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HeI: Making Software Usable 

In the good old days people were quite content with a keyboard and screen, today 
people's aspirations have changed and they are contemptuous of a computer without 
at least a mouse attached to it. Given this new level of sophistication, are we any 
better off in terms of usability, or have we just been give a plethora of extra gadgetry 
to further confuse us? 

Outside the computing profession, people have high expectations of what a 
computer can do. Some would like the ability to talk to the computer. Star Trek fans 
will recall the scene where Scotty tries to talk to one of our ancient Macintosh's via a 
mouse. In the future we may be able to communicate with our computer verbally, 
but the 23rd Century is a long way off. At the moment we have to contend ourselves 
with the ubiquitous WIMP. 

What is the definition of good interface design? Applications developers may get 
carried away with the latest functions their software offers. All very well, but the 
poor user may end up with a screen crammed with an over abundance of popup 
menus, stylishly designed in the latest magenta on cyan colour scheme, not 
forgetting the red £lashing help messages. The application may be high-tech, but is it 
usable and aesthetically pleasing? 

Those of you who have programmed a video appreciate the importance of good 
interface design. In order for a computer application to be accepted, it too needs to 
be designed so that it is both easy to use and not garish to the eye. 

User Friendliness, Man Machine Interfaces and User Interfaces are all terms 
associated with Hel. Whatever the terminology used, the goals should remain 
similar in that it should aim to improve the effectiveness, efficiency, safety and 
usability of any computer system. HCI is an important part of systems design, it is 
about assessing the task in hand, the user and environmental factors, so that the 
design will result in a system that is effective for the situation. 

Usability entails making t~e system easy to use and learn. This means stopping the 
system becoming over complex. The ways of achieving this can range from reducing 
the number of keystrokes at the low level, to restructuring the system to model the 
task in hand. 

Practitioners of HCI should aim to understand how people operate, develop tools to 
aid designers address user needs and finally achieve suitable and effective 
interaction 
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Today's talks address some of these issues, starting off by looking at Software 
Usability. Once developed, a system may cover all the functionality requested by the 
users, yet can still be rejected because it requires obscure keystrokes to do anything. 
Andrew Lees explains how to avoid such situations. 

Jonathan Crellin discusses PROTEUS, an interface evaluation technique. He 
addresses the current difficulties in interface evaluation and shows how PROTEUS 
offers a solution. Many of these problems are due to the fact that the 9-esigner of a 
system may have a different outlook on interface design compared to the user. 

Ernest Edmonds looks at issues of separability. He explores how the User Interface 
can be identified as a separate component. The seminar reviews the history of 
separable user interfaces, looking also at suitable architectures, going on to address 
the practical problems that have arisen from this approach. 

Alan Dix looks at the interplay of formal methods and HCI. Formal methods can 
require a high level of mathematical understanding, however this seminar will 
present two methods which have their roots in formal analysis, but which do not 
require great formal expertise. 

Finally Phil Puttick finishes off by addressing the five most popular methods that 
can be used to confuse your users, giving us an insight in how to avoid them, gained 
from IBM's experience of system design. 

ii 

Mary Garvey 
School of Computing & IT 
University of Wolverhampton 
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The emergence of the separable user 
interface 

Ernest Edmonds 
LUTCHI Research Centre, Loughborough University of Technology, UK 

Abstract 

The meaning of the term "user interface" is briefly reviewed and the 
concept of this as an identifiable component in a system is explored. 
The history of the development of separable user interfaces is 
reviewed, together with the growth of interest in user interface 
software systems and in techniques for user interface specification. 
Separable user interface architectures and practical problems that 
have arisen in the use of separable user interfaces are discussed. 

Introduction 

The user interface to a computer system goes under a number of names 
including the human-computer interface, the computer-human interface, the 
front end and the man machine interface. Whilst "front-end" tends to be used 
in the restricted domain of so called "intelligent interfaces" and "man
machine interface" is sometimes used to refer to systems that do not involve 
computers, for the purpose of this paper they can all be considered to be 
synonymous. Many papers and books on the user interface exist, including 
ones that give detailed advice on how to design and how to construct them. 
Nevertheless, there is still no universally agreed definition of the user 
interface. For example, 

"The human interface with computers is the physical, sensory and 
intellectual space that lies between computers and ourselves". (Bolt, 
1984), 
"The user interface is that part of a system that the user comes in 
contact with physically, perceptually, or conceptually." (Moran, 1980) 
or 
"The functionality defines what the program can do, and the user 
interface defines how users tell the program what to do, and how the 
program tells users what it did." (Szekely, 1988). 

In fact many authors omit a definition altogether (e.g. Shneiderman, 
1987). 

In English, the normal use of the word "interrace" is to name the relationship 
f 
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between two entities, particularly where that relationship is well defined. 
Increasingly, however, the term "interface" has been applied to special 
devices that enable one of the objects to hold the given relationship with the 
other. Thus, for example, one might have to buy a special "interface" in order 
to enable one's computer to operate a particular printer. A similar tendency 
has occurred in the case of the user interface. The study of the relationship 
between the user and the computer is, now, most frequently known as the 
study of human-computer interaction. The user interface normally refers to 
the hardware and software that enables the computer to play its part in the 
interaction. It is widely assumed that it is possible to identify this interface as 
part of the system and, conversely, that it is possible to identify components 
that perform functions that should not be seen as part of the interface. It is 
this assumption that is the central concern of this paper. 

Early work 

Without doubt, the most important early work in this field was done as 
William Newman. This work built upon Sutherland (1965) in important 
respects but, nevertheless, represents the first significant steps towards the 
current concern for the object known as the user interface. 

Newman (1968a) describes a virtual input device that enabled the user to 
enter numerical data on a continuous scale with the aid of a light pen or a 
similar device. Newman terms his logical device a "light handle" because it 
can be seen as a simulation of a handle that can be wound in order to 
increase or decrease the associated numerical value. The significance of this 
work was that it demonstrated the possibility of constructing what, today, 
might be known as an "interaction object": that is to say, a self-contained 
software module that uses the physical input/output devices available in 
order to enable the user to provide some particular kind of input to the 
machine. Whilst, in modern terms, this might be seen to be a very low level of 
separation, it represented an important conceptual step. 

The most significant early work was, however, Newman's system for 
interactive graphical programming (Newman 1968b). A network definition 
language was introduced that partly defined interactive software in the form 
of state diagrams. A compiler for this language could generate run time code. 
This system was based upon a distinction between the reaction handler, with 
its associated tables, and the procedure component. The network definition 
language was compiled into the tables that the reaction handler used, as it 
were, to run the user interface. The procedure component was written in a 
conventional language that did not deal directly with any interaction with 
the user. The mechanism for linking the two aspects was the insertion of 
program blocks into the definition of each appropriate state of the state 
diagram. Thus, the network definition language defined the user interface 
together with its links to the fun~tional part of the system: the procedure 
component. . 

2. 
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Whilst Newman's Light Handle and his Reaction Handler both demon
strated the separation of user interface issues from functional ones, the 
distinction between them, in this respect, is very important. The separation 
offered by the Light Handle is that of an interaction object that can be 
evoked by the functional code but that looks after itself once active. The 
Reaction Handler is quite different in that it is in control of the system and 
evokes functional actions as required. It is, therefore, an example of a 
separate user interface. The paper did not, however, address the issue of the 
precise scope of concern of the procedure component. Indeed, at that time, 
this was perhaps not a major issue but more recently, as will be discussed 
below, this has become a significant point of debate. 

Parnas (1969) also proposed the use of transition state diagrams for the 
representation of dialogues, although he only advocated them for the "top 
level" of user interface design and so, in his work, they did not lead directly to 
implementation. The links between the user interface and the functional 
components of the system were not associated with states, as in Newman's 
case, but with the arcs. The method was to label each arc with an 
input/output pair, representing the user input that would cause the arc to be 
traversed and the output that would result. Only simple examples are 
discussed and, as with Newman, no detailed discussion of the issues of user 
interface/functional component separation is given. 

Denert (1977), in considering the proposition described above, introduced 
two more innovations. Firstly, he recognised the computational limitations 
of state diagrams, which represent finite state machines, and proposed the 
use of recursive state diagrams, which are much more powerful. Secondly, he 
dealt with the interconnection of the user interface and the functional· 
component by introducing "task nodes" into the diagrams, which call the 
functional code. In some respects, this is similar to Parnas' scheme but it 
adds the possibility of different branching depending on the outcome of the 
functional operation. Thus we now have the concept of the functional code 
changing the course of the dialogue. It would seem that for the separation of 
the user interface from the functional code to be a reality for complex 

. systems, both of Denert's innovations are required. 

First generation user Interface systems 

During the 1970's a number of research workers followed William Newman's 
early example and constructed user interface software systems that, in 
various ways, provided for a separation between the user interface and the 
functional code. Stalling (1974) demonstrated a system for generating 
dialogue code that worked somewhat after the manner of a report generator 
program. Florentin (1977) elaborated upon this and noted the importance of 
the linking of the dialogue code to the rest of the system. However, neither 
author added significantly to the specific discussion of separability .. 

,f ... 
Maher and Bell (1977) specifically proposed a virtual machine as the key·user 
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interface module. They illustrated their work with a user interface to a 
database and briefly discussed some problems that arose with the separation 
of concerns. In particular, they found that it was convenient to organise the 
database in a particular way for the benefit of the user interface, but that this 
conflicted with other requirements. 

Black (1977) described another system which provided a separate "dialogue 
processor" which managed the user interface. A dialogue specification 
language was provided that compiled into a form directly usable by the 
dialogue processor. In this system, the dialogue processor produced a "target 
file" which contained the input required by the functional component. 
Clearly, this was a simple view by today's standards and so, agaIn, 
problematic issues of separation were not addressed. 

State diagrams are popular for the specification of user interfaces, but several 
other formalisms are also used. Green (1986) suggests that one of the earliest 
examples of a grammar-based user interface system was that reported by 
Edmonds and Guest (1977). It showed how a grammar-based language could 
be used to define an interface flexibly. It was used to construct a program
ming tutor and so was demonstrated as a feasible system. However, it is 
again true that the simplicity of the separation between user interface and 
functional system was such that the issues often seen now as the problems of 
separability were not discussed . 

Ian Newman (1978) demonstrated how separation could be used to provide a 
variety of interfaces to a single system. Practical work, again, was done to 
prove the point but, as before, the particularly difficult issues of separability 
that are perceived today were not considered. Lafuente and Gries (1978) 
extended Pascal in order to provide what they called "dialogue frames", each 
of which could include a procedural block. Thus the structure of this user 
interface was somewhat similar to Newman's (1968b). The difference was that 
Lafuente and Gries provided an extension of a standard programming 
language, whereas Newman kept his interface code quite separate from the 
functional code. 

User Interface specification 

Whilst the work on specifying user interfaces has not in general addressed the 
issue of separability directly, it is quite clear that the whole enterprise is 
founded upon the notion of separability. If it were not so, what would it be 
that one was specifying? 

An important model for these specifications was Moran (1980) in which he 
proposed a view of the user interface that had a number of levels incorpo
rated in:to three components: physical, communication and conceptual. A 
key point is that, in this view, only the conceptual component needs direct 
contact with the functional asp~cts of the system. In Moran's :v~ew the 
conceptual component contained'two levels. The task level is concerned with 
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the structuring of the task domain, for the benefit of the user, and the semantic 
level is "built around a set of objects and manipulations of those objects. To the 
system these are data structures and procedures; to the user they are 
conceptual entities and conceptual ·operations on those entities." (Moran, 
1980). The semantic level was seen as a way of representing the system's 
functional capability. This particular aspect of the structure of a user interface 
has proved quite fruitful in attempts to clarify the separation from the 
functional code. This paper, and its elaboration (Moran, 1981), proposed that 
the user interface could be specified in a well-defined set of levels. This work 
has been influential both in the study of user interface specification and, more 
specifically, in the study of architectures for separable user interfaces. 

Mark Green (1981) reported a notation for the specification of user interfaces 
and presented it in the context of a traditional software development model. 
Whilst that model is no longer necessarily accepted (see for example 
Hekmatpour and Ince (1987) or an earlier questioning by Edmop.ds (1974)), 
the specification ideas are not invalidated. Green's notation includes the 
notion of atomic objects and operations that correspond to Moran's objects 
and manipulations. These represent the lowest level of the system of concern 
to the interface. Beyond that, is the concern of the functional code. This has 
been the standard view of separation. In his paper, however, Green 
introduces an important additional property at this level. He allows for the 
specification of invariants. These are relationships which must hold between 
the operators and objects. Whilst he only gives a simple example of an 
invariant, it is clear that it is entirely unrealistic to consider these objects as 
independent and that quite complex invariants may be required. The only 
question at issue is whether the invariants can and should be seen as the 
concern of the user interface. 

