the ACS model is not the entire state of the system. It corresponds to the
state of the system when one ignores undo. Some extra history information must be
stored.

1.4 Structure of the report

The rest of this paper we consider the interpretation and modelling of undo and redo. In
the next section we will look at the issue of the two types of commands and two types of
state in greater detail, and also at the reflexive nature of undo: looking in on and acting
on the history of interaction. In section 3, we will develop an abstract formal framework
which can be used for the modelling of undo and redo. Section 4 presents a taxonomy of
undo followed by a formal model of each class of undo system in section 5. Sections 6 and 7
follow the same pattern presenting a taxonomy and then formal models of redo. Finally in
section 8, we consider critical issues and reformulate our informal notions of redo.

2 Undo and the original system

Notice that some parts of the ACS model refer to the original system without undo: the
active script and the state. Adding undo to such a system in some way enhances or extends
it, but we expect the original system still to be ’in there’ somewhere. It is central to the
understanding of undo that one draws a distinction between this underlying system and
the enhanced system with undo. The reason for the importance of this distinction is the
reflexive nature of undo. First of all, let’s look at some of the problems that arise if this is
ignored.
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2.1 The reflexive nature of undo

An obvious definition of undo is to say that following any command by undo makes it as
if the original command had never happened. Or, in other words, the state of the system
after the undo is the same as the state of the system before the command. We can write this
formally as:

c�undo ∼ null (strong-cu)

This uses the strong equivalence (∼) from [9], which says that in all contexts the command
c followed by undo has the same effect on the state as the null command (that is, doing
nothing). In other words, if we see this pair in any command history we may safely remove
it.

This definition of undo looks nice algebraically and appears to correspond to one’s
intuition. To be truly general, one would like this to hold for all commands c, even including
undo itself. However, because of the special nature of undo, it is often the case that properties
that hold for other commands do not hold for undo and vice versa. Hence we use strong-cu
to refer to the property for all non-undo commands, and introduce a similar definition for
the case when undo acts on itself:

undo�undo ∼ null (strong-uu)

This strong-uu property captures the case when undo is truly reflexive and acts equally on
itself as well as on non-undo commands.

The combination of the two (strong-cu and strong-uu) gives an undo property which
has been called thoroughness [21]. However, it turns out to be effectively inconsistent. Yang
proves that the two common forms of undo system do not satisfy this strong undo prop-
erty [21]. In fact, it is shown in [8, 9, 10] that no undo system can satisfy this property
except those where the underlying system has at most two states! The proof of this is quite
straightforward, but somewhat counter-intuitive and instructive of the nature of undo.
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The essence of the proof is summarised in figure 1. The top and bottom routes round this
diagram consider two different potential interactions from an arbitrary state of the system
s0. Call the state obtained if a were executed sa, and the one if b were executed instead sb.
Now consider the effect of undo on either state. Both must go back to the original state s0, as
both a�undo and b�undo are equivalent to the null command (doing nothing). Finally,
consider what happens if undo is issued from the state s0. Arguing from the top interaction
history, we know that undo�undo should have no effect, so the resulting state is sa. From
the lower interaction path, one would conclude that executing undo in the state s0 should
lead to sb. Which is right?

Well, if the strong undo property really holds of the system, both must be right. That is,
sa = sb. But as a and b were arbitrary commands, that means the effect of any command in
the state s0 is the same. Arguing a little further and noting that if a and b are arbitrary, one
of them could even be undo, we see that the system can have at most two states, with all
commands (and undo) simply toggling between them. That is, the strong undo property is
impossible to satisfy for any realistic system.

In other words, although undo is reflexive in the sense that it looks in on the interaction
history of the system, it cannot be entirely reflexive, treating itself on a par with other
commands.

2.2 Two kinds of state

The first reaction of many people on seeing the above proof is “well, it looks OK, but I use a
system that satisfies the property”. They think there is some mathematical sleight of hand
at work, but that it isn’t really as bad as the formal proof seems to suggest. UNIX users
often cite vi as a counter-example and PC and Mac users cite Word 5. In each case, the undo
command toggles back and forth between two states of the system. (This form of undo is
sometimes called flip-undo [19] and we will return to its properties later in this paper.) If
undo is followed by another undo, the system appears to be in the same state as before the
first undo. So, why the discrepancy between the formal proof and practical experience?
The answer lies in the use of the word ‘state’, when we say that the state of the system is the
same after the command pair c�undo or the command pair undo�undo.

One definition of ‘state’ is the one we get in the ‘state’ component of the ACS model.
This corresponds to the state of the system if there were no undo. We’ll call the set of such
states S.

However, in order to be able to perform undo, the system must store additional infor-
mation, often some sort of history or record of past states. That is, the full state of the system
contains more than in S. This complete state of all the system, including the bits needed for
undo, we will refer to as Sa.

What the proof shows is that you cannot satisfy the strong undo property with respect
to the full system state Sa. In the examples of vi and Word 5, the undo systems do, in fact,
satisfy the strong-uu part of the property (except for minor differences in the display), but
do not satisfy the strong-cu property. Although the S part of the state is the same after an
undo, the full state is different.
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2.3 Two kinds of command

In a similar fashion we need to divide all the user’s actions into two classes: the first is made
by all the functions that are strictly related to the user’s task; the second is made by any
functions that allow the user to modify the past interaction. Yang refers to the latter as the
recovery commands [21]. We have seen already with the strong-cu and strong-uu properties
that it is useful to consider these classes separately.

Indicating by A the set of user actions, we have that A = (C ∪R)∗, where C is the set of
allowable commands andR is the set of recovery commands, including any different kinds
of undo and possibly some sort of redo function.

In the case of a single undo command, this simplifies to A = (C ∪ {undo})∗.
We will use Ha to denote the set of sequences (or histories) of actions (Ha = A∗), and

H for the set of simple command histories (H = C∗). That is, Ha corresponds to the ’user
history’ part of the ACS model, and H corresponds to the commands in the ’active script’
or, in other words, the commands issued to the system as if there were no undo.

The subdivision of user actions into commands and undo is naturally generated by the
user’s different aims:

command The user’s aim is to modify an object.

undo The user’s aim is to delete a modification, the effect of a command on an object: in
other words, to modify interaction itself.

Starting from the above distinction, it is possible to provide a functional description of
both ordinary commands and undo.

An ordinary command c ∈ C is a function that modifies an object of interest, that is,
an object directly related to the task the user is performing. Such objects are those that are
in the state of the system, even if we ignore undo; that is, S. So, the primary purpose of
commands is their effect on S. This can be modelled using a doit function (state update) [9].
We have that doit(s, c) = s′, that is, performing the command c, we can pass from the state s
to s′. Now, s′ is a new state, typically distinct from all the previous states, and both s and s′

belong to the set of states S. In the ACS model, doit corresponds to the result of the natural
mapping between the Active Script and the actual situation of the document, ignoring the
history. Note that this doit function only tells us about the effect of ordinary commands
on the state of the system without undo. They will also have some effect on the rest of Sa:
for example, the command may be added to the end of a history list. That is, there is a full
state update function doita, which acts on Sa and determines the complete behaviour of the
system. In the next section we will define formally the relationship between doit and doita.

Turning to undo, the object of interest of undo depends on which definition we consider.
However, its data of interest are not the same objects on which the commands act. Instead,
such data may be commands or actions; that is, if we consider undo without redo, the
application domain may be the command history (H) or the action history (Ha).

