Formal Methods in HCI:
Moving Towards
an Engineering Approach

Alan J. Dix

HCI Group, Dept. of Computer Science
University of York
Heslington, YORK YO1 5DD UK
alan@minster.york.ac.uk
Overview

Formal models in HCI
 – why they’re good …
 – and why they’re bad!

Analysing dialogue descriptions
 – existing part of interface design
 – automatic analysis
 – bridging the semantic/lexical gap

Status/event analysis
 – formal underpinning
 – naïve psychology
 – engineering level of expertise
Formal Models of
Interactive Systems
Why use formal methods

Everyone else is
- not a silly reason!
- interface can get ‘left out’
 of the software engineering process

Intellectual control
- interfaces are complex
- context dependent → not modular
- orthogonality

Understanding
- generalisable knowledge
- specific results

But ...
- requires considerable expertise
The PIE model

A black-box model

More formally ...

\[P \xrightarrow{I} E \xrightarrow{result} R \xrightarrow{display} D \]

\[P = \text{seq } C \]
\[I : P \rightarrow E \]
\[display : E \rightarrow D \]
\[result : E \rightarrow R \]
\[doit : E \times P \rightarrow E \]
Reachability and undo

Reachability — getting from one state to another.

\[\forall e, e' \in E \bullet \exists p \in P \bullet doit(e, p) = e' \]

Too weak

Undo — reachability applied between current state and last state.

\[\forall c \in C \bullet doit(e, c \leftarrow undo) = e \]

Impossible except for very simple system with at most two states!

Better models of undo treat it as a special command to avoid this problem
Dialogue Analysis
State transition networks

circles – states, arcs – actions/events
Dialogue Descriptions
Why are they used?

- UIMS
- Paper specifications
 even flowcharts!
- Documentation
- Prototyping tools
 e.g., Hyperdoc

JVC HR-D540EK VCR

```
<table>
<thead>
<tr>
<th>on, tape, play, pause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape in</td>
</tr>
<tr>
<td>Rewind</td>
</tr>
<tr>
<td>Forward</td>
</tr>
<tr>
<td>Stop/Eject</td>
</tr>
<tr>
<td>Play</td>
</tr>
<tr>
<td>Record</td>
</tr>
<tr>
<td>Pause</td>
</tr>
<tr>
<td>Operate</td>
</tr>
</tbody>
</table>

playPause

- Play player
- Operate onTapeIn
- Forward fastForward
- Rewind rewindTape
- Pause
- Record
- Stop/Eject onTapeIn
- Tape in

offTapeOut

- pause playing a tape
  are playing a tape, but have paused it

- Holding the pause button down (for more than 2
  seconds) provides slow playback.

- Pressing Pause repeatedly advances the video one
  frame at a time.
```
boxes – process/event not state
1000% productivity gain!
orthogonal to implementation
Action properties

completeness
 - missed arcs
 - unforeseen circumstances
determinism
 - several arcs for one action
 - deliberate: application decision
 - accident: production rules, nested escapes
consistency
 - same action, same effect?
 - modes and visibility
State properties

reachability
 – can you get anywhere from anywhere?
 – and how easily

reversibility
 – can you get to the previous state?
 – but NOT undo

dangerous states
 – some states you don’t want to get to
Dangerous states (i)

Word processor: two modes and exit

F1 – changes mode
F2 – exit (and save)
Esc – no mode change

but...

Esc resets autosave

exit with/without save → dangerous states

duplicate states – semantic distinction
Dangerous states (ii)

F1-F2 – exit with save
F1-Esc-F2 – exit no save

actual layout …

Esc F1 F2 F3
Digital watch – Users instructions

limited interface – 3 buttons
button A moves between main modes

dangerous states
- guarded by two second hold

completeness
- distinguish depress A from release A
- what do they do in all modes?
Digital watch – Designers instructions

and that’s only one button!
Status/Event Analysis
Status/event analysis

semi-formal technique
"engineering" level analysis
based on formal models
uses naïve psychology

clocks and calendars as example

status – analogue watch face
event – an alarm
Properties of events

status change event
 • the passing of a time

actual and perceived events
 • usually some gap

polling
 • glance at watch face
 • status change becomes perceived event

granularity
 • birthday – days
 • appointment – minutes
Naïve psychology

Predict where the user is looking

mouse – when positioning
insertion point – intermittently when typing
screen – if you’re lucky

Immediate events

audible bell – when in room (and hearing)
peripheral vision – movement or large change

Closure

lose attention (inc. mouse)
concurrent activity
Example – screen button widget (i)

screen button often missed, …
 but, error not noticed

a common widget, a common error: Why?

Closure
 mistake likely – concurrent action
 not noticed – semantic feedback missed

Solution
 widget feedback for application event
 a perceived event for the user

N.B., an expert slip – testing doesn’t help
Screen button widget (ii)

a HIT

<table>
<thead>
<tr>
<th>application</th>
<th>dialogue</th>
<th>screen</th>
<th>user</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>depressed mouse button over 'delete'</td>
<td></td>
</tr>
<tr>
<td>do delete</td>
<td></td>
<td>highlight 'delete'</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>release mouse button</td>
<td></td>
</tr>
<tr>
<td>changes in text</td>
<td>remove highlight</td>
<td>closure so NO perceived feedback</td>
<td></td>
</tr>
</tbody>
</table>

or a MISS

<table>
<thead>
<tr>
<th>application</th>
<th>dialogue</th>
<th>screen</th>
<th>user</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>depressed mouse button over 'delete'</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>highlight 'delete'</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>move off 'delete'</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>remove highlight</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>release mouse button</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>no feedback</td>
<td></td>
</tr>
</tbody>
</table>
Summary

Formal models
- powerful and successful
- require formal expertise

Dialogue descriptions
- often there already
- both hand and automatic analysis

Status/event analysis
- formal concepts + naïve psychology

Engineering approach
- packaging up formal methods for the practitioner