Edmonds (1981) consolidated earlier work and put forward a specification 
notation that combined state diagrams with grammars, each having their 
appropriate role. This work continued the tradition begun by William 
Newman in that a compiler was available for the notation. The links between 
the user interface and the functional code were provided partly in the manner 
of Parnas, as described above, except that the input/output specifications on 
an arc could have a complex transformation relating them, so that specific 
inputs in the appropriate class .could generate relevant outputs. The outputs 
were passed to the functional code at a "task node", as in Denert. 

Naturally, the early work in the field did not address the issue of specifying 
user interfaces that handled direct manipulation specifically. However, Jacob 
(1986) has shown how the methods that employ state diagrams can 
accommodate direct manipulation. 

Architectures 
'.' .-1 

Following Moran's work, discussrd above, much debate has taken place 
about appropriate architectures for separable user interfaces and· a large· 
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proportion of the issues of concern have been in the support for separability. 
In many ways the details of the architecture can be seen as a precise 
definition of the scope of the user interface. 

A very important event in the development of separable user interface 
architectures was the workshop held in 1983 in Seeheim (Pfaff, 1985). One 
group in the meeting, consisting of Jan Darksen, Ernest Edmonds, Mark 
Green, Dan Olsen and Robert Spence, developed an architecture for the user 
interface (Green, 1985), see Fig. 1. 

As L6wgren (1988) points out, however, the first proposal of a user interface 
software architecture of this form was probably that of Edmonds (1982), see 
Fig. 2. It built directly upon Moran's concept of layers. In this view the 
separation between user interface and functional code was precisely at 
Moran's semantics level where the objects and manipulations that can be 
seen as atomic, from a user's point of view, reside. 

The Seeheim application interface model went further than either Edmonds' 
or Green's earlier proposals. The idea was that it might contain, for example, 
information about the effects of operations in order to assist the user 
interface in the provision of help. Also, in order to deal with larger amounts 
of data generated by the functional code, such as dynamic images, a direct 
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path to the display was proposed. In this case, the only functions of the user 
interface were to open such a path and to decide where it should point to on 
the screen. This architecture has become widely known as the Seeheim model 
and a good deal of the subsequent debate has used it as the base reference. It 
is, perhaps, not surprising that this model has been so important because, 
apart from the earlier architecture from Edmonds, position papers were 
presented at Seeheim by Thomas and Olsen, both of which proposed 
architectures in the same spirit as what became the Seeheim model. 

Many papers have been written concerning modification to this model. For 
example, Dance et al (1987), see Fig. 3, and Edmonds and McDaid (1990), see 
Fig. 4. It is noticeable, however, that most are variations on the Seeheim view, 
rather than radical departures from it. We may assume, therefore, that the 
climate of opinion remains to favour something of this flavour as an architecture 
for the separable user interface. In particular, it can be seen that the user 
interface is seen to include a substantial part of the software of a system. 

Practical Issues of separability 

Certain position papers presented at Seeheim were already addressing 
practical separability issues. In particular, Olsen (1985) and Sibert et al(l985) 
consider interdependencies between the layers with some care. One of the 
working groups, in fact, considered the issue specifically, as reported by 
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Enderle (1985). Their basic conclusion was that separability, even for 
CAD/CAM applications, appeared to be possible given careful design. The 
group looked particularly at the services provided by the user interface to the 
functional code and vice versa. This was probably the first attempt to 
catalogue these difficult concerns (see Table 1). 

Szelsky, in his PhD thesis (1988), considered separability in detail. He 
considered the interface as, perhaps, a slightly shallower entity than others 
have done, but this enabled him to identify clearly a set of interaction types. 
This classification is itself a contribution to the definition of the scope of the 
user interface. Even if one does not wish to limit ones view of the interface in 
Szelsky's way, it is clear 'that his work is valuable as a contribution to our 
understanding of that part of the user interface termed the "presentation 
layer" at Seeheim. 

Alty and McKell (1986) have made a valuable study of the application model 
in the Seeheim sense. They demonstrate an application model for a command 
driven system and show how a study of interaction sessions can help to 
identify the knowledge required in the model. A particular,outcome of the 
empirical study was that they identified a need for a planning component in 
the application model. Thus, whilst they confirmed the viability of the 
separable user interface, they demonstrated in practice that the interface can 
require quite sophisticated components within it. 

In another practical case study, Manheimer et al (1989) showed that the 
separable user interface is a quite realistic concept. It is of interest to note 
that the mechanisms for coupling user interfaces and functional components 
vary widely and that, in this case, more than one mechanism was found to be 
necessary. In applying their LUIS interface system they found the need for 
both "tightly" and "loosely" coupled relationships. "The tightly coupled 
routines are linked with the LUIS executable image. A subroutine interface is 
available for these routines to communicate with the LUIS interface 
manager, i.e., to send messages to manipulate the ongoing dialogue and to 
receive messages that inform the application of the state of the dialogue. 
When a tightly coupled routine is invoked, the user interface is suspended 
until the application has completed its processing." (Manheimer et aI, 1989). 

In another practical investigation, Dance et al (1987) encountered the 
difficulty of rapid semantic feedback in a separable user interface much as 
discussed at Seeheim (Strubbe, 1985). If one considers a screen displaying 
three things, a window, an icon for a file and an icon for a disc, then consider 
the difference between the following two situations. If the user drags the 
window over the disc icon, the icon is simply obscured. If the user drags the 
file icon over the disc icon, then the latter is, typically, highlighted. The 
difference represents more or less instant semantic feedback. 

It is sometimes argued that this semantic feedback problem is a case against 
separability, but in fact that case is far from clear. It is true that, it. ~,?uld be 
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,Table I Services at the application - UIMS interface 

Services of the UIMS for the application 

* Give a value matching constraints 
* Switch input sources (e.g. between user & journal) 

\..0 *·,Tell the user a value 
* Display some graphics 
* Handle an application error 
.. Set ouput context 
* Set dialogue scope 

~., Undo something 

..... ;-
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Services of the application for the UIMS 

• Give a value (e.g., for use in help functions) 
* Give a value to be used instead of user input 
• Perform graphics update 
• Set application state variable to a given value 
* Grant permission to change application data 
* Grant permission to change application data 
* Give pick support 
• Give task status 
* (Re-) Set task status to a (previously saved) state 
* Undo something 

--'. 



hard to achieve an acceptable performance if tokens had to be passed 
through the layers, to and from the application, in order to achieve it. 
However, there is no reason why the presentation layer itself should not 
contain the appropriate knowledge. After all, the example given above does 
not imply any application action. 

This difficulty may have arisen because many researchers have been influ
enced by developments in computer graphics where closed packages are 
often used for implementing interactions. As even the simple example above 
makes clear, all levels of a separable user interface must be programmable in 
the sense that the system developer may need to build application specific 
knowledge into any part of it. This is not an argument against separability, 
of-course, although it suggests caution about the utility of completely general 
purpose user interface modules. 

The difficulty here is wh~ther the user interface might need too much 
knowledge (Strubbe, 1985). However, nobody has defined "too much" in this 
context. Even as early as 1978 Sutton and Sprague found that more than half 
of the code in interactive business applications was devoted to the user 
interface. Size is not the problem, although duplicating application code 
within the interface would be, of course. It would seem that where functional 
code has to be entered in order to generate the semantic feedback and where 
that feedback is required very quickly indeed, or where it involves large 
volumes of data, either the direct path, as proposed at Seeheim, or a closely 
coupled link, as in Manheimer et aI, could be used. However, semantic 
feedback remains an area for investigation. 

Conclusions 

Issues of separability still remain to be resolved but there is enough evidence 
now that the separable user interface can be defined. Perhaps the biggest 
problem that has stood in the way of successful work in the area is that 
people have sometimes attempted to build general purpose front ends in the 
belief that (using the Seeheim terminology) only the application model needs 
to contain knowledge of application issues. In point of fact, even the 
presentation layer must often be programmed with specific application 
dependent knowledge. The separable user interface is not at all ignorant of 
the functions of the system. 

If we return to the definitions of the user interface quoted at the beginning of 
this paper, it is interesting to notice that the separable user interface can be 
seen as a concrete elaboration of each of them. Moran (1980) went on to 
propose that "Any aspect of the system that shows through to the user and 
enters the user's model is a part of the user interface". The emergence of the 
separable user interface has occurred partly as an attempt to represent 
everything "that shows through to the user" in an identified softw~r~ ~odule. 
The degree to which this attempt has been successfuJ ,remai~s' to .1?e fully 
assessed, but it is quite clear that the study of separable user interlaCes is 
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becoming increasingly important in concentrating our attention on some of 
the most significant aspects of interactive systems. 
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PROTEUS: Collecting data about the experience of using an interface 

Jonathan Mark Crellin, School of Computing and Information Technology, University 
of Wolverhampton. 

Abstract: This paper describes current problems in interface evaluation, and proposes a 
solution to those problems in PROTEUS, an interface evaluation technique. Problems stem 
from the differences in perception of an interface design between designers of systems and 
users of systems. An expert novice perspective can be used to consider this problem. Areas 
that can provide possible solutions to the problem are knowledge elicitation, personal 
construct psychology, and prototyping. These approaches have been combined in 
PROTEUS. The paper then describes empirical work on PROTEUS and continues to 
consider the future directions that the development of PROTEUS may take. 

The problem ... 

There are many different ways to characterise interface issues. One useful approach has 
been taken by Marcus. Marcus suggests that communication between people and computers 
takes place in at least three phases that represent three different "faces" of computers. 
These faces consist of different conceptual frames for communication. Outerfaces are those 
parts of the communication that are the final products of the computation. Typically they 
consist of the text, diagrams, graphics, that may be displayed on the computer screen, or 
printed on paper. The people who use these products of the computer do not need to have 
very much knowledge of computers or the means of display to understand the communication 
embodied by these products. The outerface of the HCI is independent of the media. It is 
these products that are the goal of the user's task. The interface is the aspect of the human 
computer communication that is concerned with command, control and documentation. This 
face provides the handle for the computer as an artefact. Without these controls the 
computer would be useless. The sorts of people who encounter computer interfaces can 
vary tremendously in their prior experience of computer systems. The final face of the 
computer is the innerface. The innerface consists of the parts of the software that only the 
system designer confronts. These parts control how the system functions, that only the 
people who build or maintain the system have to interact with. They consist of programming 
languages, software tools, and operating systems used to develop the system. They are in 
effect the 'cogs and gears' of the computer system Marcus, 1983. 

There is a major difference between users of computer systems and designers of computer 
systems in the way that they relate to these different faces. Designers consider first the 
innerface, then the interface and outerface. They initially make decisions about what 
functions are feasible (innerface), and then how these are to be controlled by the user 
(interface) and how they will be expressed as output (outerface). Users of computer systems 
are primarily concerned with the products of the interaction (outerface), that are also the 
goals of the task the computer system supports. The controls for the system (interface) are 
unavoidable for users. Most users hope the interface is invisible, with the task structure 
forming the perceived structure of the interface, rather than the structure of the software. 
Users wish to have nothing to do with the innerface of the system. If forced to interact with 
the innerface (for example if the system crashes) most users will give up the task, or seek 
help from elsewhere. 

This difference between designers and users goes some way to illuminating a central 
problem of design in HC!. Designers focus on the computer system. User focus on the task 
domain the system supports. Writers use word processors to produce text, graphic designers 
use desk top publishing packages to produce page layouts. It is easy for the computer 
system designer to support those aspects of the task that are easily simplified by a computer 
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system, at the expense of those aspects of the task that do not easily map to a computer 
based system. 

Designers and users have different knowledge about computer systems, and about the task 
domain. They also have different backgrounds that leads to different ideas about how 
problems should be solved. This different culture also leads designers and users to have a 
different language about HCls. Users' ideas are derived from their experience as users of 
different systems, and knowledge about the application area. Designers' ideas are derived 
from their background in software engineering, mediated by training in human factors and the 
design of HCls, and in task analysis. Many problems of computer systems can be traced to 
an inadequate understanding by computer designers of how users understand their tasks and 
how these tasks are represented by a computer system. 