In the first case, undo can be defined by a function U : H → H acting on previous
commands to reverse their effect. The effect of undo itself cannot be reversed, since it does
not belong to its domain of definition. Effectively all past undos are forgotten, except for
their effect in having reversed previous actions. Such a system can have no redo function,
and undo acts as a pure backtracking tool.
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Alternatively, the domain of interest of undo may be the complete action history (from
Ha). In this case, undo can be defined by a function like U : Ha → Ha. That is, the system
regards undo as a command also. However, as we saw at the beginning of this section, the
behaviour of this function on the action history cannot be uniform and, in fact, there must be
a different system behaviour when performing undo after a command than after a previous
undo. This is exactly what we see in all systems with undo. When the previous action has
been a command, then we expect undo to act upon it by reversing its effect. In this case,
we have doita(s, undo) = s′, where s, s′ ∈ Sa, yet s′ is not exactly a previous state, but in
some sense an equivalent one, because the system keeps some trace of the preceding activity.
When performing undo of undo, different systems have different behaviour: some of them
simply do not allow it, others consider undo of undo as the redo function. We will consider
redo later, but the former case, of simple single step undo, can be described informally as:

U (h�a) =

{
h if a is a command from C
not allowed otherwise

The peculiarity of undo is that it is not a command but a meta-command, its effect
depends on the context of previous commands, and, being meta-command, its structure
is quite different from that of the ordinary commands. When using undo as a command,
some aspects of this reflexive structure are revealed to the user, giving rise to problems of
inconsistency and even apparent randomness, especially if the user is expecting a different
kind of undo behaviour. Moreover, since the domain of interest of undo is an action or
command history, when using undo the user is not simply interacting, but instead interacting
with interaction.

3 An abstract formal framework for undo

In the previous section we distinguished the state and commands of the original system
without undo, from the full system state and action history when undo (and possibly other
recovery commands) has been added. In this section we will formalise these two views of
the system and, most important, discuss their relationship.

Imagine your company has developed a word processor, but it doesn’t have an undo
facility. You give it to your development team and ask them to add undo. Six months
later they come to you with a fully functioning system with up to 10,000 levels of undo.
Unfortunately, it is not a word processor but a spreadsheet. It is obvious they have done
something wrong. However, what if the differences they made when adding undo were
more subtle? They may have had to make major changes to the internal structure of the
program in order to implement undo. How can you be sure that it is the ’same’ system after
undo has been added?

We will define formally a relationship between the two models: the system with undo
and the system without undo. This relationship, which we call conservative encapsulation,
captures the idea that the original system is, in some way, still there ‘inside’ the full system
with undo.

We consider first the system without undo, then look at the full system, and finally the
relationship between the two. The model we will use is a form of the PIE model [7], using
multiple levels of abstraction as found in [9].
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3.1 System without undo

We have already partly introduced the formal model of the original system in the last section.
The set of states we call S, and the set of ‘ordinary’ commands C. The two are linked by a
state update function doit

doit : S × C → S

and the system starts from an initial state s0.
As in previous work we can derive from this function two other functions: doit∗, ob-

tained by iterating doit, and I , the interpretation function of the PIE model:

doit∗ : S ×H → S

where

doit∗(s,<>) = s
doit∗(s, h�c) = doit(doit∗(s, h), c)

This iterated version tells you the effect of a whole sequence of commands. Recall that the
sequence of commands, written as H , the command history, is defined by H = C∗, the set
of finite sequences of C.

The interpretation function is simply the iterated doit starting from the initial state:

I : H → S

where

I(h) = doit∗(s0, h)

We will also use a dot to represent the ‘curried’ version of a doit function:1

doit(., c) : S → S

where

doit(., c) = λs • doit(s, c)

3.2 System with undo

When we consider the system with undo, as we noted, the state space increases. The set of
full states we call Sa and the set of actionsA = C ∪R. There is a corresponding state update
function doita and initial state sa0 . As with the original system we can define an iterated
version doita∗ and an interpretation function Ia.

It is important to note that this full state will extend the original state, not in the sense
that there are extra possible states (i.e. not S ⊂ Sa), but in the sense that each state of
the full system has some component (or effectively such) that corresponds to a state of the
original system. That is, there is some projection function proj, which, given a state of the
full system, gives a corresponding state of the original system.

1Currying is a technique used in functional programming and lambda calculus to simplify the pre-
sentation of complex formulae. Some of the parameters of a function are fixed, giving a function with
fewer parameters. In this case, we are fixing the command parameter of doit, yielding a function doit(., c),
which only has one parameter, a state.
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proj : Sa → S

Typically, the full state contains some form of history information. For example, a
particular undo system might store the ‘normal’ state and also the command history (active
script). That is, its state would be given by:

Sa = S ×H (example state)

The projection function would then be:

∀ < s, h >∈ Sa • proj(< s, h >) = s (example projection)

The exact way in which the original state is extended, and the nature of the projection
function, will differ between undo functions.

In section 2.1, we used an equivalence relationship ‘∼’ to define the strong-cu and strong-
uu properties. This was defined loosely at the time, but has a precise definition in terms of
doita. Given any two histories h and h′ from Ha we say that h ∼ h′ if:

∀s ∈ Sa • doita∗(s, h) = doita∗(s, h′)

So, for example, strong-uu can be restated in terms of doita:

∀s ∈ Sa • doita(doita(s, undo), undo) = s (strong-uu)

The equivalence ‘∼’ often gives more compact and more algebraic formulations of proper-
ties, but is identical to the above functional formulation.

3.3 Encapsulation

Not only must the extended system have an undo command, but it must in some sense
preserve the original system inside. We capture this in two stages: first of all the idea of
encapsulation and then that of conservativeness.

We have already related the states with a projection function proj. For an encapsulation
we also require a mapping between the input histories, which from any action history of the
full system gives an effective command history. We call this function eff . It corresponds to
the mapping in the ACS model that determines the active script from the user history.

Formally, we say that the augmented system< Ha, Sa, doita, sa0 > is an encapsulation of
the original system < H,S, doit, s0 > if there exist two functions proj and eff such that:

(i) proj : Sa → S

(ii) eff : Ha → S

(iii) ∀h ∈ Ha • proj(Ia(h)) = I(eff (h))

The last condition says that the part of the state corresponding to the original system
is just as if you had executed the effective history. Indeed, the system may actually be
implemented by using the original update functions on this part of the system state. Note
that, this condition says nothing about the way in which the effective history is related to
the action history, merely that it and the projected part of the state ‘agree’.

The conditions for an encapsulation can be summarised by the commuting diagram
in figure 2. The two sides of the above equation correspond to the two paths round the
diagram.
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Figure 2: Encapsulation.

3.4 Conservativeness – the effect of ordinary commands

The encapsulation condition says that the original system is still in there. However, we have
so far set no conditions other than that the effective history and the projection in some sense
agree. We want to say more. Obviously the new commands may have arbitrary behaviour,
but we expect the original commands to behave as they always did on the original part of the
state. In keeping with other areas of formal specification, we regard this as a conservativeness
property – the original system is conserved within the extended system.

Looking first at the state, we expect that: (i) the initial state of the full system (sa0 )
corresponds (via the projection function) with the initial state of the original system (s0);
and (ii) the effect of applying a command to the full state parallels that of applying it to the
projected form of the state. Formally:

(i) proj(sa0 ) = s0

(ii) ∀c ∈ C, s ∈ Sa • proj(doita(s, c)) = doit(proj(s), c)

Again, this can be captured in a commuting diagram, figure 3. The main part of the diagram
corresponds to condition (ii), and the small triangle on the left to condition (i). The ‘1’ refers
to the set of one element and the arrows labelled ‘sa0 ’ and ‘s0’ are constant mappings (from the
single element of ‘1’). This is simply a formal trick that allows us to include this information
on the diagram. Also note that the functions on the top and bottom of the diagram are the
curried versions of the appropriate doit functions. They are for a particular command c,
and strictly one can imagine a copy of this diagram corresponding to every such command.

In a similar fashion we expect the effective history to behave in a sensible fashion where
ordinary commands are concerned:

(i) eff (<>) =<>

(ii) ∀c ∈ C, h ∈ Ha • eff (h�c) = eff (h)�c

That is, (i) the effective history corresponding to an empty action history should be empty,
and (ii) adding an ordinary command to the action history adds the same command to the
effective history. These conditions are captured in the commuting diagram, figure 4.
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Figure 3: Conservativeness of state.

Figure 4: Conservativeness of effective history.
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doita( . ,c)
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<>
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a
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<> 0
s

Figure 5: The cube.

3.5 Conservative encapsulation – the cube

If all three diagrams commute, we will say that the augmented system:

< Ha, Sa, doita, sa0 >

is a conservative encapsulation of the original system

< H,S, doit, s0 >

with respect to the two functions proj and eff . The whole set of conditions can be captured
in a single commuting diagram, figure 5, which we call ‘the cube’. This diagram is rather
complicated to read on its own, as it includes all the rest. The front and back are two copies
of figure 2. The left is figure 4 and the right figure 3. To make it easier to read, the legends
at the back are italicised and those at the front emboldened.

