
Formal Methods in HCI:

Moving Towards an Engineering Approach

Alan J. Dix�

H.C.I. Group, Department of Computer Science,
University of York, Heslington, United Kingdom, YO1 5DD.

E-mail: alan@minster.york.ac.uk
Tel: (0904) 432778

February 23, 1993

Abstract

The author and others have been studying the interplay of formal methods and HCI for

several years. In particular, much of this work has centred on the design of formal models

of interactive systems which can be used to formalise properties of usability. Although this

work has been successful, it requires quite a high level of mathematical sophistication and

is thus hard to `give away' to the practitioner. This paper will describe two methods which

have their roots in formal analysis, but which do not require great formal expertise. Such

methods can be thought of as operating at an `engineering level' as they have to some extent

pre-packaged the results and insights of more sophisticated analysis into a form more readily

applied to practical problems.

1 Introduction

For many years I have worked on the interplay between formal methods and human{computer
interaction. This area of research is particularly associated with (present and past) workers from
York and there are now several books on aspects of this area. Various books and papers are
described in the annotated bibliography at the end of this paper. In particular, most of the
material in this paper can be found in an expanded form in a HCI text book which I recently
co-authored [1], and in my previous monograph [2].

Much of my work has concerned the development of formal models of interactive systems. Of
these, the PIE model, described in Section 2, is one of the oldest and most well known. This model
was designed to express generic properties at the level of WYSIWYG (what you see is what you
get) or the meaning of undo. Such models can be used in two principle ways:

(i) They give new insight into general problems as the properties of the problem domain are
analysed.

(ii) They can be used as part of a formal development process to constrain the design of speci�c
systems.

The models have been successfully used on both counts. unfortunately, they require a consid-
erable degree of expertise in both formal methods and human factors. If we assume that the use
of formal methods in software engineering continues to gain favour and also that the importance
of good interface design continues to be regarded as important, then it may be that such combi-
nations of skills become more common. However, whether or not this comes to pass, such skills
are not at present the norm.

Considering point (i) this is not a problem. An expert analyst can gain new insight from
the models and then either expound this knowledge in the context of the models, or even recast

�Alan Dix is funded by a SERC Advanced Fellowship B/89/ITA/220.

1



it completely in informal terms. Indeed, this has been the pattern of much of my own work!
The reader or listener need not have the same level of familiarity with the model to follow the
arguments, even where the model is used in the exposition.

However, point (ii), the use in a formal development process, requires that such an expert be
available on the design team. Furthermore, the burden of proof can become excessive. The real
expert is able to focus on critical areas, but the pro�cient practitioner may become lost in the
morass of detail. This problem is not unique to the use of formal methods in interface design, but
is a general problem in all applications of formal methods within software engineering.

One could wait for research in software engineering to attack the general problem, possibly
with the aid of complex proof assistants and toolsets. But, like waiting for the e�ects of education
to �lter through, this is at best a long term hope.

Happily, there are developments which make use of methods derived from these models, yet
which require less formal expertise on the part of the designer. These I will call `engineering' level
techniques. In these, the theoretical work is e�ectively packaged in the same way that in civil
engineering the theoretical analysis of materials and soil mechanics is packaged up into tables,
structural analysis programs and rules of thumb.

I will describe two such `engineering' level approaches. The �rst, in Section 3, shows how
properties similar to those de�ned over formal interaction models can be applied to dialogue
descriptions. This has the advantage that dialogue descriptions are often produced for speci�cation
or prototyping purposes and that the analyses are simpler and can often be automated.

The second approach is status/event analysis This uses a distinction drawn from formal mod-
elling work, but which can give insight into general and speci�c interface design with little reference
to its formal roots. In particular, I will demonstrate how status/event diagrams can be used to
analyse the usability of interface widgets.

2 Formal models of interaction

It's easy to say that a system is WYSIWYG, is consistent or has a universal undo facility, but
how do you know? Is there any way we can take a system and say `yes' it is or `no' it is not
WYSIWYG? It was just for this purpose that formal models of interaction were developed. One
of the oldest such models is the PIE [5]. This is a general purpose model intended to apply to
a wide range of systems. More speci�c models can address particular design areas, for example,
there are models for windowing systems, models for describing temporal behaviour and models for
dealing with non-determinism[2]. At the opposite extreme from the PIE model are speci�cations
of speci�c systems, for example, Sufrin's speci�cation of a text editor [6]. These of course can only
be used to reason about the one system (although the speci�er may draw general lessons).