When a user wants to do something with a computer system he will need to plan the steps 
necessary to perform a particular action. This planning is based on the users' model of the 
system. The more effective a user's understanding of the physical system the more likely this 
plan is to work. Norman points out that there are at least three different components that 
make up the designer/user model system. The first of these is the design model, that 
precedes the actual system, and represents the actual system that is constructed. The 
system when built projects an image about itself. This image is derived from both the user 
interface to the system, and the system documentation. From this system image is derived 
the users model. Users' develop their model based on their experience of the system. The 
user model must accurately reflect the design model of the system if the user is to plan 
actions on the system effectively, and this can only happen through the mediation of the 
system image. In the design of systems the designer will also have a model about a typical 
user, that forms a part of the design model, Norman, 1986. 

Mental models and components of the Computer/Designer/User System 
(adaptedjromNorman, 1986). 

When any of these models or images do not match with each other, or with the system, then 
usability problems are likely to occur. Therefore elicitation of users' knowledge of systems 
can be appropriate. This information can be compared to both the physical characteristics of 
the system, and to the design model. 

Various techniques have been developed to address this problem. The following section 
looks at approaches that have been taken to the design of human computer interfaces, 
focusing on how differences in designers' and users' perspectives are dealt with. 

Approaches to the Design of Human Computer Interfaces 

Interface design involves co-ordinating knowledge from a number of different domains. 
Software engineering knowledge defines what is possible within the technology. Cognitive 
psychology provides information about how people process information, and the capacity of 
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various cognitive stores and registers. Aesthetics and design provide information about what 
people enjoy, and find pleasing. Task descriptions involve understanding the actual activities 
that the system is designed to support. Contextual and social factors involve understanding 
how different tasks are likely to be performed, when users are doing real work on the system, 
in a real workplace. 

These different forms of knowledge are used at different points in the design of a system. 
Several design and evaluation methods exploit these different forms of knowledge. In early 
computer systems the focus was driven by what was possible within the technology. Most 
users of systems had a computing background, and shared a considerable amount 
knowledge with the system designers. The development of single chip computers has 
considerably reduced the price of computers, and they are now used to support many more 
tasks, by a larger, but less computer literate population. Commercial pressures alone have 
driven software houses to be much more concerned to design systems that meet human 
cognitive and affectational requirements, and that adequately support tasks. Failures in the 
design of interfaces has lead to more evaluation of contextual and social aspects of computer 
use. 

Design is a process that involves creation of new structures, within the context of pre-existing 
ones. The final design is rarely conceived in any complete form at the beginning of the 
design process, if such were to occur it would probably indicate premature focus on a 
solution. The process involves initial definition of the problem, concept invention, decision
making when two alternatives present themselves, and evaluation of the design as it emerges 
(formative evaluation). This evaluation stage is useful in deciding which alternative design to 
develop. In HCI design the importance of understanding how users will react to a proposed 
design requires that some form of user representation is involved in the design process. That 
user representation can be in the form of a conceptual model, or real users performing tasks 
on prototypes. Guidelines contain implicit conceptual models of human performance. 
Analytic methods use similar (but often rather one dimensional) models of human 
performance. The huge variety of tasks that computer systems are now used to support 
results in unanticipated variations in performance. Empirical methods particularly informal 
empirical techniques, are more likely to detect unanticipated issues. Experimental, survey 
and contextual or observational methods all employ real users, although the immediacy of the 
data collected, and the ecological validity of the environment in that the data is collected 
varies between these three methods. Design methods are currently being developed to 
address some of these issues (for example the PICTIVE method, Muller, 1991). 

Characteristics of an improved method of evaluation 

The problem identified is that the differences between designers' and users' knowledge 
degrades communication between them, and this results in software designs that users find 
hard to understand and use. Therefore important characteristics for design/evaluation 
methods ought to include the following 

• Employs real users rather than representations of users 

• Can be employed in realistic contexts 

• Does not focus on designers' issues, but on users' issues 

• Promotes communication between users and designers 

• Discourages early focus on a solution 

Encourages designers to view software from a users' point of view 

This paper describes a dynamic conflict. Coping with individuals' needs requires a method of 
collecting the uniquely individual subjective realities that form the basis of each person's 
understanding of the world. In contrast design involves construction of a single solution to a 
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problem, and this implies an underlying shared objective reality that the design taps into. The 
meeting point of these two perspectives is the shared reality of the designer and user. This 
shared reality is ultimately the 'objective' reality that the design is built to meet. The tools 
described in this paper help make explicit the features of that shared reality, both to designers 
and to users, and help the development of systems that reflect user needs. 

Prototyping and sketching 

Prototyping is a term that has been employed in a variety of different ways in different 
manufacturing contexts. In its original context of engineered artefact manufacturing, a 
prototype is a hand-built version of the artefact. Such an artefact may be anything from a 
fighter aircraft, to a ball point pen. Craft techniques are used to manufacture the artefact, and 
possibly different materials are used for certain components (for example tumed wood 
instead of moulded plastic). The prototype is fully functional, and made to the same 
tolerances as those intended for the final product. The prototype may be evaluated on a 

~ number of criteria. Its performance is measured, its usability may be evaluated, and the cost 
of manufacturing components estimated. From the prototype jigs, moulds and cutting tools 
can be prepared, and the mass-production run of the final form can then take place. This 
form of prototype is concerned with establishing that it is possible to implement the design, 
that it will perform as expected, and that conventional manufacturing processes can be used 
for its construction within allowable costs. Such prototypes are sometimes referred to as 
pre-production prototypes. 

In software engineering prototyping usually has a much less precise meaning. There are at 
least two prevailing ideas about what a prototype should be. An engineering perspective 
suggests that a prototype should be a near complete system, including much of the final 
systems functionality and user interface. A more craft-like perspective suggests that 
prototypes can be rough preparatory representations of parts of the final system, and that 
often multiple prototypes (which enable comparisons to be made) are more useful than a 
single definitive prototype. A software system can be divided into the functional code, which 
performs the functions of the system, and the human computer interface, with which the user 
interacts. During the development of a system it is useful to evaluate different parts of the 
system in isolation. Therefore the term 'prototype' has often been used to describe 
non-functional representations of systems. There is argument about the applicability of the 
term 'prototype' to these non-functional, preparatory representations of the system. Gregory 
suggests that in this context the term mockup may lead to less misunderstanding. A mockup 
is a non-functional representation of a system, or part of a system. Gregory argues that the 
term prototype is most properly used to describe a functional (although possibly imperfect) 
version of the final system (Gregory, 1984). 

Hekmatpour and Ince suggest that a prototype will have the following characteristics 
(Hekmatpour and Ince, 1988):-

It is a system that actually works. 

• It will not have a generalised lifetime (it could be thrown away, or form the basis for final 
product). 

• It may serve many purposes. 

} It can be quickly and cheaply built. 
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It forms an integral part of iterative process also including modification and evaluation. 

They point out that in software engineering there is no mass-production phase in the 
development process. The pre-production prototype is also the final product. Once the 
coding has been completed the software can be duplicated in any required numbers. In this 
sense software development is more closely allied to craft production than manufacturing. In 
craft production a single object is made, in manufacturing large numbers of objects of a single 
design are made. Prototypes are used in the development and evaluation of the design of 
the system. Hekmatpour and Ince also refer to three forms that prototypes can take. The 
first is an imperfect but fully functional version of the system. The second is a 'bread-board' 

16. 



\' 
! l 

l 
I .I 

I~j 

I 
~ / 

, 1 
) 

I., 

J 

, l 
iJ 

~l 

I I 

l ! 

PROTEUS: Collecting data about the experience of using an interface Jonathan Crellin 

system that is fully functional, but lacks a user interface, and the third is a full user interface 
which lacks most of the final systems functionality. Another way of classifying prototypes is 
into three types that highlight the different development roles of prototypes:-

Throw-it-away prototypes: This type of prototype is used for requirements capture and 
specification. It needs rapid development, and may be implemented using other hardware 
environments to that used for the final product. Non of the code in the prototype is used in 
the final product. Such an approach is also sometimes referred to as rapid prototyping. 

Evolutionary prototypes: The purpose of an evolutionary prototype is to introduce a system 
into an organisation gradually and flexibly to allow changes as problems occur, there is 
never a 'final' product. Different parts of the system may be implemented at different 
times. 

Incremental Proto typing: The system is built incrementally, one section at a time, however 
focused on one overall final design (hence different from the above). 

This paper will focus on the 'throw-away' prototype, as this best embodies the exploratory 
prototyping encouraged by PROTEUS. A throw-away prototype is a system implemented 
using an alternative development system to that used for the final version of the system. 
Such alternative development systems usually allow development in a very short time, but at 
the cost of limitations in the prototype. For example, neither the size of the code, nor the 
speed of program execution, nor the hardware on which the prototype has to operate, may be 
optimal. The 'throw-away' of the title is because little or non of the code that implements the 
prototype is used in the final system. Only the design is retained. 

Sketching 

Prototyping can be employed during the design process in two different ways. First to 
communicate ideas within the design team, where evaluation will be mostly of the heuristic 
variety (Nielsen and Molich, 1990); and second for user evaluation, where prototypes can be 
used by sample user populations, and evaluations collected. In this case the empirical 
evaluation could be either 'observational', 'experimental' or 'survey' (Long and Whitefield, 
1986). 

Prototyping can be used in system design in a similar way to the use of sketching in graphic 
design. Alternative solutions to a particular problem can be implemented, as a concrete 
focus for decision making during the design process. Within the PROTEUS methodology 
prototypes are used to communicate what a designer considers to be the range of 
alternatives that may be possible. The design 'solution space' is described by such 
prototypes. Obviously such an approach is partially derived from the architect's concept of 
preparatory sketches Graves, 1976, that indicate different possibilities for the final design. 

Prototyping and Design 

A simple approach to software design might be that as users' know their requirements best, it 
is they who should design the software tools that they require. However simply making easy 
to use tools (for example HyperCard) available to novice designers, (experts in the target 
domain, but not expert in system design), is not a solution to system design. (Even 
HyperCard takes two days to learn to use, Thovtrup and Nielsen, 1991). A system designer 
also needs to understand what is possible and what is not possible within a human computer 
interface, and to have knowledge about how people interact with systems. The problems of 
making design development tools available to people who are inexperienced in design is 
highlighted by problems experienced in different areas of design. Anecdotal problems 
experienced by amateur graphic designers, using desk-top publishing packages to produce 
documents have been well reported. Graphic design guidelines (such as using a single type 
face (in Windowsese a font) for body text for example) are often ignored, and familiarity with 
the document, and the finished appearance of the laser printed page conceals the illegibility 
of the design from the amateur designer. What is needed is an awareness of graphic design 
guidelines, the freedom to consider design alternatives, as well as a tool that enables a 
novice to produce a finished artefact. Early (and inappropriate) focus on a solution is a 
particular problem experienced by novices. 
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Computer systems as design tools frequently fail to provide the richness necessary for 
exploratory representations of a design solution. Hewson has pointed to the way current 
computerised graphic design packages fail to provide provisional representations of solutions 
(Hewson, 1990). Much of the early work of a graphic designer is concerned with exploring 
ideas, and quickly representing these (thumbnail sketches) using a variety of graphic media 
(Martin et al refer to similar observations concerning VLSI designers using CAD systems 
Martin, et aI., 1990). The range of the graphic media (different types of pencil, pens, and 
paper) allow an almost infinitely large variety of line and tonal quality to be created quickly, 
which can in turn be used to represent abstractions of the final design. Pencil lines of varying 
width and weight can be used to represent different type faces. Sketching allows these 
provisional representations are explored during the design process. 

Graves refers to three forms of sketching: referential; preparatory; and definitive, which have 
different functions in the practice of architectural design. Referential sketching involves 
collecting visual experiences, it is easier to recall things once they have been cognitively 
processed during the process of sketching. Preparatory sketching involves trying out a 
variety of different ideas, quickly and informally. Definitive sketching is the process of 
representing in detail what the final design solution should be (Graves, 1976). The last form 
of sketching is well supported during the interface design process. A highly finished 
representation of a solution can be generated very quickly using a computer system. It is the 
first two forms of sketching that are poorly supported in computer aided design of most types. 
Novices can produce very finished results very quickly using computer packages. 
Unfortunately the very finished quality of computer products frequently gives them a spurious 
authority, and stops further exploration and improvement. In computer aided design the ease 
of definitive sketching suppresses preparatory sketching. Similar problems are experienced 
in interface design. A Visual Basic interface, constructed of familiar and professional looking 
Windows features (buttons, icons and graphics), frequently belies the underlying difficulties of 
the overall design. When it is easy to construct the final form for a system, it is very easy to 
rush straight to the first solution that is thought of. 

Recent computerised design tools attempt to resolve some of these problems by creating a 
variety of solutions to a particular job, using the elements that a user has specified. Multi-ad 
Creator, in the domain of graphic design, generates alternative layouts for a single page 
document, using the objects (blocks of text, headings or graphics) that have been created by 
the user. The program responds to general design guidelines, and can be adjusted to 
emphasise text or graphic objects (StudioBoxLtd., 1990). 