The cube has six faces: four correspond to the commuting diagrams, but that leaves the
top and bottom. Drawing the bottom on its own gives the diagram in figure 6. This refers
only to the model of the original system, and upon examination is simply a restatement of
the construction of I from doit. The top triangle is the initial condition that

I(<>) = s0

and the square corresponds to the iterated case

I(h�c) = doit(I(h), c)

The top is similar, except that it refers to the full system.
So, both the top and the bottom of the cube commute by the definitions of I and Ia.

This is important, as it suggests that some of the faces of the cube are redundant, in the
sense that they are implied by the others. This is indeed the case, and the right side of
the cube, corresponding to the state conservativeness diagram (figure 3), can be derived
from the other faces. That is, if we know that the encapsulation diagram (figure 2) and the
history conservativeness diagram (figure 4) both commute, then we can prove that the state
conservativeness diagram (figure 3) must also commute. This proof is given in appendix A.
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Figure 6: Bottom of the cube.

So, to verify that a particular undo system is indeed a conservative encapsulation, it is
sufficient to show that it satisfies the encapsulation conditions and that the effective history
behaves appropriately.

3.6 Summary of formalisation

We have formalised the difference between the state of the ‘original’ system before undo
and that of the full system with undo. Furthermore, we have made precise the relationship
between them as conservative encapsulation. This embodies the idea that the semantics and
properties of the original system are preserved within the full system. That is, we can
avoid both the extreme case of a spreadsheet with undo being delivered instead of the word
processor, but also more subtle cases of the behaviour being altered by adding undo.

We have not, so far, considered the effects of undo commands themselves. Can we say
anything about them without committing ourselves to specific classes of undo mechanisms?
In fact, we can say something, but we will leave this until we have studied different kinds
of undo in more detail.

4 Single-action and multiple-action undo

In section 2, we began to classify different kinds of undo based on whether undo is self-
applicable, (i.e. if it belongs to its definition domain), or not. We have not explicitly con-
sidered redo (although the formal framework is valid for all types of recovery) and we will
delay full consideration of redo until section 6.

We have also been intentionally vague as to the scope of undo, which varies markedly
between particular undo systems. This scope has two main aspects. Firstly, the number of
times undo can be applied: single-undo or multiple-undo, where by single-undo we mean
the ability to apply undo only once, while by multiple-undo we mean the ability to apply
undo successively. Secondly, the number of actions that may be undone at one step: many
systems allow only a single action to be undone at a time, but other systems allow multiple
actions to be undone at each undo step.

14



Single action
Repetition

Single undo

Multiple undo

Multiple action

Undo only the 
last  command.
Undo of undo 
is not allowed

Undo a block of 
actions.

Undo of undo is 
not allowed

Undo only the 
last  command.

Undo of undo as
backtracking

Undo a block of 
actions.

Undo of undo as
backtracking

Granularity

(i)

(ii)

(iii)

(iv)

Figure 7: A taxonomy of undo function. The rows represent the granularity of undo, the
columns represent its repetition.

The latter is a classification based on undo granularity, that is, how many actions may be
undone at any step: one or many. Note, though, that this is different from the granularity
issue that caused problems for users in the study by Wright et al. [16]. In that case the issue
was how many raw user keystrokes and button presses are regarded as a single action by
the system; that is, what the system has ‘decided’ is the minimum granularity for undo. In
the case of multiple-action undo, the user ‘decides’ how many actions to undo at one step.
In other words, at a low level the system determines the granularity of undoable actions,
whereas the user determines the granularity in terms of the number of such actions to be
undone. Unfortunately, because of the way undo ‘digs’ beneath the surface of the system
implementation, several different sorts of granularity are important and we have to ignore
some in order to understand others.

Figure 7 summarises the classification based on the above two distinctions: single/multiple-
undo and single/multiple-action. In it we identify four classes of systems:

(i) single-undo/single-action, for which it is possible to apply undo only on the last per-
formed action and undo of undo is not allowed;

(ii) multiple-undo/single-action, for which it is possible to apply undo on the last entered
command and undo of undo is used as a backtracking tool;

(iii) single-undo/multiple-action, for which it is possible to apply undo only on the last block
of n actions and undo of undo is not allowed;

(iv) multiple-undo/multiple-action, for which it is possible to apply undo on a block of n
commands and undo of undo is used as a backtracking tool.

It is easy to find examples of systems in three of these classes: for instance, the stan-
dard single step undo (i) is found in many spreadsheets, graphics packages and word
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processors; (ii) describes the behaviour of the ‘back’ command in HyperCard; and multiple-
action/multiple-undo (iv) is supported via a pull down menu in Word 6. However, systems
of type (iii), the top right of the diagram, seem to be absent. Why is this? In principle, it
would be possible to produce such a system, but it would be silly to do so. We will see why
in a moment.

One factor that differs between these kinds of undo is the amount of information they
have to store in order to be able to do an undo. In the case of (i), single-undo/single-action,
only the current state and previous state need to be held. Every command commits the
previous commands, in the sense that they can no longer be undone. This is a backward
commitment point, as it limits the amount the system can go ‘backwards’ in time to previous
states. In contrast, (ii) and (iv), which both allow multiple-undo, have no backward com-
mitment points; it is always possible to go as far back as you like. Amongst other things,
this means that systems of type (ii) and (iv) must both store similar amounts of history
information.

Backward commitment points are bad news for the user, as they limit the possibilities
for recovery. However, they are good news for the developer, as a commitment point limits
the amount the system has to store and hence the cost of the undo. In the extreme, storing
everything can be very expensive (even when implemented carefully using ‘deltas’), so many
systems have slightly weaker forms of (ii) or (iv) where there is a limit on the number of
commands that can be undone (e.g. one hundred commands in Word 6), or on the total
resources used to store history information (e.g. Emacs, which has a large byte count limit).
However, we will regard these as effectively falling into the relevant category, just as we
regard a spreadsheet as being able to handle arbitrarily large sheets even if there is some
resource limitation.

Looking at the concept of backward commitment points, it is clear why it is unusual
to find systems of type (iii). Such a system would have no backward commitment point
so long as only ordinary commands were used. So, like (ii) or (iv), it would, in principle,
have to remember the complete history of the interaction. However, after a single n action
undo, it would no longer be possible to go back beyond those n actions. That is, the action
of doing an undo would establish a backward commitment point. Such a system would
have all the disadvantages of (ii) or (iv) in terms of potential cost of maintaining history
information, while making things worse for the user by establishing backward commitment
points, reducing the possibility of recovery. It is not surprising type (iii) systems are rare!

The relationship between (ii) and (iv) is also rather interesting. To see this let’s consider
two informal definitions of undo:

Definition 1 Undo is a system function that allows the user to reach the previous state

Definition 2 Undo is a system function that allows the user to reach any previous state

Definition 1 clearly covers type (i) undo (single-undo/single-action) and type (iv) clearly
falls under definition 2. What about (ii)? On the one hand, a single undo always gets back
to the previous state. However, because the user can apply undo repeatedly it is possible
to get back to any previous state: one can always get the effect of a single n-step undo by
doing n single-step undos. So, the difference could be seen as one of task migration [10];
that is, the same objective can be reached either by the user or the system. Furthermore,
given the mapping between physical actions and logical actions is rather a matter of taste,
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one could even regard the user pressing the ‘undo’ button n times as being equivalent to a
single logical n-step undo action!

So, to some extent, (ii) and (iv) give the user equivalent power, but with a different
user interface. In fact, for n-step undo the user interface issue is particularly complex.
When you perform an action you want to have some idea of what the action is going to
do (predictability). Similarly, when you perform an undo, you would like some idea of
what will happen. For single-step undo this can be difficult, as was shown by the study of
Wright et al. [16]. However, for n-step undo things are far more difficult. Even if you have
a very clear idea of the granularity of each command, can you remember just how many
commands back lies the state you are trying to return to? For class (ii) you can simply go
back until you notice that you are in the right case, but for n-step undo it is essential that the
system gives some way of determining how many steps to go back. For example, in Word 6
the previous actions are represented in the undo menu.