The rest of this section will concentrate on the PIE model and a few of the usability properties
which it can be used to describe. We will look at two broad classes of properties. Those concerning
what you can see of the system: predictability and observability, and those concerning what you
can do to the system: reachability and undo. The concept of WYSIWYG is partly captured
within the PIE's predictability property, but like all usability properties, we �nd that the formal
statement is only a partial expression of the real property we desire. Nevertheless, some of the
formal principles are necessary for usability, any system which breaks them is bound to have
problems. The formal principles form a `safety net' to prevent some of the worst mistakes in an
interactive system. Formal analysis is thus an aid to, but not a substitute for, good design.

Concepts underlying the PIE model

The PIE model is a black-box model. It does not try to represent the internal architecture and
construction of a computer system, but instead describes it purely in terms of its inputs from
the user and outputs to the user. For a simple single-user system typical inputs would be from
keyboard and mouse, and outputs would be the computer's display screen and the eventual printed
output (Figure 1).

The di�erence between the ephemeral display of a system, and the permanent result is central
to the PIE model. We will call the set of possible displays D and the set of possible results R. In
order to express principles of observability, we will want to talk about the relation between display

2



result

display

Figure 1: Inputs and outputs of single user system

and result. Basically, can we determine the result (what you will get) from the display (what you
see)?

More formally : : :

For a formal statement of predictability it helps (but is not essential) to talk about the internal
state of the system. This does not counter our claim to have a black-box model. First, the state
we de�ne will be opaque, we will not look at its structure, merely postulate it is there. Second,
the state we will be discussing is not the actual state of the system, but an idealisation of it. It
will be the minimal state required to account for the future external behaviour. We will call this
the e�ect (E ). Functions display and result obtain the current outputs from this minimal state:

display : E ! D

result : E ! R

The current display would be literally what is now visible. The current result is actually not
what is available, but what the result would be if the interaction were �nished. For example, with
a word-processor it is the pages that would be obtained if one printed the current state of the
document.

A single user action we will call a command (from a set C ). The history of all the user's
commands is called the program (P = seqC ), and the current e�ect can be calculated from this
history using and interpretation function:

I : P ! E

Arguably the input history would be better labeled H , but then the PIE model would loose
its acronym!

If we put together all the bits, we obtain a diagram of sets and functions (Figure 2), which
looks rather like the original illustration.

In principle, one can express all the properties one wants in terms of the interpretation function
I . However, this often means expressing properties quanti�ed over all possible past histories. To
make some of the properties easier to express, we will also use a state transition function doit :

doit : E � P ! E

The function doit takes the present state e and some user commands p, and gives the new state
after the user has entered the commands doit(e; p). It is related to the interpretation function I

by the following:

3



P E

R

D

I

result

display

Figure 2: The PIE model

doit(I (p); q) = I (p a q)

doit(doit(e; p); q) = doit(e; p a q)

Now the PIE diagram can be read at di�erent levels of abstraction. On can take a direct
analogy with Figure 1. The commands set C is the keystrokes and mouse clicks, the display set
D is the physical display, and the result R is the printed output.

C = f `a', `b', : : : , `0', `1', : : : , `*', `&', : : :g
D = Pixel coord ! RGB value

R = ink on paper

This is a physical/lexical level of interpretation. One can produce a similar mapping for any
system, in terms of the raw physical inputs and outputs. It is often more useful to apply the model
at the logical level. Here the user commands are higher level actions such as `select bold font'
which may be invoked by several keystrokes and/or mouse actions. Similarly, we can describe the
screen at a logical level in terms of windows, buttons, �elds etc. Also, for some purposes, rather
than dealing with the �nal physical result, we may regard say the document on disk as the result.

The power of the PIE model is that it can be applied at many levels of abstraction. Some prop-
erties may only be valid at one level, but many should be true at all levels of system description.
It is even possible, to apply the PIE model just within the user, in the sense that the commands
are the user's intended actions and the display, the perceived response.

When applying the PIE model at di�erent levels it is possible to map between the levels. This
leads to level conformance properties, which say, for example, that the changes one sees at the
interface level should correspond to similar changes at the level of application objects.

Observability and predictability

The WYSIWYG is clearly related to what can be inferred from the display (what you see). Harold
Thimbleby has pointed out that WYSIWYG can be given two interpretations [4]. One is what
you see is what you will get at the printer. This corresponds to how well you can determine the
result from the display. The second interpretation is what you see is what you have got in the
system. For this we will ask what the display can tell us about the e�ect. These can both be
thought of as observability principles.

A related issue is predictability. Imagine you have been using a drawing package and in the
middle you get thirsty and go to get a cup of tea. On returning, you are faced with the screen
{ do you know what to do next. If there are two shapes one on top of the other, the graphics
package may interpret mouse clicks as operating on the `top' shape. However, there may be no
visual indication of which is topmost. That is the screen image does not tell you what the e�ect

4



of your actions will be, you need to remember how you got there, your command history. This
has been called the `gone away for a cup of tea problem'.