Lavout ·1 

Screen shot from multi-ad creator, showing 
automatically generated alternative layouts for a 

piece of graphic design. 

In this way the user is forced into 
considering alternative solutions for a 
given specification. There is a difficulty 
in finding the appropriate 'sketching' 
media for developing ideas about 
interfaces. Conventional sketching is 
suitable for graphic or architectural 
design problems, as both these are 
essentially visual. (Buildings are 
primarily perceived through the sense of 
vision.) Traditional sketching is less 
useful for interface design which involves 
the process of perceiving two 
dimensional images which change over 
time. Another possibility for representing 
interfaces is story boarding. Story 
boards are used in film making, and 
expresses the linkages between different 

screen images. However both these possibilities do not adequately express the highly 
interactive, branching qualities of human computer interfaces. 
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PROTEUS and Prototyping 

In PROTEUS it is possible to evaluate both fully functional prototypes, and mockups, or 
partial systems. Prototyping is involved in PROTEUS in several ways. First, prototypes are 
used for of communication of a designer's ideas about possible individual designs. Second, 
multiple prototypes define the design space, showing the range of alternatives that the 
designer thinks may be appropriate. The prototypes are never judged in isolation, but as 
comparisons. Users are likely to lack a framework in which to evaluate single systems. Their 
experience of alternative systems is likely to be limited. It is only by presented more than one 
system and forcing comparison that realistic and reliable evaluations by users can take place. 
The use of multiple prototypes increases the workload on designers, but this is obviated to 
some extent by the increased availability of tools for building prototypes quickly. 

Finally the range of prototypes that can be used is from simple, non functional 
representations of the system, to complex fully functional prototypes. The experimental work 
described below has involved using both a series of fully functional prototypes, (in the 
interface evaluation study), and a series of partial systems (in the RAS help system study). 
The methodology supports evaluation of components of an interface design (for example 
alternative screen designs), or fully functional prototypes. A minimal number of prototypes 
should be presented to users in order to support the idea that the prototypes represent the 
design space. 

Personal Construct Psychology 

Personal Construct Psychology (PCP) is an explanation of how people think, that uses the 
metaphor of the 'Personal Scientist'. It suggests that people engage in a process of 
understanding the world by forming theories about how it works. These 'theories' are 
retained as long as they work, and provide useful predictions about the world. Eventually 
these theories are replaced when the number of contradictions between the theory and the 
experience of the world becomes unbearable, and alternative an theory can be found that 
performs more effectively. The theory behind Personal Construct Psychology was developed 
by George Kelly in 1955 (Kelly, 1955), and was originally applied in a teaching and then a 
therapeutic context. It has been applied to a number of domains since 1955, including 
marketing and business applications, knowledge elicitation, and now interface design (Frost 
and Braine, 1967, Stewart and Stewart, 1981, Boose, 1985, Crellin, 1988, Crellin, 1989). One 
of the spin-offs from Personal Construct Psychology is a tool for exploring 'cognitive space' 
called the Repertory Grid (sometimes called the Rep Grid or the Kelly Grid). The repertory 
grid collects the ways people distinguish between objects in their world, the theories they 
have about what is important about the objects they deal with. These 'objects' could be 
anything, in a therapeutic context they might be people, or roles of people in a person's 
family. In an advertisng context they might be different brands of a particular type of product. 
In PROTEUS the objects are different designs for an interface. 

One of the advantages of the repertory grid is that it is an easy way of collecting relatively 
rich, open-ended qualitative data, that is still fairly structured, so that some comparison can 
be made between different individual's ways of understanding their environment. It is also a 
tool that is fairly easy to automate, enabling the collection of qualitative data without the usual 
overhead of time associated with most qualitative data collection techniques (Shaw, 1980). 

Initial Development of the Construct Elicitation System 

The idea of using the repertory grid for collecting data about user interface designs was 
initially tried with a combination of manual repertory grid elicitation, and available repertory 
grid elicitation and analysis software. In particular an early study used the Construct and Grid 
Elicitation system (CAGE) that was used on Open University psychology courses. This 
involved collecting repertory grid data about a range of word processing systems that had 
been used at the Open University during the previous few years. The study was reasonably 
successful, in ihai ii demonstrated that repertory grid data could be elicited about such a set 
of elements, and also that the information collected did give some insight into the ways user 
of the systems thought about the pertinent characteristics of the systems. The study also 
highlighted the need for a customised software tool to support this technique. 
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As a result, the initial specifications for the Construct Elicitation System (CES) component of 
PROTEUS were that it should elicit constructs from users interactively, and store these for 
later analysis. The elicitation should be user event driven rather than using a system directed 
dialogue (experience with CAGE suggested this). Modality should be avoided where 
possible. 

First Prototype for Construct Elicitation System 

The failure of existing repertory grid based software to satisfy requirements for a usability 
evaluation system lead to the development of an interactive elicitation tool. The first 
prototype concentrated on grid elicitation, with analysis of the resulting grid being performed 
by a version of Mildred Shaw's FOCUS program (Shaw, 1980, Shaw, 1984), (essentially a set 
of sub-routines from within Shaw's PEGASUS program). The characteristics of the system 
were that it was a menu driven interface, that loaded a data fife containing element names, 
then elicited constructs interactively using triadic elicitation. Particular care was taken in the 
wording of the prompts relating to the personal construct psychology (PCP) task, as 
experience with the CAGE system showed these were the most likely to be misinterpreted. 

Verbal Protocol study 

This test bed system was used for early usability evaluation with two subjects employing a 
verbal protocol methodology, and a Moves Goals and Sub-goals type of evaluation, following 
(Ericsson and Simon, 1984, Robson and Crellin, 1989). A 'verbal protocol' version of the 
programme was devised to encourage a running dialogue by the user. This included an 
additional prompt, asking for users to say aloud why they chose a particular option. (Koubeck 
and his colleagues describe a similar method of obtaining a computer aided verbal protocol 
Koubeck, et aI., 1987.) This prompt was placed in the sub-routine that checked user input for 
the menu command, so was not displayed after every user input. (At certain places in the 
program the user was already committed to a course of action so was not allowed to abort a 
particular action by returning to the menu.) On these occasions the verbal protocol prompt 
was not displayed. 

Conclusions 

The highest level goal in using PROTEUS is to generate a representation of the way in which 
the user of the system discriminates between elements. This was not always clear to users 
of the prototype system. The task was fairly interesting to complete, but lacked a focus 
because subjects could not see what the final product was, or appreciate the effect of each 
elicited construct on that product. This certainly contributed to a limitation in the number of 
constructs elicited. The feedback system (PEGASUS) developed by Shaw, 1978, makes 
users aware of close matches between elements and constructs. However experience as a 
user of this system suggests that this is not easy to integrate into a whole picture of the 
emerging representation of the different elements. The method employed by Boose, 1985 in 
ETS of displaying the resulting relationship between elements (used in the context of 
extracting expert knowledge) seems more appropriate to the task of producing a 
representation. 

The way constructs were elicited remained a crucial bottleneck in the prototype. It was the 
most difficult feature for users to conceptualise correctly. This evaluation established several 
important issues for future developments of the Construct Elicitation System. The nature of 
the task was not very clear to users, the verbal-protocol task was confused with the personal 
construct task on several occasions. Navigation through the system proved difficult. These 
issues lead to the porting of the program to a Graphic User Interface (GUI) using an Apple 
Macintosh. This considerably eased some of the problems of using the menu driven interface 
in the prototype. In particular the system assumed a far more event driven character than in 
the earlier environment. 

Further development of the Construct Elicitation System 

The system (as implemented on the Macintosh) had the following characteristics. The 
program still cycled through triadic elicitation, but system operations were made through 
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Macintosh pull-down menus. Feedback was made available as a similarities matrix, providing 
similarities between elements, and later by using binary trees to represent the FOCUS 
analysis of repertory grid data. Users were then asked if they wished to discriminate between 
closely matched elements, which they could do by adding discriminating constructs. If the 
system was to be used to discriminate between different interfaces then the system should 
run on the same machine as the 'target' systems, and needs to be small enough to fit on any 
machine likely to be used, so that the CES task could be performed in a user's real working 
environment. 

Report Writer and the Analysis of Repertory Grid Data 

The FOCUS algorithm is the most commonly used method for analysing repertory grid. The 
FOCUS algorithm can be displayed as a binary tree. This is as intuitive a way as any of 
communicating the important features of a cluster analysis. The existing software to perform 
this type of analysis was not well suited to the needs of this project. A new package (called 
Report Writer) was developed, initially as a separate module from the Construct Elicitation 
System, and subsequently incorporated into the CES. Report Writer can produce tree 
diagrams on screen, or on any available printer. Correlation tables (which are required to 
read the binary trees accurately) can also be printed to screen or hard copy. The data can 
then be analysed by an experienced researcher using a process of progressive abstraction. 
Ethnographic researchers are generally not concerned with quantification or statistics, but 
rather with understanding events as they happen Davies, 1990. This usually involves 
grappling with huge amounts of data, then abstracting down to fewer and fewer abstractions 
that give a meaningful perspective on what is going on. A sequence of abstraction given by 
one researcher quoted by Davies is as follows:-

300 Abstractions --> 30 --> 10 Main Themes --> 6 (for write up). 

Analysis of the Construct Elicitation System follows a similar model. Initially each individual's 
constructs can be regarded as abstractions, representations of the ways that individual uses 
to understand what is going on. Cluster analysis provides a way of looking at the differences 
between the different constructs, and a first level of abstraction. It can become clear from the 
cluster analysiS how many underlying abstractions there are, which reflect the construct data. 
This allows the analyst to develop an overview of the important characteristics of the interface 
for a particular individual. Subsequently different individuals can be compared, and a general 
hypothesis for perception of the different interfaces developed. As a general rule most 
people have two or three ways of looking at the different interfaces, although in some cases 
there is only one predominant way of looking at the interfaces, and in some cases there are 
many dissociated ways of describing the interfaces. 

The Report Writer provides a useful first step in the analysis of data, but the successful 
analysis of repertory grid data requires that information from a variety of sources be brought 
together. Correlation tables need to be combined with tree diagrams, and the textual content 
of constructs, to form appropriate abstractions from the data easily. At the moment these 
different forms of data are available separately, and therefore analysis involves the shuffling 
of a series of printouts. Hypertext methods of presenting data may be particularly 
appropriate. 

Integration of the Construct Elicitation System into a stable environment 

A shell system (PROTEUS) was constructed to control and monitor user behaviour. This 
allows users to move between different parts of the evaluation task easily. The use of a shell 
facilitates monitoring of user behaviour, allows easy access to help screens, and can control 
the delivery of questionnaire and rating scales to the users. The different parts of the task 
can be given separate identities, helping navigation around the relatively complex evaluation 
environment. Finally the shell increases the robustness of the evaluation system, to the 
extent that it can be simply given to users, for use on their own machines, in ecologically valid 
settings. 
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Fi nder 

. ---- ----. 
PROTEUS Shell 

Quest i onai res Rati ng Scal es 

I I 
Stimulus Help Files CES 

Interfaces 

Structure o/PROTEUS 

The system was tested using several stimulus interfaces for the Interface Evaluation Study 
(IES). A small trial study preceded the Interface Evaluation Study. Data from the trial lead to 
a few minor changes in procedure of the IES, and to modification and extension of the 
Instructions to Subjects. Although subjects can leave CES and re-examine the stimulus 
interfaces (via the PROTEUS shell) this occasionally proved too time consuming and 
disruptive, especially during the difficult construct elicitation task. 

Current State of Development of CES and PROTEUS 

The following section describes the current state of development of the PROTUS software 
tools. PROTEUS consists of several components that help in the evaluation of software 

~g~you been uslng~ 

Under Six Months .......................................................................................................... , .. 0 
SIx to Twelve Months ................................................................................................. , .. 0 
1-2 years ................ , ..................... , ..................................................................................... 0 
More thon 2 years .................................... , .. , .................................................................... 11-

Screen shot 0/ questionnaire screen 

prototypes by users, and support 
understanding of the data generated 
from users, by designers. The 
PROTEUS shell program governs the 
use of prototypes, questionnaire and 
rating programs, the Construct 
Elicitation System, and of help files. 
It also provides data on system 
usage. It is set up by a configuration 
file that contains the names of all the 
files to be used by PROTEUS. 