Having an n-step undo, whether supplied by the system (iv) or by multiple user com-
mands (ii), makes it possible to go back too far by accident. For case (ii) you would probably
notice and, at worst, undo one step too many. In case (iv) the potential damage is greater.
For multiple undos, redo is not a luxury, but a necessity.

5 Formal behaviour of undo

In section 3, we considered how the meaning of ordinary commands was preserved within
an undo system. Now we turn to formalising the effects of the undo command itself, based
on the two general definitions of undo we had in the last section, starting with definition 1
(the more restrictive).

5.1 Definition 1 – single-action undo

This definition expresses simple one-step undo and can be formulated very easily in the
model developed earlier. However, we must be careful with the interpretation of the word
‘state’ in the definition “. . . to reach the previous state”. Naively, we could say that the full
state of the system is as it was before the last command:

doita∗(s, c�undo) = s eqn. 5.1

Which is precisely the formal definition of the strong-cu condition we first considered in
section 2.1.

c�undo ∼ null (strong-cu)

If this were true, then the system would have forgotten about the command c totally, and so
no form of redo would be possible. In fact eqn. 5.1 exactly captures the specific case where
undo can be used as a pure backtracking tool with no redo, and in [14] it is proved that any
undo system that satisfies this condition is equivalent to this pure backtracking undo.

This fact seems obvious, but as with many such ‘obvious’ things, really proving it high-
lights many non-intuitive features of undo. In particular, one has to be very careful about
the idea of ‘equivalence’: there is not a single system corresponding to backtracking undo;
instead, for any original system without undo, there is an application of the backtrack undo
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policy. Although the full proof is too long we will give the definition of backtrack undo
policy as a generic construction at the end of this section.

As an alternative, we can formulate definition 1 using the ‘normal’ component of the
state, rather than full state:

∀s ∈ S, c ∈ C • proj(doita∗(s, c�undo)) = proj(s) eqn. 5.2

We could write this in a similar way to the strong-cu condition, by introducing an equivalence
based on commands being equivalent on the projected state: strong-cu condition

c�undo ∼proj null (weak-cu)

Note that this is similar to eqn. 5.1, but only says that the projection onto the original
component of the state is restored. It is thus far weaker than eqn. 5.1, both intuitively and in
the formal sense that if eqn. 5.1 is true then eqn. 5.2 follows. A slightly different formulation
is obtained if one instead focuses on the effective history:

∀h ∈ Ha, c ∈ C • eff (h�c�undo)) = eff (h) eqn. 5.3

This seems quite an intuitive formulation; in ACS terms it is saying that the last command
in active script is removed by the undo. This is again stronger than eqn. 5.2 but, counter
to intuition, it is not strictly weaker than eqn. 5.1, because the full state of the system may
not store information equivalent to the effective history. This is important in understanding
both our generic formulation of undo and, indeed, the ACS model. The effective history is
not part of the system, but part of the justification that the system is an acceptable undo. It
and the projection function are talking about the particular undo system.

As an example, consider a text editor with a backspace key (←) as well as an undo
key. We might expect the effective history for ‘a b ← undo’ to be simply ‘ab’, but it would
be quite reasonable to also have it as ‘a b ← b’. That is, the undo is translated into an
equivalent action. Indeed, in many undo systems this is precisely how it is implemented.
Equation 5.3 demands that not only does undo work in a particular way, but we also explicate
it appropriately.

Notice that none of these capture the strongest notion of defn. 1, that only and at most the
previous state can be reached – that is, multiple undo is not allowed. The formal definitions
are permissive: saying what you can do, but not restrictive: saying what you cannot do.
Such restrictive conditions are hard to state over the state, but can be formulated using the
effective history. We can say that the effective history is never more than one less than the
longest it has ever been:

len(eff (h)) + 1 ≥ max len(eff (h′))
h′<h

Note that the less than or equal relation ‘≤’ is being used as a shorthand for ‘is an initial
subsequence of’. That is:

h′ ≤ h⇔ ∃h′′ st. h′�h′′ = h
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5.2 Definition 2 – linear undo

Definition 2 captures the more general case where undo may recover some previous state
(but not necessarily the last). This can also be expressed formally by using the effective
history. Again, we have to be careful to look to the ‘normal’ part of the system state,
captured either by the projection function or by focusing on the effective history.

This time we want to say that after an undo command u (of which there may be several
different kinds), the effective history is the same as some previous one (and hence the
‘normal’ part of the state is the same).

∀h ∈ HA, u ∈ U • ∃h′ ≤ h st. eff (h�u) = eff (h′) eqn. 5.4

Note that this exactly captures the idea of linear undo as opposed to selective and other
non-linear undo as discussed in the introduction. Equation 5.4 is true of any linear undo
system. It includes as simple special cases both single-action and backtracking undo, but
also much more sophisticated forms of undo–redo such as that found in Word 6.

Note also that this captures not only the expected effect of undo commands, but of all
recovery commands including redo. The incorporation of the effective history and projection
functions in the encapsulation captures the fact that adding recovery commands should
not allow states of the underlying system which could not have happened without them.
Equation 5.4 says that no amount of undos or redos will get to a state that has not happened
already in the current interaction.

5.3 Selective undo

Although it is not the focus of this paper, we can, in fact, express the case of selective undo
in a very similar fashion, namely:

∀h ∈ HA, u ∈ U • ∃h′ ≤ h st. eff (h�u) � eff (h′)

Note that the only difference between this and eqn. 5.4 is that the equality in eqn. 5.4 has
been replaced with ‘�’. This represents a weak notion of partial subsequence, where t′ � t
if the sequence t′ is the same as t with some elements missing (but those that are left in the
same order).

This does seem to capture intuitively the idea that selective undo removes the effect of
some of the previous commands, not necessarily the last ones. However, it is not exactly
right, as selective undo systems typically have to modify the effect of later actions in some
manner. For example, undoing ‘b’ from the sequence ‘a b c’ would normally result in an
effective history ’a ĉ’ where ‘ĉ’ is not exactly the same as ‘c’. This is because the meaning of
later commands often depends on the previous commands. This issue is covered in more
detail in [12].

5.4 Specific undo policies

The implementation of an undo system will typically be very dependent on the underlying
application. However, the idea of a single-step undo, or an undo system with indefinite
backtracking, exists independently of the particular application. We can thus formally
specify these in an application-independent manner. These specifications take the form of a
construction that, given a model of the underlying system, will generate a new system with

19



     

undo, and also eff and proj mappings to form a conservative encapsulation (as we said
any sensible undo system must be). We will omit proofs of conservativeness here.

In each case, the underlying system will be assumed to be a PIE model with commands
C, history H and associated doit function, initial state s0 and interpretation function I . No
assumptions about the underlying system will be made, apart from the fact that it can be
described in these terms (which rules out collaborative and real-time applications where
different notions of undo are required [1]).

For both the single step and the backtracking undo, the command set consists solely of
the original commands plus the special undo command. We will use superscripts s and b
for the elements in the models of each. So we have:

Cs = Cb = C ∪ {undo}
Hs = Hb = (C ∪ {undo})∗

Single-step undo

First of all, single-step undo. It needs to remember the previous state, so the full state of the
undo system will have two copies of the ordinary system state. However, at the initial state
and after an undo, the ‘previous’ state is inaccessible (this is single-step undo). To make this
explicit, we will use an undefined element,⊥. We will call the resulting state Ss with initial
state ss0

Ss = (S ∪ {⊥})× S
ss0 =< ⊥, s0 >

The second part of the state corresponds to the ‘current’ state, and the first part to the past
state (which may be undefined). The projection function is trivial, simply peeling off the
last component:

projs : Ss → S
where projs(< p, s >) = s

The state update function doits acts on this state. For ordinary commands, the ‘current
state’ part is updated and the ‘previous state’ component becomes the old current state. For
undo, the ‘current’ state component becomes the old ‘previous’ state and the ‘previous’ state
component becomes undefined (disallowing further undo).

doits : Ss × Cs → Ss

where doits(< p, s >, c) = < s, doit(s, c) > c �= undo
doits(< ⊥, s >, undo) = < ⊥, s >
doits(< p, s >, undo) = < ⊥, p > p �= ⊥

The effective history is defined inductively by cases: ordinary commands simply add to
the effective history (the conservativeness condition) and undo removes the last command
from the effective history only if the last command was not undo, and otherwise leaves it
unchanged:
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effs : Hs → H
where effs(<>) = <>

effs(h�c) = effs(h)�c c �= undo
effs(undo) = <>
effs(h�c�undo) = effs(h) c �= undo
effs(h�undo�undo) = effs(h�undo)

Note how the effect of undo cannot be defined solely in terms of the current effective history
(from H), but needs the full action history Hs.