In fact the state of the system determines the e�ects of any future commands, so if we have a
system which is observable in the sense that the display determines the state, it is also predictable.
Predictability is a special case of observability.

Let's have a go at formalising these properties. To say that we can determine the result from
the display is to say that there exists a function transparentR from displays to results.

9 transparentR : D ! R

� 8 e 2 E � transparentR(display(e)) = result(e)

Of course, there is no good having any old function from the display to the result, the second
half of the above says that the function gives us exactly the result we would get from the system.
This property is a good �rst cut at observability, but will in fact turn out to be too strong. For
now call it result transparency. It says that the display contains at least as much information as
the result. However, it may also contain additional information about the interactive state of the
system. For example, you will observe the current cursor position, but this has no bearing on the
printed document.

So you know what will happen if you hit the print button now. Refreshed from your cup
of tea, you return to work. You press a function key which, unbeknown to you, is bound to a
macro intended for an entirely di�erent application. The screen rolls, the disk whirs and to your
horror your document and the entire disk contents are trashed. You leave the computer and go
for another drink : : :not of tea.

A stronger condition can be obtained if we demand that the system state can be observed from
the display:

9 transparentE : D ! E

� 8 e 2 E � transparentE (display(e)) = e

We can regard this as an initial attempt at predictability, but, it will again turn out to be too
strong, so instead we will call the above property simply transparency.

What would it mean for a system to be transparent in one of these senses. Well, if the system
were result transparent, when we come back from our cup of tea, we can look at the display and
then work out in our head (using transparentR) exactly what the printed drawing would look like.
Of course, whether we could do this in our heads is another matter. For most drawing packages
the function would be to simply ignore the menus and `photocopy' the screen.

Simple transparency is stronger still. It would say that there is nothing in the state of the
system that can not be inferred from the display. If there are any modes, then these must have
a visual indication, if there are any di�erences in behaviour between the displayed shapes, then
there must be some corresponding visual di�erence. Even forgetting the formal principles, this is
a strong and useful design heuristic.

Unfortunately, these principles are both rather too strong. If we imagine a word-processor
rather than a drawing package, the contents of the display will be only a bit of the document.
Clearly, we cannot infer the contents of the rest of the document (and hence the printed result)
from the display. Similarly, to give a visual indication of say object grouping within a complex
drawing package might be impossible (and this can cause the user problems).

On the other hand, one could regard the transparency properties as being too weak. The
function transparentR represents the reasoning the user would have to do to predict the result
from the current display. That such a function exists is no guarantee that the user can perform
the calculation { it may involve the translation of Ancient Egyptian hieroglyphics.1

When faced with a document on a word-processor, the user can simply scroll the display up
and down to �nd out what is there. That is, you cannot see from the current display everything
about the system, but you can �nd out. The process by which the user explores the current state
of the system is called a strategy. The formalisation of a strategy is quite complex, even ignoring
cognitive limitations. These strategies will di�er from user to user, but the documentation of a
system should tell the user how to get at pertinent information. For example, how to tell what

1Which is precisely how non-English speakers feel when faced with many menu driven interfaces.

5



objects in the drawing tools are grouped. This will map out a set of e�ective strategies with which
the user can work.

One can use the idea of a strategy to formulate more e�ective observability and predictability
properties. Indeed, one can go further still and generate models and properties which take into
account aspects of user attention, and issues like keyboard bu�ers. The books referred to in the
bibliography deal with such extensions.

Principles of predictability do not stand on their own even if you had known what was bound
to the function key, you might still have hit it by accident, or simply forgotten. Other protec-
tive principles like commensurate e�ort need to be applied [4]. Also, although it is di�cult to
formalise completely, one prefers a system which behaves in most respects like the transparency
principles, rather than requiring complicated searching to discover information. That is a sort of
commensurate e�ort for observation.

Reachability and undo

In a commercial program debugger, there is a window listing all the variables. If a variable is a
complex structure, then hitting the `insert' key while the cursor is over the variable will expand
the variable showing all its �elds. If you only want a few of the �elds to be displayed, you can
move the cursor over the unwanted �elds and type the `delete' key and the �eld is removed. These
operations can be repeated over complex hierarchical structures. If you remove a �eld and then
wish you hadn't, you can always press insert' again over the main variable and all the �elds will
be re-displayed. Even this breaks somewhat the principle of commensurate e�ort, but worse is to
come. The `delete' key also works for top level variables, but once one of these is removed from
the display there is nothing you can do to get it back, short of exiting the debugger and re-running
it from scratch.