PROTEUS provides a screen of information to users on their usage of the different 
prototypes, by filling a pie chart (stimulus interface log). This allows users to distribute their 
time fairly between the different prototypes. The pull down menus available in this screen 
allow access to the help files (which are simple text files), and to quit to finder. Initially a user 
can only select prototypes, but after all prototypes have been used once it becomes possible 
to select CES. . 

The questionnaire program is called by PROTEUS, and is used to collect demographic data 
and information about prior experience from the user. The program supports branched 
multiple choice questions, each with a single response. Questions are presented on the 
computer screen, and the response is selected by the user using mouse and radio-buttons. 

Ratings data is collected from users by a Unpleasant to use Pleasant to use 

program before first use of CES, and after last [,] r:;J r;] r.;J [.;l Ic'1 r:;J riil Inl ~ 
use. The program asks for ratings on a ten point ~ ~ ~ ~ ~ ~ L2J 1..:; L!J ~ 
scale, for each of the prototypes. This gives an 
indication of changes in perception (if any) that Screen shot o/rating screen 
result from the repertory grid task. PCP theory 
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suggests that constructs are very dynamic, and are likely to change with an individuals 
experience. Fortunately the early studies show that in the interface design context ratings of 
the stimulus interfaces rarely changes. 

CES is a complex program, with many different screens. Construct elicitation (of triadic or 
implication type) is presented on start up of the application. Responses are collected in a 
single line edit field. Ratings for constructs are collected by mouse selection from a seven 
point scale. 

Number of Constructs Ellclted:- 0 

I) COMMAND LANGUAGE 
2) MACINTOSH 
3) MENU(B) 

Think of a way In which two of these elements are similar 
and different from the third. 

Now type In the name for the way In which the two elements are similar 
(finish with 8 <RETURN» 

Triadic Elicitation Screen 

between the constructs, and also to undo any 
descriptions. 

The construct editor allows all 
construct attributes to be modified. 
This includes the main construct 
name, pole names and ratings for any 
or all elements. Additionally the 
construct can be deleted. Before 
users can leave the system they are 
asked to provide extended 
descriptions of constructs. These are 
collected in a text edit screen, for 
each construct. Users have the 
option to go forwards or backwards 

changes they have made to the text 

Finally it is possible for users to see the similarity ratings between elements. This is called up 
from the elements menu and provides the similarity ratings in tabular form, and a binary tree 
representation of the FOCUS analysis. Closely matched elements are highlighted to the 
user, and a course of action to increase differentiation suggested as a possible next step. 
Users may feel that the similarity between two elements reflects what they feel about the 
element set, in which case they do not need to add in extra discriminating constructs. 

CES can be used as an tonstruct Edlt!ng~ 
independent application (as it was Construct:- ~IC~ON~S~IS~TE~N~CY==============:I 
in the NPL study, Crellin, 1988), or Pole A: ""IC""ON.!.><S..."IS"-'TE...,N.L..T ____________ --'I 
it can be used as a component of 

Select an Element:-

the PROTEUS shell. ICON 
Report Writer is an application for DIALOGUE 

COMMAND LANGUAGE 
the FOCUS analysis of repertory MENU(A) 
grids. It can perform analysis of MENU(B) 
grid of up to thirty elements and L.-_____ -'L><.l 

Pole B: 

I 
INCONSISTENT 

9tCONSISTENT 
@ 

o 
ONEUTRRL 
o 
o 
o INCONSISTENT 

constructs. Output from the 
OK ) ( Delete Construct) ( Cllncel 

program is as similarity tables for 
elements or constructs, and as Construct Editor from Construct Elicitation System. 
binary tree diagrams showing the 
clustering of the elements or constructs. 
printer. 
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Construct APPARENTNESS OF THE COMMANO SET 
has two poles, PATHWAY TO COMMANDS IS CLEAR TO SEE 
end DIFFICULT TO KNOW HO WTO GET TO COMMAND SET 

Con you describe this construct more fully? (Press OK-when satisfIed) 

I ReLlert I I OK 
This construct relates to the way commends ere dlspleyed_ Some of the 
Interfaces make all the possIble commands ylslble on th escreen at once, 
In some the commands ere hIdden, but the route to fInd them Is felrly 
epperent, In the worst Interfeces the commends ere just not ylslble. You 
either knoe them or you don·t... 

Screen shot o/Construct Description Screen 

4 
100 % 

+ 

90 % 

+ 

80 % 

+ 

70 % 

+ 
[,----=P~r-:-m-:t----, 

5 6 3 

I 

Report Writer will load information 
in any of the formats used during 
the development of CES. It can 
also be used to' concatenate 
constructs from several peoples 
constructs (where the same set of 
elements have been used) to 
evaluate the relationship between 
those constructs. 

7 2 

OK 

Binary Tree Representation o/Element Clustering from Report Writer 

Empirical validation 

A number of evaluation studies took place during the development of PROTEUS. These 
studies covered a range of different issues within the prototyping of design solutions within 
the interface design space. Initial prototypes used were full prototypes of a limited system 
(the Interface Evaluation Study used seven full and very differentiated prototypes to a simple 
system, described in Crellin, 1989 and Crellin, 1992. Later studies looked at prototypes 
which were vertical prototypes, testing a sub-system of a final system, (Crellin, 1990). 
Different ways of relating the prototypes to PROTEUS were also examined. These ranged 
from the optimal setup, where prototypes were accessed through the PROTEUS shell, so 
that other information about usage of the system can be recorded, as a sub-system, 
implemented on a different hardware base, that simulated the interaction of the target system 
(a Macintosh simulation of a command line interface) (Crellin, et aL, 1990, Crellin, 1992). 

Comparison with other evaluation methods 

A comparison of PROTEUS and other evaluation techniques was made, using the original 
seven prototype interfaces (Crellin, et aL, 1990, Crellin and Preece, 1991). This study took 
place in a small commercial company. This comparison looked at formal analytical 
techniques (keystroke-level analysis, Card, et aL, 1980, and Reisner'S BNF, Reisner, 1981) 
and verbal, video and software log protocols to collect informal usability information, in an 
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environment close to users' normal working environment, following Whiteside's description of 
contextual evaluation (Whiteside, et aI., 1988). The results of this study showed the 
importance of gathering information from different sources, and also showed the areas where 
PROTEUS was able to provide a unique set of information about the experience of using a 
piece of software. PROTEUS proved reasonably reliable, and collected information with little 
need for monitoring by the evaluation researcher. 

Drawbacks 

Although PROTEUS is very easy to use to collect information, requiring little involvement by 
the researcher, it does have the drawback as it needs a number of prototypes. These are 
used as representations of the design space of a particular application interface. The main 
difficulty lies in having to implement several prototypes for a particular system, however it is 
anticipated that prototyping tools will assume a greater and greater role in system 
development. Larger and more complex systems require larger efforts to produce in low-level 
code, at the same time the applications can be quickly and easily simulated in prototyping 
tools. An examination of the Macintosh and Windows development environments shows that 
powerful fast applications can be developed in lower level programming languages such as C, 
but only with considerable expenditure of time by the designer/programmer. Applications 
such as HyperCard or Visual Basic allow less powerful simulation of the application to be 
developed very quickly. The increased availability of fast prototyping tools are making this 
less of problem. The design of an interface can be explored using a throw-it-away 
prototyping technique more akin to the role sketching plays in other design disciplines. These 
sketches allow fairly standard usability engineering to be employed, but more importantly 
allow users to gain an impression of what is possible within a particular design space. It also 
focuses a designer' mind on what users are likely to feel are important dimensions to describe 
that design space. The significant dimensions are where attention should be focused. 

A second drawback of PROTEUS is the potential difficulty of interpreting output from the 
FOCUS algorithm. A major area of activity is the development of software tools to assist in 
the interpretation of FOCUS data, and to help in the comparison of data from different 
individuals. This will help draw out the comparison of designer and user models of the design 
space, and individual prototypes. A first step in this direction is the definition of guidelines for 
use by those inexperienced in FOCUS analysis. 

Summary 

Fitting PROTEUS into Usability Evaluation Frameworks 

There are several ways of classifying usability evaluation methodologies, and PROTEUS can 
also be fitted into those classification schemes. Whitefield uses a classification schema to 
distinguish between usability methodologies based on the completeness of the interface 
Whitefield, 1990, Whitefield, et aI., 1991 . 

Computer Systems Representational Real 

Representational Analytical User Reports 

Real Specialist Reports Observations 

White fields classification o/usability methodologies. 

This four class schema distinguishes between representations of users, and computer 
systems, and existing users and computer systems. Thus analytical techniques (such as 
Reisner's BNF, Reisner, 1981) fit into the upper left hand box of the grid. It is possible to 
perform a BNF evaluation without real users and without an implementation of the interface, 
only a specification is necessary. When the interface has been implemented, and is 
evaluated by experts, the method of evaluation (specialist evaluation) belongs in the lower left 
hand box of the grid. In this case the interface exists but the user is only represented in the 
expert's knowledge. User reports are where the user gives his opinions of a particular 
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interface, but the interface may only be represented by a non-functional prototype, or even by 
paper and pencil scenarios, equally the user will be reporting on recall of his experience with 
an interface, and therefore the interface can be considered partially representational. The 
final box of the grid is where the interface has been implemented as a functional prototype, 
and actual users are observed in their interactions with the prototype. Gould et al describe a 
system development in which these final three methods were all used in one form or another 
(Gould, et aI., 1987). PROTEUS uses real users, and functional prototypes, assessment 
takes place during but not simultaneously with usage. This seems to place PROTEUS in the 
lower right hand box of the grid, but close to the border between real and representational 
systems. 

Maguire identifies a number of issues in usability evaluation (Maguire and Sweeney, 1990):-

* Realism of Laboratory setting 

* Ease of Learning versus Ease of Use 

* Setting evaluation goals 

* Feedback into the design process 

* Need for user involvement 

* Concurrent versus retrospective 

* Degree of Intrusion 

* Large amount of data 

* Use of statistics 

How does PROTEUS meet these issues? A considerable amount of care has been taken to 
allow the methodology to be used in natural settings (for example on users own machines). 
The nature of the tasks chosen for prototype systems has not always allowed the task setting 
to be completely natural. The task therefore assumes a slightly different (but not necessarily 
inappropriate) nature. The task becom.es an exploration/familiarisation task, that a user who 
obtained a new piece of software might make. 

Ease of learning and ease of use is an issue that can be looked at in several ways. The task 
for the user evaluator is fairly hard work, it requires some linguistic ability. Virtually all 
subjects were able to perform the task, suggesting that the task (though quite demanding) is 
fairly easy to learn. Post experiment comments suggest that users find the task quite hard 
work. The methodology is particularly easy to apply by the designer. 

The analysis of the data from the experiment is partially automated, however currently 
analysis is completed as a qualitative abstracting task. The development of tools to help in 
this analysis remains a long term goal not fully explored at the moment. The feedback of 
results into the design process takes the role of highlighting those areas of a designer's 
knowledge that does not match with user knowledge. It is in these areas that designers will 
be least likely to produce design solutions that satisfy users, and this should form a focus for 
designer user discussion. 

Usability Engineering, and the setting evaluation goals is not clearly supported by the 
PROTEUS methodology. However there is an implied goal that during development the 
interface should be more likely to be classified on the preferred side of evaluative constructs. 

Users are centrally involved in the evaluation process, and during the process they become 
more aware of the possible alternatives that can exist. This partially addresses the problem 
of differing status between designers and users. The designer has defined a design space 
within which designs can be easily manipulated. The process of construing also forces users 
to define vaguely felt feelings into verbal descriptions, that in turn can ease later discussion 
between designers and users. 

In the issue of concurrent versus retrospective evaluation, concurrent evaluation is usually 
regarded as more reliable than retrospective evaluation (for example Whiteside, et aI., 1988). 
(Concurrent methods include verbal protocol collection, retrospective methods include !3urvey 
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and inteNiew data.). Concurrent collection of experience means that transient thoughts are 
more likely to be caught, and the record is likely to be accurate, recording real processes, 
rather than post-hoc justifications. The problems of concurrent methods of data collection are 
that they intrude into the process of completing a task, and so can change it dramatically. 
PROTEUS is in a fairly strong middle ground between concurrent and retrospective methods., 
Although the method is retrospective, the user can readily switch between the task under 
evaluation and the CES construing task. This means the time for thoughts to be lost is 
reduced, and yet intrusion onto the task is minimised. The PROTEUS methodology is best 
described contiguous rather than concurrent or retrospective. It is the contiguous nature of 
the evaluation that minimises intrusion on the evaluation task. The user/evaluator can 
complete tasks, or components of tasks, then leave the system for evaluation and start CES. 
Equally the user/evaluator can leave CES and enter the evaluation prototypes to check on 
some aspect. The process of construing frequently makes users aware of parts of the 
evaluation prototypes that they cannot quite remember, which they need to check. The rapid 
movement between evaluation prototype and CES supports accurate accounts on the 
interfaces without resulting in excessive interference with the task. 