Backtracking undo

The backtracking undo can be defined in a similar manner. This time all the past states need
to be remembered to allow multi-step undo. To capture this the full state has a (non-empty)
sequence of past states, and the projection function merely peels off the last one: the current
state.

Sb = S+

sb0 =< s0 >
projb : Sb → S
where projb(hs) = last(hs)

The state update function doitb simply applies ordinary commands to the last state in the
remembered sequence, and adds the new ‘current’ state to the end of the sequence. Undo
simply removes the last state from the sequence (but never removes the first state).

doitb : Sb × Cb → Sb

where doitb(hs, c) = hs�doit(last(hs), c) c �= undo
doitb(hs, undo) = chop1(hs) length(hs) > 1
doitb(< s >, undo) = < s >

(chop1 is the function which removes the last item from a sequence.)
Surprisingly, its effective history function is simpler than that for the single-step undo:

eff b : Hb → H
where eff b(<>) = <>

eff b(h�c) = eff b(h)�c
eff b(h�undo) = chop1(eff b(h))

Again, the conservativeness condition is trivially maintained, but the encapsulation condi-
tion must be proven.

Note that, this time, the effect of an action on the effective history can be defined purely in
terms of the effective history. The effect of undo truly is a functionH → H . So backtracking
undo is less reflexive than single-step undo, which has to ‘remember’ that the last command
was an undo. Of course, the simpler form of the effective history does not mean that it is
simpler to implement, and as we discussed, the cost of storing enough to reconstruct all past
states will be substantial. Also note that there are alternative equivalent formulations of the
states of these two systems, and, most important, the implementations will usually involve
storing ‘deltas’ information sufficient to reverse the effect of an action, rather than copies
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of past states. Specifying the behaviour of a system and actually implementing it are very
different! However, it is quite important during implementation to know what it is you are
trying to implement, even if you have to work out how to achieve it for a particular system.

6 Adding redo

The raison d’être of undo is the user’s need for a function that allows him to reverse the
effect of a command, recovering a past situation. This is needed when the command has
been performed in error so that an undesirable state is reached. What happens if the user
realises that undo has been performed in error and has itself resulted in an undesirable state?
The answer to this question has been the raison d’être of the redo function.

It is common to consider redo as simply the inverse of undo. Indeed, this may be the
semantics of redo when undo is applied on a single action. But the meaning of redo is less
clear in the case of multiple-undo. Is its effect the reconstruction of the last undone action, or
of all the deleted history? And what about the effect of redo when the last undo has deleted
a block of actions? Does it recover the whole block or only the last action in the block?
Moreover, not only is it unclear what redo does, but there is also a complex dependence
between it and undo. In the case of single-undo/single-action, undo is considered the
inverse of the undone command and redo the inverse of undo. But in any semigroup we
have that the inverse of the inverse of a function is the function itself. This means that
the inverse of Undo (type(‘x’)) is type(‘x’). But redo is not identical to type(‘x’), it is just that
when performed at a particular point of the history, it has the same semantics. This has two
consequences. Firstly, we could consider redo as a sort of super syntactic sugar. In principle,
the user could simply repeat the undone command; redo just makes this easier (possibly
substantially easier). We could say that the domain of interest of redo is not so much undo
itself as the undone action(s). Secondly, like undo, we have to consider at what level we
expect redo to reverse the effect of undo. Certainly redo is not simply the inverse of undo!

After saying what redo is not, we need to progress to some definition of what it is, or at
least, as we did with undo, explore the range of options.

When considering undo, four major issues arose: reflexivity, granularity (single or mul-
tiple action), repetition (single or multiple undo) and the idea of commitment points. Each
of these has parallels for redo, and in addition the properties of redo are linked to those
of undo. Although redo may not be a simple inverse of undo, it is intimately connected.
We will see dependence when considering the granularity of redo, but also that there is an
intrinsic dependence of causality that determines whether redo is meaningful.

6.1 Causality

Just as you cannot think of undo without considering what has been done, you cannot
consider redo without something having been undone. This gives rise to the most basic
property of redo:

causal dependence: in order to perform a redo, undo must have been performed.

This appears too obvious to bother stating, but serves to highlight the reflexive nature
of redo. With undo, we had to consider whether the principal domain of definition is the
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ordinary command history, or the action history itself. With redo, we move up a level: is
it (i) simply the command history, (ii) the history with undo commands, or (iii) does it also
know about its own role in the interaction? The causality condition would imply at least
some knowledge at level (ii). So, its effect may be simply in terms of the undone actions, but
it must at least know that they have been undone.

6.2 Granularity and repetition

Redo, like undo, may be applied to single or multiple actions. However, there is the ad-
ditional issue of to what extent this is tied to the granularity of the undo command. We
refer to such a linkage as granularity dependence. So, in addition to there being one or more
candidate undone commands to redo, these may have arisen because of one or more actual
undo commands. This gives rise to five kinds of potential redo granularity:

(a) redo of last undone action

(b) redo of some number of undone actions

(c) redo of all the actions undone by the last undo command

(d) redo of all the actions undone by some number of undo commands

(e) redo of all undone actions (up to the last non-undo command)

In this (c) and (d) exhibit granularity dependence, whereas (a), (b) and (e) only exhibit
causal dependence (they redo undone actions).

The last (e) corresponds to a sort of escape, which reverses the effect of an entire sequence
of undos. Similar escapes occur at the ordinary undo level; for example, many systems have
a ‘revert’ menu option, which allows you to restore a document to the last saved version.
Such escapes are themselves a sort of undo operation and are often considered in the same
context [21]. Given that the effect of undo can be so confusing, such an escape from an undo
dialogue may well be a good idea!

We can look at each of the undo categories from figure 7 and see how they interact with
these kinds of redo granularity. Recall that class (iii), single-undo/multiple-action, was
deemed an unreasonable alternative, so we will only consider the other three cases.

(i) single-undo/single-action: In this case, there can only ever be one undone action and
one (effective) undo, so all five redo categories collapse into one.

(ii) multiple-undo/single-action: In this case undone commands and undo commands are
in one-to-one correspondence, so (a)=(c) and (b)=(d). However, categories (b) and (d)
look weird. If the system is going to allow single redo commands to have non-singular
effects, why not allow this for undo?

(iv) multiple-undo/multiple-action: In this case, (a) is the weird option. If you can undo
groups of actions, why only allow single redo steps? The same argument could be
said to hold for (c) with respect to (d), but perhaps, given the different semantic level,
one could argue that in some systems (c) may be more comprehensible than (d).
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As with undo, we find that the granularity of redo interacts strongly with the possibility
of repeated redos, but in addition it also interacts with the classes of undo. We can consider
the remaining categories above and see which make sense when we consider single and
multiple redo.

With case (i), multiple-redo is meaningless (only one thing to redo!), leaving us a single
category of redo, flip-undo, where the undo and redo toggle between two states. As only
one of undo or redo is possible at any time, the same button or menu position is used for
each, leading to the apparent situation where undo is self-applicable. However, as we saw
earlier, this ‘undo of undo is redo’ situation is never quite uniform between undo and other
commands.

For both cases (ii) and (iv), the ‘escape’ redo can only be invoked (as a redo) a single time
(although of course it might toggle, like flip-undo, undoing the redo!). Would one want
such a redo in these circumstances? It might be argued for on efficiency grounds: a system
may store only backward deltas; that is, information sufficient to undo commands, but not
redo them. During a cycle of undoing, the system need only store the last not-undone state
and the current state: the escape redo would simply jump back to this last not-undone state.
However, although this is credible, the extra expense of two-way deltas over and above
one-way deltas is not enormous and so it is likely that a redo of the ‘escape’ form would
only be supplied in addition to more incremental redo.