CES does produce large amounts of data, although this is immediately reducible via 
appropriate statistical methods. Cluster analysis is a method that has been frequently used 
with repertory grid data. It can be used to generate meaningful patterns from the mass of 
CES data. PROTEUS also generates system usage data. This data can be used in different 
ways depending on the task given to the user/evaluator. In an exploration task this type of 
data can indicate the time taken to become familiar with a particular interface. During 
construing it may indicate which interfaces are more easily remembered. In a longer, usage 
task the usage pattern can indicate preferences between the different prototypes. 
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Abstract 

The author and others have been studying the interplay of formal methods and HCI for 
several years. In particular, much of this work has centred on the design of formal models 
of interactive systems which can be used to formalise properties of usability. Although this 
work has been successful, it requires quite a high level of mathematical sophistication and 
is thus hard to 'give away' to the practitioner. This paper will describe two methods which 
have their roots in formal analysis, but which do not require great formal expertise. Such 
methods can be thought of as operating at an 'engineering level' as they have to some extent 
pre-packaged the results and insights of more sophisticated analysis into a form more readily 
applied to practical problems. 

1 Introduction 

For many years I have worked on the interplay between formal methods and human-computer 
interaction. This area of research is particularly associated with (present and past) workers from 
York and there are now several books on aspects of this area. Various books and papers are 
described in the annotated bibliography at the end of this paper. In particular, most of the 
material in this paper can be found in an expanded form in a HCI text book which I recently 
co-authored [1], and in my previous monograph [2]. 

Much of my work has concerned the development of formal models of interactive systems. Of 
these, the PIE model, described in Section 2, is one of the oldest and most well known. This model 
was designed to express generic properties at the level of WYSIWYG (what you see is what you 
get) or the meaning of undo. Such models can be used in two principle ways: 

(i) They give new insight into general problems as the properties of the problem domain are 
analysed. 

(ii) They can be used as part of a formal development process to constrain the design of specific 
systems. 

The models have been successfully used on both counts. unfortunately, they require a consid
erable degree of expertise in both formal methods and human factors. If we assume that the use 
of formal methods in software engineering continues to gain favour and also that the importance 
of good interface design continues to be regarded as important, then it may be that such combi
nations of skills become more common. However, whether or not this comes to pass, such skills 
are not at present the norm. 

Considering point (i) this is not a problem. An expert analyst can gain new insight from 
the models and then either expound this knowledge in the context of the models, or even recast 
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it completely in informal terms. Indeed, this has been the pattern of much of my own work! 
The reader or listener need not have the same level of familiarity with the model to follow the 
arguments, even where the model is used in the exposition. 

However, point (ii), the use in a formal development process, requires that such an expert be 
available on the design team. Furthermore, the burden of proof can become excessive. The real 
expert is able to focus on critical areas, but the proficient practitioner may become lost in the 
morass of detail. This problem is not unique to the use of formal methods in interface design, but 
is a general problem in all applications of formal methods within software engineering. 

One could wait for research in software engineering to attacK the general problem, possibly 
with the aid of complex proof assist~nts and toolsets. But, like waiting for the effects of education 
to filter through, this is at best a long term hope. 

Happily, there are developments which make use of methods derived from these models, yet 
which require less formal expertise on the part of the designer. These I will call 'engineering' level 
techniques. In these, the theoretical work is effectively packaged in the same way that in civil 
engineering the theoretical analysis of materials and soil mechanics is packaged up into tables, 
structural analysis programs and rules of thumb. 

I will describe two such 'engineering' level approaches. The first, in Section 3, shows how 
properties similar to those defined over formal interaction models can be applied to dialogue 
descriptions. This has the advantage that dialogue descriptions are often produced for specification 
or prototyping purposes and that the analyses are simpler and can often be automated. 

The second approach is status/event analysis This uses a distinction drawn from formal mod
elling work, but which can give insight into general and specific interface design with little reference 
to its formal roots. In particular, I will demonstrate .how status/event diagrams can be used to 
analyse the usability of interface widgets. 

2 Formal models of interaction 

It's easy to say that a system is WYSIWYG, is consistent or has a universal undo facility, but 
how do you know? Is there any way we can take a system and say 'yes' it is or 'no' it is not 
WYSIWYG? It was just for this purpose that formal models of interaction were developed. One 
of the oldest such models is the PIE [5]. This is a general purpose model intended to apply to 
a wide range of systems. More specific models can address particular design areas, for example, 
there are models for windowing systems, models for describing temporal behaviour and models for 
dealing with non-determinism[2]. At the opposite extreme from the PIE model are specifications 
.of specific systems, for example, Sufrin's specification .of a text editor [6]. These of course can only 
be used to reason about the one system (although the specifier may draw general lessons). 

The rest of this section will concentrate on the PIE model and a few of the usability properties 
which it can be used to describe. We will look at two broad classes of properties. Those concerning 
what you can see of the system: predictability and observability, and those concerning what you 
can do to the system: reach ability and undo. The concept of WYSIWYG is partly captured 
within the PIE's predictability property, but like all usability properties, we find that the formal 
statement is only a partial expression of the real property we desire. Nevertheless, some of the 
formal principles are necessary for usability, any system which breaks them is bound to have 
problems. The formal principles form a 'safety net' to prevent some of the worst mistakes in an 
interactive system. Formal analysis is thus an aid to, but not a substitute for, good design. 

Concepts underlying the PIE model 

The PIE model is a black-box model. It does not try to represent the internal architecture and 
construction of a computer system, but instead describes it purely in terms of its inputs from 
the user and outputs to the user. For a simple single-user system typical inputs would be from 
keyboard and mouse, and outputs would be the computer's display screen and the eventual printed 
output (Figure 1). 

The difference between the ephemeral display of a system, and the permanent result is central 
to the PIE model. We will call the set of possible displays D and the set .of possible results R. In 
order to express principles of observability, we will want to talk about the relation between display 
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Figure 1: Inputs and outputs of single user system 

and result. Basically, can we determine the result (what you will get) from the display (what you 
see)? 

More formally ... 

For a formal statement of predictability it helps (but is not essential) to talk about the internal 
state of the system. This does not counter our claim to have a black-box model. First, the state 
we define will be opaque, we will not look at its structure, merely postulate it is there. Second, 
the state we will be discussing is not the actual state of the system, but an idealisation of it. It 
will be the minimal state required to account for the future external behaviour. We will call this 
the effect (E). Functions display and result obtain the current outputs from this minimal state: 

display: E -+ D 
result: E -+ R 

The current display would be literally what is now visible. The current result is actually not 
what is available, but what the result would be if the interaction were finished. For example, with 
a word-processor it is the pages that would be obtained if one printed the current state of the 
document. 

A single user action we will call a command (from a set C). The history of all the user's 
commands is called the program (P = seq C), and the current effect can be calculated from this 
history using and interpretation function: 

I:P-+E 

Arguably the input history would be better labeled H, but then the PIE model would loose 
its acronym! 

If we put together all the bits, we obtain a diagram of sets and functions (Figure 2), which 
looks rather like the original illustration. 

In principle, one can express all the properties one wants in terms of the interpretation function 
I. However, this often means expressing properties quantified over all possible past histories. To 
make some of the properties easier to express, we will also use a state transition function doit: 

doit : E x P -+ E 

The function doit takes the present state e and some user commands p, and gives the new state 
after the user has entered the commands doit( e, p). It is related to the interpretation function I 
by the following: 
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Figure 2: The PIE model 

I(p --- q) 
doit( e, p --- q) 

R 

D 

Now the PIE diagram can be read at different levels of abstraction. 'On can take a direct 
analogy with Figure 1. The commands set C is the keystrokes and mouse clicks, the display set 
D is the physical display, and the result R is the printed output. 

c.= 
D 
R 

{ , , 'b' '0" '1' '*' '0.' } a, , ... , , , ... , ,"", ... 
PixeLcoord -+ RGB_value 
ink on paper 

This is a physical/lexical level of interpretation. One can produce a similar mapping for any 
system, in terms of the raw physical inputs and outputs. It is often more useful to apply the model 
at the logical level. Here the user commands are higher level actions such as 'select bold font' 
which may be invoked by several keystrokes and/or mouse actions. Similarly, we can describe the 
screen at a logical level in terms of windows, buttons, fields etc. Also, for some purposes, rather 
than dealing with the final physical result, we may regard say the document on disk as the result. 

The power of the PIE model is that it can be applied at many levels of abstraction. Some prop
erties may only be valid at one level, but many should be tJ:ue at all levels of system description. 
It is even possible, to apply the PIE model just within the user, in the sense that the commands 
are the user's intended actions and the display, the perceived response. 

When applying the PIE model at different levels it is possible to map between the levels. This 
leads to level conformance properties, which say, for example, that the changes one sees at the 
interface level should correspond to similar changes at the level of application objects. 

Observability and predictability 

The WYSIWYG is clearly related to what can be inferred from the display (what you see). Harold 
Thimbleby has pointed out that WYSIWYG can be given two interpretations [4]. One is what 
you see is what you will get at the printer. This corresponds to how well you can determine the 
result from the display. The second interpretation is what you see is what you have got in the 
system. For this we will ask what the display can tell us about the effect. These can both be 
thought of as observability principles. 

A related issue is predictability. Imagine you have been using a drawing package and in the 
middle you get thirsty and go to get a cup of tea. On returning, you are faced with the screen 
- do you know what to do next. If there are two shapes one on top of the other, the graphics 
package may interpret mouse clicks as operating on the 'top' shape. However, there may be no 
visual indication of which is topmost. That is the screen image does not tell you what the effect 
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of your actions will be, you need to remember how you got there, your command history. This' 
has been called the' gone away for a cup of tea problem'. 

In fact the state of the system determines the effects of any future commands, so if we have a 
system which is observable in the sense that the display determines the state, it is also predictable. 
Predictability is a special case of observability. 

Let's have a go at formalising these properties. To say that we can determine the result from 
the display is to say that there exists a function transparentR from displays to results. 

:3 transparentR : D -+ R 
• VeE E. transparentR(disp/ay(e)) = result(e) 

Of course, there is no good having any old function from the display to the result, the second 
half of the above says that the function gives us exactly the result we would get from the system. 
This property is a good first cut at observability, but will in fact turn out to be too strong. For 
now call it result transparency. It says that the display contains at least as much information as 
the result. However, it may also contain additional information about the interactive state of the 
system. For example, you will observe the current cursor position, but this has no bearing on the 
printed document. 

So you know what will happen if you hit the print button now. Refreshed from your cup 
of tea, you return to work. You press a function key which, unbeknown to you, is bound to a 
macro intended for an entirely different application. The screen rolls, the disk whirs and to your 
horror your document and the entire disk contents are trashed. You leave the computer and go 
for another drink ... not of tea. 

A stronger condition can be obtained if we demand that the system state can be observed from 
the display: 

:3 transparentE : D -+ E 
• VeE E. transparentE(disp/ay(e)) = e 

We can regard this as an initial attempt at predictability, but, it will again turn out to be too 
strong, so instead we will call the above property simply transparency. 

What would it mean for a system to be transparent in one of these senses. Well, if the system 
were result transparent, when we come back from our cup of tea, we can look at the display and 
then work out in our head (using transparentR) exactly what the printed drawing would look like. 
Of course, whether we could do this in our heads is another matter. For most drawing packages 
the function would be to simply ignore the menus and 'photocopy' the screen. 

Simple transparency is stronger still. It would say that there is nothing in the state of the 
system that can not be inferred from the display. If there are any modes, then these must have 
a visual indication, if there are any differences in behaviour between the displayed shapes, then 
there must be some corresponding visual difference. Even forgetting the formal principles, this is 
a strong and useful design heuristic. 

Unfortunately, these principles are both rather too strong. If we imagine a word-processor 
rather than a drawing package, the contents of the display will be only a bit of the document. 
Clearly, we cannot infer the contents of the rest of the document (and hence the printed result) 
from the display. Similarly, to give a visual indication of say object grouping within a complex 
drawing package might be impossible (and this can cause the user prqblems). 