In case (ii), we dismissed options (b) and (d), leaving only redo granularity (a/c) to
consider. For reasons similar to those that ruled out undo of class (iii), we can also see that
allowing only a single redo of granularity (a/c) would be silly. If we allow repeated undos,
we need to have all the expense of machinery and memory to store lots of states, so why
not allow multiple invocations of redo also? That is, we should only have options (a/c)
with multiple redo, where each redo reconstructs more and more of the undone history of
commands.

Finally, in case (iv), we have a similar story. Options (b), (c) and (d) only make sense for
multiple redo, where they perform a similar job reconstructing the command history.

Figure 8 summarises this taxonomy. Note again the strong ‘diagonal’ of the table: gran-
ularity and repetition correlate, both within the operations of undo and redo, and between
them. If you are going to go to all the trouble of storing lots of history information you
might as well use it!

As we did for undo, we can summarise this in two informal alternative definitions:

Definition 3 Redo is a system function which allows the user to recover the past state removed by
the previous undo.

Definition 4 Redo is a system function that allows the user to recover a past state removed by any
previous undo.

Definition 3 corresponds to flip-undo. As with undo, there is a design choice between
achieving defn. 4 by the user doing lots of redos (cases ii.a/c and iv.c), or with a single large
granularity redo (cases iv.b and iv.d). Finally, the difference between (iv.b) and (iv.d) is in
the interpretation of ‘a past state’ in definition 4, whether it is ‘the past state removed by any
previous undo’ or ‘any past state removed by any previous undo’.
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Figure 8: A taxonomy of the redo function. The rows represent the kind of redo; the columns
represent the kind of undo that may precede redo.
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6.3 Reflexivity

As we saw in section 6.1, there is an inevitable reflexivity in the nature of redo – it cannot exist
without reference to the previous occurrence of undo. In the ACS model this is captured
in the state of the ‘pending script’; however, for some kinds of redo (i.a) this is overkill, for
others (iv.c/d) insufficient. The active script and pending script contain only the ordinary
commands and so represent a base level of reflexivity: looking at the interaction with the
underlying application. The more complex cases require the ‘pending’ script to record
aspects of the complete action history – undo/redo are reflecting on their own behaviour.

For systems where the undo can be described purely in terms of the pending script, the
redo and undo operations can be regarded as having a domain of the form H ×H , (active
script× pending script). The flip-undo is a degenerate example, as the pending script never
has more than one command (only one level of undo is allowed), and the causal dependence
is captured by the fact that the pending script is only not empty if there has been a previous
undo. Based on this, it is possible to fully describe flip-undo using three rules:

1. ordinary command – add it to active script and empty pending script

2. undo – if pending script is empty remove the last command from the active script and
put it in the pending script

3. redo – if pending script is not empty remove the command from the pending script
and add it to the active script

It is, of course, because the last two of these rules are disjoint that a single button or menu
option can be used. Although this is a valid description of the behaviour, it is not how
any such system is actually implemented – one wouldn’t bother to store the whole active
script and then never use it! Indeed, even for the formal specification, we will use just two
copies of the state: current state and past state – similar to the single-step undo. With such
a representation, both undo and redo simply swap the two states – identical! The system
does not need to know whether it is doing an undo or a redo, the difference is in the user’s
interpretation of the effect. This is closer to the way it would be implemented.

The most common and straightforward kind of multi-step undo/redo can also be de-
scribed using the basic ACS pending script. This is the policy found in Microsoft Word 6
and in the history list of Netscape Navigator. In these systems you can undo any number
of commands one by one, or even undo several commands at once, using a menu. The
behaviour can be described in a similar manner to flip-undo:

1. ordinary command – add it to the active script and empty the pending script

2. undo n – remove the last n commands from the active script and add them to the
pending script

3. redo n – remove the last n commands from the pending script and add them to the
active script

Notice that (as we saw with single-step and backtracking undo) the description is simpler
(no conditions of the pending script) because it is more uniform, even though it is far more
costly to implement. Word 6 and Netscape use different interface metaphors to represent
these: in Word 6 the user has separate undo and redo menus, which exactly correspond to
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the active and pending scripts, whereas in Netscape there is a single ‘Go’ menu with a tick
against the currently displayed page. The Word 6 menus show commands (e.g. ’typing’),
whereas in Navigator the items in the menu are pages, which correspond to states. The
latter difference is a direct consequence of the more identifiable nature of the web browser
state (a WWW page). Note also that the Netscape interface suggests a model that, rather
than having two scripts, has just one script with a pointer H × Ptr. This is equivalent to
the H ×H representation, but is in some ways more flexible (as we see below).

Not all undo systems can be described using a simple pending script. Systems of type
(iv.c/d) need to have some record of how many commands were undone by a previous undo
in order to redo them. The raw pending script merely records the list of undone commands,
so such systems need a pending script that itself contains undo commands! In fact, it is
easier to think in terms of a pointer into the complete action history; that is, undo/redo
acting on a domain of the form Ha × Ptr. All commands add something to the end of the
history. Ordinary commands add themselves and set the pointer to the end. The undo/redo
command takes the action currently pointed to, adds the inverse of the action to the end of
the list and moves the pointer back one. Whether the undo/redo command is regarded as
undo or redo is dependent on what sort of command is pointed to, and depending on how
the inverses of commands are represented, the difference may be one of interpretation, rather
than of different behaviour within the application. This sort of strong reflexivity sounds
quite complex, and indeed in GNU Emacs, where it is used, no amount of experimentation
seems to be able to uncover the rule! However, exactly the same rule is used in HyperCard’s
‘back’ menu function (one of its two forms of history), and it seems less confusing there.
This form of undo is rather like having your actions recorded by a video, which you can
rewind to find previous states that you want to restore. However, the video keeps recording
even when you are rewinding. Rewinding ordinary recording is undo, and rewinding past
a previous rewinding is redo! Possibly a time or video-player metaphor would make such
an undo/redo policy more comprehensible.

6.4 Summary of redo

We have reduced the space of possible redo mechanisms to three major categories (ignoring
the escape type of undo), which can all be found in extant systems: flip-undo, non-reflexive
multi-step undo/redo and reflexive multi-step undo/redo. These arose out of consideration
of three of the four issues we introduced at the beginning of this section: granularity, repe-
tition and reflexivity. The fourth issue, commitment points, we will return to in section 8.1.
First, however, we will see how each of the three fit into the formal recovery framework.

7 Formal models of redo

Recall that we expected that any undo/redo system would form a conservative extension
of its corresponding ‘ordinary’ system. That is, we are already part way to a general formal
model of undo! Furthermore, the linear property (eqn. 5.4) in section 5.2 was also a generic
property of any recovery system. So we have also for redo:

∀h ∈ HA • ∃h′ ≤ h st. eff (h�redo) = eff (h′) linearity of redo
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However, this simply says that after redo the system is in the same state as at some
previous point in the interaction history. The informal definitions of redo are much stronger
and we can give stronger generic formal conditions also.

As in section 5, we will first look at properties of undo corresponding to informal defini-
tions and then look at models of specific redo policies. These policies will again be expressed
as conservative encapsulations of an arbitrary underlying application.

7.1 Definition 3 – redo of the previous undo

We can formulate this one-step redo using algebraic properties similar to those for single-
step undo. We want to formulate the idea that the state after undo followed by redo is the
same as the state before the undo. As with undo, we can use stronger or weaker notions of
sameness. The strong form is:

undo�redo ∼ null (strong-ur)

That is, the full state after undo-redo is identical to that before either.
Recall that the equivalent strong-cu property only admitted pure backtracking undo with

no possibility of redo – if you have forgotten about the previous command you cannot redo
it! However, in the case of redo this is not a problem. Although such a property says
that you have indeed ‘forgotten’ that the undo has ever happened, why do you need to
remember it? There are many possible commands before the undo, so you want the system
to remember which command was undone, and to redo the relevant one for you (what the
redo function does!). However, with redo, there is only one thing it can ‘undo’ – the undo
command itself. You can easily ‘redo’ this by doing another undo! This is, in fact, also a
consequence of the general formal property that, in a semigroup, the inverse of an inverse
is the original command. The strong-ur condition says that the inverse of undo is redo, and
as a consequence the inverse of redo is undo:

redo�undo ∼ null (strong-ru)

Flip-undo satisfies this strong undo property. At first glance, it looks as though this is
also true for non-reflexive multi-step redo, as found in Word 6 and Netscape, at least for
single-action undo/redo commands. It is almost true, but fails at the ‘end points’ when the
active or pending scripts are exhausted – this will be clear in the specification below. In
contrast, reflexive multi-step undo, as found in GNU Emacs and HyperCard ‘back’, is not
even close to satisfying it! Such systems remember that there has been an undo-redo pair
and subsequent undoing will reveal this to-and-fro-ing in the interaction history. In being
truly reflective on their own interaction, such systems can forget nothing and so never return
to a previous state.