On the other hand, one could regard the transparency properties as being too weak. The 
function transparentR represents the reasoning the user would have to do to predict the result 
from the current display. That such a function exists is no guarantee that the user can perform 
the calculation - it may involve the translation of Ancient Egyptian hieroglyphics. 1 

When faced with a document on a word-processor, the user can simply scroll the display up 
and down to find out what is there. That is, you cannot see from the current display everything 
about the system, but you can find out. The process by which the user explores the current state 
of the system is called a strategy. The formalisation of a strategy is quite complex, even ignoring 
cognitive limitations. These strategies will differ from user to user, but the documentation of a 
system should tell the user how to get at pertinent information. For example, how to tell what 

1 Which is precisely how non-English speakers feel when faced with many menu driven interfaces. 
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objects in the drawing tools are grouped. This will map out a set of effective strategies with which 
the user can work. 

One can use the idea of a strategy to formulate more effective observability and predictability 
properties. Indeed, one can go further still and generate models and properties which take into 
account aspects of user attention, and issues like keyboard buffers. The books referred to in the 
bibliography deal with such extensions. 

Principles of predictability do not stand on their own even if you had known what was bound 
to the function key, you might still have hit it by accident, or simply forgotten. Other protec
tive principles like commensurate effort need to be applied [4]. Also, although it is difficult to 
formalise completely, one prefers a system which behaves in most respects like the transparency 
principles, rather than requiring complicated searching to discover information. That is a sort of 
commensurate effort for observation. 

Reachability and undo 

In a commercial program debugger, there is a window listing all the variables. If a variable is a 
complex structure, then hitting the 'insert' key while the cursor is over the variable will expand 
the variable showing all its fields. If you only want a few of the fields to be displayed, you can 
move the cursor over the unwanted fields and type the 'delete' key and the field is removed. These 
operations can be repeated over complex hierarchical structures. If you remove a field and then 
wish you hadn't, you can always press insert' again over the main variable and all the fields will 
be re-displayed. Even this breaks somewhat the principle of commensurate effort, but worse is to 
come. The 'delete' key also works for top level variables, but once one of these is removed from 
the display there is nothing you can do to get it back, short of exiting the debugger and re-running 
it from scratch. 

A principle which stops this type of behaviour is reachability. A system is reachable iffrom any 
state the system is in, you can get to any other state. The formal statement of this is as follows: 

'1 e, e' E E • :3 pEP. doit( e, p) = e' 

Unlike the predictability principles, there are no awkward caveats. The only problem is that, 
if anything, it is too weak. For instance, a word-processor could have a delete key, but no way 
to move the cursor about, you always type at the end of the document. Now you can, of course, 
get from any document state to' any other, you simply delete the whole text and retype what you 
want. However, if you had just typed in a whole letter then noticed a mistake on the first line, you 
would not be pleased! So, ideally one wants an independent idea of 'distance' between states and 
make the difficulty of the path between them commensurate with the distance - small changes 
should be easy. Despite this, the principle on its own would have been strong enough to prevent 
the behaviour of the de bugger! 

One special case of reachability is when the state you want to get to is the one you have just 
been in. That is, undo. We expect undo to be easy, and ideally have a single undo button that 
will always undo the effect of the last command. We can state this requirement very easily: 

'1 c E C • doit( e, c,.... undo) = e 

This says exactly what we wanted. We start in a state e. We then do any command c and 
follow it by the special command undo. The state is then the same as we began in. 

Stop! Before clapping ourselves on the back for so clearly defining undo, we should check that 
this requirement for undo is consistent. Indeed, it is consistent - so long as there are at most 
two states. That is, the above undo requirement is only possible for systems which do virtually 
nothing! The reason for this is that undo is itself a command and can undo itself. Take any 
state e and choose any command x. Let ex be the state you get to after command x. That is 
ex = doit ( e, x). Now we can apply the undo requirement to state ex: 

doit(ex , undo) = doit(e, x,.... undo) = e 

So, the undo command in state ex gets us back to e. That is as expected. But, what does 
undo do if we are in state e. Again we can employ the undo principle remembering that e = 
doit( ex, undo): 

35. 



r h 

\ 

'i 
I I, 

\ 

j 

1 
J 

i 
! 

I. 
. .1 

I 

I 
J 

I i 
----J 

[ 
\ 

doit( e, undo) = doit( ex, undo""" undo) = ex 

This uses the undo principle when· the command c is undo itself. However, our choice of 
command x was arbitrary, so if we had chosen another command say y we would have concluded 
that doit(e, undo) = ey • This means that ex = ey , and in general anything we do from state e 
gets us to the same state. With a little more argument you can show that any command from 
this second state gets us back to the original one. So at very most we have two states, a toggle, 
with all the commands flipping back and forth between them. The only other alternative is that 
the system does nothing. 

We won't go on to describe the details of better undo requirements, the interested reader can 
find that elsewhere. The basis of most workable undo systems is that undo is not just any old 
command, but is treated differently. The simplest fix to the above undo principle is to restrict the 
commands to anything except undo! 

The lesson from the above is clear. It is easy to say you want something which sounds quite 
reasonable. A formal description of the requirement may well reveal that, as in the case of undo, 
it is inconsistent - that is no system could be built which ;atisfies the requirement. 

Summary - formal modelling 

The example of undo shows how useful formal models can be as tools for understanding. The 
specification we originally gave sounded good enough, but was inconsistent. If we had tried to 
build a system having such an undo, we would either fail, or think we had succeeded. In the 
former case, we might keep fruitlessly trying to build a system with a single universally applicable 
undo button. In the latter, we might delude ourselves into thinking this was what we had, only 
to discover (after selling the system!) that there were cases where it failed. 

However, it is also clear that the job of verifying that a large interactive system is reachable 
or predictable may be very difficult. 

3 Dialogue Analysis 

The difficulty about proving properties of systems is that the state is very complex. For example, 
the state of a word processor will contain information such as: 

Screen: 
Text: 
Menu: 
Cursor: 

edit screen 
"to be or not to be, ... " 
file menu displayed 
at the 7th character line 12 

To be able to prove things about such a state, we need to reason about numbers and text as 
well as mode indicators such as Screen and Menu. The number of possible texts and cursor 
positions is infinite, or even if we take into account system limits very large. This means we have 
to reason symbolically - heavy mathematics! 

Dialogue descriptions usually limit themselves to the finite attributes of the state. Those 
which have a major effect on the allowable sequences of user actions. They are thus instantly 
more amenable to automated analysis (we can sometimes simply try all cases). Furthermore, 
dialogue descriptions are often used as part of design anyway, thus we may be able to take an 
existing product of the design process and obtain instant added value. 

3.1 Notations 

There are a large number of different dialogue notations. Some use diagrammatic representations 
of the dialogue (see below) and others use textual representations (such as the use of grammars 
or production rules) . 

Of the diagrammatic techniques, state transition network (STNs) are most heavily used. (But 
even they come in several variants.) We will base our discussion primarily on STNs, but other 
notations could equally be used. 

State transition nets consist of two elements: 
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select 'circle' 
highlight 'cIrcle 

select 'linc' 
highlight 'line 

click on circumference 
draw circle 

band from new point 

Figure 3: State transition network for menu driven drawing tool 

circles - denoting the states of the dialogue 

arcs - between the circles, denoting the user actions/events 

Figure 3 shows a STN describing a portion of the dialogue of a simple drawing tool. The arcs 
are also labelled with the feedback or system response resulting from the user's actions. Note how 
cramped the arcs get - obviously a lot is happening at each event. 

The STN for a full system would usually be enormous. To manage the complexity, STNs 
are often described hierarchically. For example, Figure 4 shows the higher level dialogue for the 
drawing tool, selecting between several sub-menus. The menu in Figure 3 corresponds to the 
graphics sub-menu. Each of the sub-menus would have similar STNs describing them. 

The hierarchical decomposition in this diagram is of states. Single states in the high-level 
diagram correspond to an entire low-level STN. There are other possibilities for hierarchical de
composition, for example, augmented transition networks allow both user actions and system 
responses to be decomposed into further STNs. 

3.2 Why do people use dialogue notations? 

I said that we were focusing on dialogue descriptions because they often 'come for free', a natural 
product of the design process. There are several reasons for this: 

• The use of DIMS or DIDEs. 

• For dialogue specification on paper. 

• For rapid prototyping. 

We'll look at these in turn. 

UIMS 

If we use a User Interface Management System (UIMS) or User Interface Development Environ
ment (UIDE) this will usually include a formal description of the dialogue. This may be in the form 
of production rules, a grammar or even some graphical representation. Some of these represen
tations, especially production rules, do not completely separate the dialogue from the underlying 
state. However, the conversion required is certainly far less work than generating the description 
from scratch and is guaranteed to be consistent with the actual system. 
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Graphics Sub-menu 

select' graphics' 

~ pop-up 
graphics sub-menu 

Text Sub-menu 

Main select 'text' 

~ Menu pop-up 
text sub-menu 

Paint Sub-menu 

select 'paint' 

~ pop-up 
paint sub-menu 

Figure 4: Hierarchical state transition network for complete drawing tool 

Paper specification 

A second reason for the use of dialogue descriptions is simply as a paper specification method, 
just as one might use data-flow diagrams for information systems or entity-relationship diagrams 
for database design. Several years ago I was working in a data processing department producing 
information systems under a forms-based transaction processing (TP) environment. 

Programming a TP system is similar to many window systems, basically a stimulus-response 
model. Your program gets a screen full of data and must decide what to do with it. When it has 
processed that screen, it sends a fresh template to the user and then goes on to service a different 
terminal. Because of this form of programming, one cannot implicitly encode the dialogue within 
the program structure. So, for example, it is quite difficult to ensure that the user can only delete 
a record after it has been displayed. 

To ease the problem of writing (relatively) complex dialogues under this regime, the author 
used flowcharts to describe the interaction with each user. Figure 5 shows a flowchart for a delete 
sub-dialogue similar to those used. 

Note two things, despite surface similarities, there are important differences both from normal 
program flowcharts and from STNs. 

First, note that a flowchart of the program implementing this dialogue would (because of the 
stimulus-response model) be tree-like. It would have to explicitly store the dialogue state and 
generally being totally incomprehensible without the corresponding dialogue description. Further
more, the sorts of things one puts in the boxes of a dialogue flowchart are different from program 
flowcharts. For example, reading a record could be a complex activity, say searching through a 
file until the matching record is found. However, from the dialogue viewpoint this corresponds to 
a single system action. 

Note also that although superficially like an STN, with boxes connected by arrows, the emphasis 
is rather different. The boxes represent system processes or user interactions, that is, the notation 
is event/process oriented rather than state/oriented. We will return to this status/event distinction 
in Section 4. 
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Figure 5: Flow chart of deletion sub-dialogue 

In a different vein, formal notations are often criticised for the amount of work required. 
However, the author's experience counters this. The author used these diagrams and converted 
them, mechanically, but by hand into Cobol programs. Using this method I was able to produce 
within days, systems which had previously taken months to complete. Furthermore, changes could 
be accomplished within hours (no mean feat within such an environment!). Although, it might be 
nice to think this was due to superior programming skills (!), this could in no way account for an 
order of magnitude difference in productivity. That is, the adoption of a kind of formal notation 
did not waste valuable time, but instead made phenomenal time savings. 
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Figure 6: Hyperdoc 

Prototyping 

Dialogue descriptions can be used to drive prototyping tools or simulators. This is rather like the 
use with UIMS, but usually with a less extensive environment. One example of this is Heather 
Alexander's SPI notation (Specification Prototyping and Interaction) [11]. This uses a variant of 
CSP for the dialogue description and then has tools which allow one to 'run' the dialogue seeing 
the possible interaction paths. 

Another support tool is Hyperdoc developed by Harold Thimbleby [12], shown in Figure 6. 
The screen shows part of the description for a JVC video-recorder. The top half of the screen is a 
drawing of the interface. The buttons on the drawing are active - the simulation runs when they 
are pressed. On the bottom left, we can see part of the dialogue description. This describes the 
transitions from the state 'playPause'. For example, if the user presses the 'Operate' button, the 
state will change to 'off'Tapein'. 

In fact, this tool does more than simply simulate the dialogue, it can perform several forms of 
dialogue analysis. 

3.3 Dialogue properties 

Given a dialogue description, we can begin to look at what properties it satisfies. We look at these 
under two headings 

action properties which describe local phenomena at a particular state. That is, concerning 
single actions. 

state properties which concern the movement between states, \vhich may encompass whole 
trains of actions. 

After looking at these two kinds of properties, we will consider two examples of their use. 

Action properties 

There are several dialogue properties which are to do with local dialogue actions: 

completeness - look at each state, is there an arc coming from that state for each possible user 
action? If not, what is the effect on the system if the user performs this action? This is a 
good way of checking for 'unforeseen circumstances'. 
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determinism - is the behaviour uniquely defined for each user action. In a simple STN this 
corresponds to checking that there is at most one arc labelled with each user action from 
a particular state. Non-determinism can be deliberate, corresponding to an application 
decision. However, it can be a mistake, and this is especially easy in complex hierarchical 
STNs, production rules systems etc. Automatic tools can help check for this. 

consistency - does the same user action have a similar effect in different states? If not are these 
dialogue modes visibly different? 

If we look back to Figure 3 we can check it for completeness. The action 'select-line' is not 
mentioned in either of the line states, but this is deliberate. The line option is assumed to be on 
a pop-up menu and so cannot occur except from the menu state. The remaining actions are then 
single and double clicks. What happens if we double click in either of the circle states? Is this 
signaled to the user as an error by a beep, simply ignored, does it do something odd (a feature!) 
or does it crash the program? 

State properties 

Another set of properties are more global, considering how easy or difficult it is to get from one 
state to another: 

reachability - can you get anywhere from anywhere? That is, imagine you are at a particular 
dialogue state and you want to get to a different state. Is there a sequence of user actions 
which is guaranteed to get you there? In addition, we may want to ask just how complicated 
and long that sequence is. . 

reversibility - can you get to the previous state? Imagine you have just done an action, but 
wished you hadn't. This is a special case of reachability, but one which we expect to be 
especially easy - we all make mistakes. Note this is not undo - returning to a previous 
dialogue state does not in general reverse the semantic effect. 

dangerous states - there are some states you don't want to get to. Does the system make it 
difficult to perform actions which take you to these dangerous states? 

As an example, we can check the reversibility of the drawing tool (Figures 3 and 4). Imagine 
we want to reverse the effect of "select 'line'" from the graphics Menu state. We can perform 
three actions: 

click - double click - select 'graphics' 

These return us to the graphics pop-up menu. However, these will leave a vestigial circle on 
the display. That is, in this case, as we warned, reversing the dialogue is not undo. 

Note also that this reach ability for dialogue states is equivalent to the definition for full system 
states, but weaker. A system cannot be reachable in the PIE sense if it is not reachable at the 
dialogue level, but, like undo, dialogue reachability does not guarantee full reachability. 

In graph theoretic terms, dialogue reachability is called strong connectivity and the Hyperdoc 
tool, described previously, is able to perform this analysis for the designer. 

3.4 Example - Digital watch 

3.4.1 User's documentation 

A digital watch has a very limited interface - 3 buttons. These must control the watch display 
(time/calendar) a stopwatch mode and an alarm. 

We only consider one of the buttons, button 'A', which is used to move between the four main 
modes: time/calendar, stopwatch, alarm setting and time setting. 

Figure 7 shows a portion of the user instructions. It is a simple state transition network. 
We can analyse this network. The time and alarm setting modes are dangerous states, we 

don't want to set the time by accident. These states are guarded - you have to hold the button 
down for two seconds. This button is very small and it is difficult to hold it down by accident. 
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Figure 7: Instructions for digital watch 

What about completeness? The idea of holding the button down suggests that we ought to 
distinguish the actions of depressing and releasing button 'A'. So, what do these actions do in the 
different modes? 

Although the STN is incomplete this is acceptable for the user instructions so long as un
documented sequences of actions do not have a disastrous effect. However, the designer must 
investigate all possibilities to check this. 

3.4.2 Designer's documentation 

Extensive experiment eventually revealed the complete STN for the watch, shown in Figure 8. 
This includes for each state the effect of the three actions: 

• depress A 

• release A 

• wait two seconds 

time display stop watch 
r --- - - -- - -- - ---- -- - - - ---- - -- - .--- ---- ----- - -----, , , 

l2::::::::::::==.J 
) reI .... A 

time setting alann setting 

Figure 8: Design diagram for digital watch 

Notice that this required the addition of two meta-stable versions of the time/calendar state 
and the stopwatch state. This is the sort of diagram that the designer would need to analyse and 
to pass on to the implementor. 

The diagram looks fairly complex - and we've only looked at one button! 
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3.5 Example - Dangerous states 

One of the word processors being used to prepare this document exhibits dangerous states. It has 
two main modes, the main mode where you edit the text, a menu and help screen from where you 
perform filing operations. You switch between these modes with the 'Fl' key. In addition, from 
the menu you can exit the word processor by hitting the 'F2' key. These modes and the exit are 
shown in Figure 9. 

Esc 

Figure 9: Main modes of text editor 

If the text has been altered it is automatically saved upon exit. However, if you have altered 
the text, but then decide to abandon your edits, this automatic save can be turned off by hitting 
the escape key in the Menu mode. Subsequ,ent edits will reset this and the text will be again be 
saved. Of course, not saving altered text is dangerous (but may be required). We therefore get 
the diagram in Figure 10 with dangerous states hatched. 

Esc 

Figure 10: Revised STN with dangerous states 

This multiplying of states is a semantic distinction, but can be recorded in the dialogue. We 
can then ask at a dialogue level whether or not it is easy to get into the dangerous states by 
accident. The user spends most of the time in the edit state, so the most dangerous sequence is 
'FI-Esc-F2 - exit with no save. This is rather close to the sequence 'FI-F2' - exit with save, but 
is this mistake easy to make? 

If we decided it was, we can insert a guard, such as a dialogue box asking for confirmation. In 
fact, the word processor has no such guard. 

The dialogue is not as is sometimes claimed independent of presentation. There are various 
lexical and presentation issues which impinge on the dialogue. In particular, the layout of keys on 
a keyboard or menu items on a screen affects the sort of lexical errors which occur. For example, 
the author's old computer had the function keys on a separate keypad. One could not accidentally 
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hit 'Esc' in the middle of the sequence 'F1-F2'. However, the author's current keyboard layout is 
as in Figure 11 - disaster! 

Figure 11: Dangerous function key layout 

4 Status/ event analysis 

We have already seen the state/event dichotomy when discussing dialogue notations. Some are 
better at states others at events. Really both are needed to understand interactive systems. 

Status/event analysis is a semi-formal, "engineering" level, technique which looks at the inter
play between status and events in an interface [13, 1]. Status here refers to not just dialogue or 
system state, but any persistent aspect of the system, such as the display. 

Status/event analysis is based on two foundations: 

formal modelling - understanding gleaned from variants of the PIE model. 

naIve psychology - common sense or very simple perceptual psychology. 

It is 'engineering level' in the sense that you do not require a deep understanding of either 
formal models or psychology. 

4.1 Properties of events 

Consider alarm clocks. These demonstrate most of the important properties of status and events . 

status: the watch face. You can look at the watch face whenever you like. 

event: an alarm. It happens at a particular moment, if you aren't there when the alarm goes, 
you miss it. 

status change event: when a particular time passes that is an event, whether or not anyone 
notices. In general, any change of status can be viewed as an event. 

actual and perceived events: you don't necessarily notice an event straight away. There is 
usually a gap. 

polling: if you are waiting for a particular time, you occasionally glance at the watch face. That 
is you poll the status to make the status change become a perceived event. 

granularity: what constitutes an event depends on timescale. If we are intere~ted in planning a 
day (timescale of hours) then an alarm is an event. However, whilst waking up (timescale 
of seconds or minutes) the alarm ringing is a status. 

4.2 Design implications 

Applications have timescales depending on the tasks which they fulfill. Events happen in the 
system and at the interface. Do these actual events become perceived events for the user, and if 
so, is the lag within an acceptable timescale for the application? 

There are problems if perceived feedback is too slow or too fast. 
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application dialogue screen user 

depress mouse button 
over 'delete' 

highlight 'delete' - - - - - - - - - - - -> 

do delete 
release mouse button 

remove highlight - - - - - - - - - - - -> 

changes 
I 

closure so NO I 

in text I perceived feedback 
I 

Figure 12: Screen button - hit 

too slow - if the lag between actual and perceived event is too great, the recipient may respond 
too late. For example, if the operator in a power plant were sent an email saying 'meltdown 
imminent', the plant may have vapourised before the operator read the mail. 

too fast - if the perceived event is too fast, it may interrupt a more immediate task. For example, 
if alarms began to ring when the stock of 6mm bolts was running low, then the operator 
may get distracted from dealing with the potential meltdown. 

4.3 N a"ive psychology 

We can use simple psychology: 

• We can predict where the user is looking: 

at the mouse - when positioning 

at the insertion point - intermittently when typing 

at the screen - if you're lucky 

• We know certain effects cause immediate events: 

audible bell - when the user is in the room. 

peripheral vision - movement or large change. 

• Closure at the end of a task has predictable effects: 

loss of attention - including the mouse pointer 

concurrent activity - the user may begin a new activity whilst finishing off the last one. 

4.4 Example - screen button widget 

On-screen buttons invoke an application action. They are activated by clicking the mouse over 
them However, users often mis-click the button. Furthermore the mistake is often missed. This is 
a common widget in virtually every graphical interface, and the error is common too. Why? 
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remove highlight - - - - - - - - - - - -> 

release mouse button 

no feedback 

Figure 13: Screen button - miss 

To analyse this problem we draw status-event diagrams (Figures 12 and 13). To do this we 
draw a timeline for each layer of the system: application, dialogue, screen and user. Time runs 
down the page and arrows between the timelines represent events. 

Figure 12 shows the case when the button is successfully activated (a hit) and Figure 13 shows 
the case when the user slips the mouse off the screen-button just before the mouse-button is 
reI eased (a miss). 

The two diagrams are very similar. They differ in which user action occurs first, the release 
or the movement of the mouse. However, after the user has positioned the mouse over the target, 
closure is reached. Therefore the two actions occur concurrently. The mistake is likely. 

Why is the mistake not noticed? The highlighting of the button is salient as it is at the target 
of a mouse positioning task. However, the feedback of application action is not perceived. The 
user has attained closure and moves on to the next task. 

Solution - the button widget must provide feedback when it invokes an application event, 
for example, a simulated key click. That is the actual event at the application must become a 
perceived event for the user. 

Note, this is an expert slip, a novice would explicitly check the application feedback. This 
means that testing doesn't help to discover or rectify the problem. 

4.5 General use of status/event analysis 

Status-event diagrams may show different parts of an interface. For example, in an analysis of the 
arrival of email, the corresponding diagrams had timelines for the file system, the mail program 
'mailtool', the screen, and the user. In all cases, status entities (the file system and the screen) 
mediated the events in the system. Not only was there a gap between the actual events on the 
screen and the user's perceived event, there was also a gap between the actual event of mail 
arriving (in the file system) and the perceived event for the mailtool. In general these diagrams 
are particularly powerful at tracing these gaps. 

The application of the status/event distinction is wider than the use of status-event diagrams. 
Unfortunately, most dialogue notations (and other formal notations) deal primarily with one 
phenomena or other. However, we have seen that the interactions between status and event 
phenomena is particularly interesting, emphasising the need for both to be considered together. 
Status-event diagrams do this for specific scenarios, but one would like also have full dialogue 
notations dealing with status/event phenomena. 
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5 Summary 

We saw that formal modelling techniques, although powerful and useful, require a high level of 
formal expertise. In order to 'give away' the benefits of this work to the typical human-factors 
practitioner less maths' intensive approaches are required. 

Dialogue notations of various forms are often used during the interface design process. We 
have seen how simplified forms of the usability properties can be tested on dialogue descriptions, 
sometimes with automatic support. Furthermore, the dangerous states example showed how 
the dialogue description can form a focus for information from both the semantic level (what is 
dangerous) and the lexical level (what slips are easy to make). 

Finally, we saw how status-event analysis can uncover expert slips which are very difficult to 
uncover during even extensive user testing. Status-event analysis is particularly useful where the 
interface is not purely reactive. Thus it is especially useful in open-systems and multi-user systems. 
The author is currently investigating the use of analytic techniques in the area of cooperative 
working. 
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11M 

Nanacement Consultancy 

THIS INPUT SCREEN 
IS VERY COMPLEX 
PLEASE REFER TO 

USER GUIDE. 
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• Pool Garbage ColJectlon 
raIled. 

• Fate I Error. 

• Dlsutro LII StrIng 
OYerflow, Job Abandoned. 

• CaJastrophlc Error, 
logged WIth Operon. 

IBM 

59. 

Me nagement Con~u Ita ncy 

• 11-45017890131-483 

• Openl1or KlIJed Run V1a 
X-Key In. 

• Guru MedItation - All 
SoU ware Ac11vl1v Held. 

• Hex 000158 OoublewordIJ 0' Sysiem SIO"ge Ware 
Not Aeoovered. 
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Mo nagcmt'nt Con~l1lt. ncy 

HELP 
NOT 

REOUIRED 
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