Note that as with the similar undo property, the property says ‘and there can be only
one redo’. However, the only case where single redo was useful was flip-undo, where there
is only one thing to redo anyway!

7.2 Definition 4 – redo of some previous undo

This is like the linear undo property, except that there we simply said that recovery com-
mands return to some previous state or effective history. For redo, we want to say that this
corresponds to the situation immediately prior to some previous undo:
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∀h ∈ HA • ∃h′ ∈ HA st.
h′�undo ≤ h
∧ eff (h�redo) = eff (h′)

This says that the redo restores all the effect of the undo. For the weaker case where we
allow redoing of part of a block of undone commands, we need to weaken the last part of
the above to:

eff (h′) ≤ eff (h�redo)

That is, the effective history is somewhere between that immediately prior to the undo,
and that just after. For the case where each undo applies to only one command, the two
properties are identical.

7.3 Specific redo policies

Flip-undo

Flip-undo turns out to be a simpler version of single-step undo. As we noted earlier, it can be
regarded as two states between which the system flips back and forth when the undo/redo
button is pressed. The projection function again peels off the second part of the state:

Sf = S × S
sf0 =< s0, s0 >
projf : Sf → S
where projf (< p, s >) = s

As undo and redo can use the same button or menu option, the command set is simply
the ordinary commands plus the undo button.

Cf = C ∪ {undo}
doitf : Sf × Cf → Sf

where doitf (< p, s >, c) = < s, doit(s, c) > c �= undo
doitf (< p, s >, undo) = < s, p >

Compare this with the definition of single-step undo in section 5.4. The definitions for the
doit function are simpler (only two cases rather than three); this is also true of implemen-
tations where one is storing the current state and some sort of delta. It is easier always to
store something in the delta, either to go backward or forward, than to sometimes store
nothing. Also compare the two cases for doitf . See how the second (undo) case does not
lose information. This means that a perfect redo is possible using a second undo function.
That is, this undo satisfies the strong-uu property (equivalent to strong-ur as undo/redo are
one action):

undo�undo ∼ null

However, imagine what happens after a command-undo pair. Suppose the system starts
off in state < p, s >. After the command c, this becomes < s, s′ > where s′ = doitf (s, c).
A subsequent undo changes this to < s′, s >. Note that this is not identical to the state
before the command. That is, flip-undo does not satisfy the strong-cu property. However,
the projected part is identical, so it does satisfy weak-cu:
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c�undo ∼proj null

The effective history function is also similar to that of single-step undo, but is again
slightly simpler with fewer special cases.

efff : Hf → H
where efff (<>) = <>

efff (h�c) = efff (h)�c c �= undo
efff (undo) = <>
efff (h�a�undo) = efff (h) a ∈ C ∪ {undo}

Non-reflexive multi-step undo/redo

As we noted earlier, this could be expressed using a pending script and an active script, or a
command history and a pointer into it (H ×Nat). However, instead we will define it using
a sequence of states as we did for backtrack undo, but with a pointer to allow redo.

Sm = S+ ×Nat
sm0 =<< s0 >, 1 >
projm : Sm → S
where projm(< hs, n >) = hs[n]

Remember that this is not how one would implement such a system – an actual implemen-
tation would use deltas. The intention is to specify behaviour not style of construction!

The undo command decrements the pointer and the redo command increments it (until
it reaches the beginning or end of the script). This moves the current state, the state picked
up by proj, backward and forward. Ordinary commands chop the history back to this
current state and then act upon it.

Cm = C ∪ {undo, redo}
doitm : Sm × Cm → Sm

where doitm(< hs, n >, c) = < hs[1 . . . n]�doit(hs[n], c), n + 1 >
doitm(< hs, 1 >, undo) = < hs, 1 >
doitm(< hs, n >, undo) = < hs, n− 1 > n > 1
doitm(< hs, n >, redo) = < hs, n > n = length(h)
doitm(< hs, n >, redo) = < hs, n + 1 > n < length(h)

We can see now that this does not satisfy the strong-ur property: in the case when the state is
< hs, 1 >, undo leaves this as < hs, 1 >, which when followed by an redo gives < hs, 2 >,
which is not what we started with. If we distinguish effectual and non-effectual undos and
redos, we could say that this form of undo/redo satisfies strong-ur and strong-ru when the
first command of the pair is effectual.

The effective history can be defined recursively where undos remove preceding com-
mands and redos remove preceding undos! The structure is most clearly expresde using
the composition of the existing effective history for backtrack undo eff b and a new function
effR, the definition of which looks remarkably similar to eff b itself:

effm : Hm → H
where effm = eff b ◦ effR
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effR : Hm → Hb(= (C ∪ {undo})∗)
where effR(<>) = <>

effR(h�c) = effm(h)�c c ∈ C
effR(h�undo) = effm(h)�undo
effR(h�redo) = chopUndo(effR(h))

The subsidiary function chopundo is like a limited version of chop1, it removes the last action
from a history, but only if it is an undo:

chopundo : Hb → Hb

where chopundo(<>) = <>
chopundo(h�c) = h�c c ∈ C
chopundo(h�undo) = h

Notice that effR is the identity on histories which contain no redos. This reflects the fact that
if you never use the redo command, this system is identical to backtrack undo. However,
the structure of the function effR suggests something more. The non-reflexive multi-step
undo/redo is itself a conservative encapsulation of the backtrack undo! In fact, if we modi-
fied the definition of backtrack undo to allow some of the command set to be non-undoable,
we would find that the redo part is exactly a second level of backtracking undo built upon
the original backtrack undo!

Reflexive multi-step undo/redo

In this last case, we will again be able to have a single undo/redo command, the interpre-
tation of which (as undo or redo) depends on context. That is, the command set is:

Cr = C ∪ {undo}

The undo system is aware of its own full interaction history (i.e., including the effects of
undo itself) and the state of the system must reflect this. Again, we could do this by using a
history and pointer as the state. However, this time, we would have needed Hr ×Nat, the
complete action history. In fact, it is simpler to use a state sequence with pointer, identical to
the state of non-reflexive multi-step undo/redo.

Sr = S+ ×Nat
sr0 =<< s0 >, 1 >
projr : Sr → S
where projr(< hs, n >) = hs[n]

However, although the state may be identical, the doit function is different! This time ev-
ery command, including undo, adds to the end of the state sequence, with the sole exception
of an undo when undo gets back to the beginning.

doitr : Sr × Cr → Sr

where doitr(< hs, n >, c) = < hs�doit(hs[n], c), n + 1 >
doitr(< hs, 1 >, undo) = < hs, 1 >
doitr(< hs, n >, undo) = < hs�hs[n− 1], n− 1 >
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Again we can define the effective history recursively with the help of subsidiary funtion
U r
i . Basically it says that if you want to work out the effective history of an action history

ending in n undoes, you chop off the preceding n actions and then work out the effective
history of what is left.

eff r : Hr → H
where eff r(<>) = <>

eff r(h�c) = eff r(h)�c
eff r(h�undo) = eff r(U r

1 (h))

U r
i : Hm → Hm

where U r
i (<>) = <>

U r
i (h�c) = chopi(h�c) c ∈ C

U r
i (h�undo) = U r

i+1(h)

Notice especially the fact that the both the domain and range of U r
i is the full action

history Hm. This is the reflection in the formal model of the deeply reflexive nature of this
undo.

8 Understanding redo

8.1 Commitment

Suppose you are using a system with flip undo. When you have entered a command a
you could still use undo to remove the effect of that command. That is, you are not yet
committed to the command a. However, as soon as you enter any other command b this
command implicitly commits the previous command – with only one step of undo you can
no longer retract the command a. In a similar way ordinary commands commit the undo
action. If you enter the commands ‘a undo’, the undo is not committed because with flip
undo a subsequent undo will reverse the effect and a will be reinstated. However, if you
enter ‘a undo b’ the command b commits the undo – it is no longer possible to change your
mind.

Commitment points are those moments during interaction when some decision become
irrevocable. Without undo every command is its own commitment point. With undo this
is no longer the case, but as we have seen commitment points do occur.

Consider now the case of non-reflexive multi-step undo/redo. Now when the user
enters a command it does not commit previous commands as the user can perform multiple
undoes. Also the undos are not committed as they can be revoked with a redo. Even the
redos are not committed as you can simply do more undos. Does this mean there are no
commitment points with this sort of undo? In fact, there are commitment points – when
the user first performs and ordinary command after a series of undo/redo commands that
commits the undo/redo sequence. Suppose that we have entered this sequence of actions:

c1, c2, c3, undo, c4

At the command c4 we commit the undo. This forms a branching point in the history of the
system: from the main ‘trunk’ of interaction c1, c2 we have the initial branch c1, c2, c3 and the
new branch c1, c2, c4. Reflexive multi-step undo/redo remembers all these branches (at a
cost of being rather complex and confusing), that is, it has no commitment points. However,
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undo redo

Figure 9: The linearity of the history: undo is the past in the past, redo is the future in the
past.

non-reflexive multi-step undo/redo forgets the original branch once a new branch starts to
form. During a sequence of undo/redos the current state pointer moves backwards and
forwards through the history, but as soon as anything else happens, the history is chopped
off, rather like the stack in backtrack undo. We can see this situation as a subdialogue during
the human-computer interaction and we call it undo mode. Outside of this subdialogue, the
whole sequence of undo/redo actions during undo mode can be treated as a single undo of
a block of actions without redo. For example, suppose that we have entered this sequence
of actions:

c1, c2, c3, c4, c5, U (3), R(2), U (1), c6

where U(i) indicates that we have performed an undo of the last i commands; similarly for
the redo. Outside the undo mode, this sequence is effectively seen as:

c1, c2, c3, c4, c5, U (2), c6

which is in turn equivalent to c1, c2, c3, c6.
Examples of systems of this class include Netscape and Word 6. Indeed, this is the model
which is followed by most modern systems which implement multi-step undo (but not
necessarily all history systems).

8.2 Visualising undo

Systems make decisions on the smallest granularity of undo: which low-level actions in
the form of keystrokes, menu selections, dialogue-box interaction are considered one undo-
able command. In the case of single undo/redo the user gets no choice on the granularity
they have one step of whatever size the system decides. However, in the case of multi-step
undo/redo, it is the user who chooses which state he is interested in reaching.

If the user can undo (or redo) to different points in the history, not just the last/next state
then, as a consequence, a visual representation is required of the recovery functionality: not
simply buttons or icons, but lists. In many systems this is represented as a menu of past
actions which can be undone. However another approach is taken by some Visual Query
Systems. For example Hypercube [5] simultaneously displays all the past states of the query
formation interaction as windows. Undo is then simply choosing a window. However, the
Hypercube technique cannot be applied to a text editor, because the large number of states
which may belong to the history of a document!

8.3 Undo/redo: browsing the past

In Section 1 we introduced undo as a special case of reachability, as it allows the user to
reach a past state. So what about redo?
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If we confine ourselves to non-reflexive multi-step undo, then redo also can be seen as
a form of reachability. Consider what happens during an undo mode. Let’s suppose that,
starting from the initial state s0 we have reached, the state sn performing only commands.
At this point the sequence of past states is {s0, s1, ..., sn}. Suppose also that by performing
a multiple undo we have reached the state si. Now, si is the current state and the sequence
of states which undo allows us to reach is {s0, s1, ..., si}. So undo continues to be a function
of the past, allowing the user to go in the left side of the past history (fig. 9). In the current
state, we can say that undo is the past of the past. Instead, the set of states which redo
allows to reach is {si, si+1, ..., sn}. From the current state si redo is a function of the future,
allowing the user to go in the right side of the past history. So also redo is a special case of
reachability, allowing the user to reach a future state in the past.

9 Final analysis

Undo can be very confusing to users, at just the moment when they have done something
wrong and need help from the system. This is partly because there are several models of
undo and in this report we have laid out the possibilities, both as taxonomies of undo and
redo and as formal specifications of the range of possibilities.

This formalisation process has been systematised by an abstract formal framework, the
conservative encapsulation, which captures the way in which the original behaviour is
preserved within the extended system with undo/redo functionality.

Undo is complicated because it is reflexive, both in that it looks at the process of the
interaction and even sometimes undo itself! This reflexivity is reflected in its formalisation
and models of undo need to deal with two levels of state: that of the simple system as if
it had no undo, and that of the full system with undo. The full state of the system usually
involves histories either of commands or states.

The form of undo/redo which is commonly found in recent systems is non-reflexive
multi-step undo/redo. The apparent power of the undo/redo mechanism is limited by the
commitment points which occur when ordinary commands terminate period of undo/redo
activity. Premature commitment to actions is the risk that undo helps avoid. The fact that
this commitment resurfaces can therefore be the cause of more risk. This is an issue which
we pursue further elsewhere [11].

Whereas reflexive multi-step undo/redo does not have these commitment points its
highly reflexive nature makes it very difficult to comprehend. However, this is not only
found in Emacs, a tool of the dedicated computer scientist, but also in HyperCard. Whether
users of hypertext browsers can comprehend such a navigation mechanism would make an
interesting empirical study.

Within the undo subdialogues of non-reflexive undo/redo we have seen an interesting
phenomena whereby undo/redo move the users idea of the ‘current state’ backwards to-
wards the relative past and forwards to the relative future, browsing through time for the
required state in the absolute past.
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Appendix A

In section 3.5, we said that the right hand side of ‘the cube’ could derived from the rest. That
is, we can prove that the state conservativeness diagram, figure 3, commutes if figures 2 and
4, both commute.

In fact, one needs a slight caveat to this statement. Depending on how one formulates the
state of a system, it may include so called ‘garbage’ states. That is states which are permitted
by the description, but can never occur in a real system. For example, if the position of the
cursor in a text editor is represented by an integer denoting the offset into the text, then it
will always point to a position within the text. However, a simple definition of the state as:

S = Text× Int
would in principle include unreachable states such as < “hello”, 500 >, where the cursor
points to a location outside the text. Such a state would never be reached during normal use
of the system and is thus ‘garbage’ in the formal description. We do not want, nor need to
say anything about the properties of such states, they never happen and are not interesting.

Given the above, we will regard the diagram in figure 3 as referring to all reachable states
in Sa and S. This means that we can assume for any state s in Sa, there is a corresponding
action history h from Ha which gives rise to s (i.e. s = Ia(h)). We will see that this ‘weak
reachability’ is necessary for the proof.

We will consider the two parts of figure 3, the left triangle and the main square separately.
Looking first at the triangle this says that the initial states must agree. That is we want to
prove that:

proj(sa0 ) = s0 ** to prove

we prove this as follows:

proj(sa0 ) = proj(Ia(<>) defn. of Ia

= I(eff (<>)) figure 2
= I(<>) figure 4
= s0 defn. of I (figure 6)

✷

The commutativity of the square corresponds to proving that:

proj(doita(s, c)) = doit(proj(s), c) ** to prove

which is the statement of the appropriate state update when ordinary commands are used.
To prove this, we need the weak reachability property and choose hs such that:

s = Ia(hs) weak reachability

Given this definition we proceed as follows:

proj(doita(s, c)) = proj(doita(Ia(hs), c)) defn. of hs
= proj(Ia(hs�c)) defn. of Ia

= I(eff (hs�c)) figure 2
= I(eff (hs)�c) figure 4
= doit(I(eff (hs)), c) defn. of I
= doit(proj(Ia(hs)), c) figure 2
= doit(proj(s), c) defn. of hs

✷
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