A principle which stops this type of behaviour is reachability. A system is reachable if from any
state the system is in, you can get to any other state. The formal statement of this is as follows:

8 e; e0 2 E � 9 p 2 P � doit(e; p) = e0

Unlike the predictability principles, there are no awkward caveats. The only problem is that,
if anything, it is too weak. For instance, a word-processor could have a delete key, but no way
to move the cursor about, you always type at the end of the document. Now you can, of course,
get from any document state to any other, you simply delete the whole text and retype what you
want. However, if you had just typed in a whole letter then noticed a mistake on the �rst line, you
would not be pleased! So, ideally one wants an independent idea of `distance' between states and
make the di�culty of the path between them commensurate with the distance { small changes
should be easy. Despite this, the principle on its own would have been strong enough to prevent
the behaviour of the debugger!

One special case of reachability is when the state you want to get to is the one you have just
been in. That is, undo. We expect undo to be easy, and ideally have a single undo button that
will always undo the e�ect of the last command. We can state this requirement very easily:

8 c 2 C � doit(e; c a undo) = e

This says exactly what we wanted. We start in a state e. We then do any command c and
follow it by the special command undo. The state is then the same as we began in.

Stop! Before clapping ourselves on the back for so clearly de�ning undo, we should check that
this requirement for undo is consistent. Indeed, it is consistent { so long as there are at most
two states. That is, the above undo requirement is only possible for systems which do virtually
nothing! The reason for this is that undo is itself a command and can undo itself. Take any
state e and choose any command x . Let ex be the state you get to after command x . That is
ex = doit(e; x ). Now we can apply the undo requirement to state ex :

doit(ex ; undo) = doit(e; x a undo) = e

So, the undo command in state ex gets us back to e. That is as expected. But what does
undo do if we are in state e. Again we can employ the undo principle remembering that e =
doit(ex ; undo):

6



doit(e; undo) = doit(ex ; undo a undo) = ex

This uses the undo principle when the command c is undo itself. However, our choice of
command x was arbitrary, so if we had chosen another command say y we would have concluded
that doit(e; undo) = ey . This means that ex = ey , and in general anything we do from state e

gets us to the same state. With a little more argument you can show that any command from
this second state gets us back to the original one. So at very most we have two states, a toggle,
with all the commands 
ipping back and forth between them. The only other alternative is that
the system does nothing.

We won't go on to describe the details of better undo requirements, the interested reader can
�nd that elsewhere. The basis of most workable undo systems is that undo is not just any old
command, but is treated di�erently. The simplest �x to the above undo principle is to restrict the
commands to anything except undo!

The lesson from the above is clear. It is easy to say you want something which sounds quite
reasonable. A formal description of the requirement may well reveal that, as in the case of undo,
it is inconsistent { that is no system could be built which satis�es the requirement.

Summary { formal modelling

The example of undo shows how useful formal models can be as tools for understanding. The
speci�cation we originally gave sounded good enough, but was inconsistent. If we had tried to
build a system having such an undo, we would either fail, or think we had succeeded. In the
former case, we might keep fruitlessly trying to build a system with a single universally applicable
undo button. In the latter, we might delude ourselves into thinking this was what we had, only
to discover (after selling the system!) that there were cases where it failed.

However, it is also clear that the job of verifying that a large interactive system is reachable
or predictable may be very di�cult.

3 Dialogue Analysis

The di�culty about proving properties of systems is that the state is very complex. For example,
the state of a word processor will contain information such as:

Screen: edit screen
Text: \to be or not to be, : : :"
Menu: �le menu displayed
Cursor: at the 7th character line 12

To be able to prove things about such a state, we need to reason about numbers and text as
well as mode indicators such as Screen and Menu. The number of possible texts and cursor
positions is in�nite, or even if we take into account system limits very large. This means we have
to reason symbolically { heavy mathematics!

Dialogue descriptions usually limit themselves to the �nite attributes of the state. Those
which have a major e�ect on the allowable sequences of user actions. They are thus instantly
more amenable to automated analysis (we can sometimes simply try all cases). Furthermore,
dialogue descriptions are often used as part of design anyway, thus we may be able to take an
existing product of the design process and obtain instant added value.

3.1 Notations

There are a large number of di�erent dialogue notations. Some use diagrammatic representations
of the dialogue (see below) and others use textual representations (such as the use of grammars
or production rules).

Of the diagrammatic techniques, state transition network (STNs) are most heavily used. (But
even they come in several variants.) We will base our discussion primarily on STNs, but other
notations could equally be used.

State transition nets consist of two elements:

7



Start Menu

Circle 1 Circle 2 Finish

Line 1 Line 2 Finish

select ‘circle’
highlight ‘circle’

click on centre
rubber band

click on circumference
draw circle

select ‘line’
highlight ‘line’

click on first point
rubber band

click on point
draw line and rubber
band from new point

double click
draw last line

Figure 3: State transition network for menu driven drawing tool

circles { denoting the states of the dialogue

arcs { between the circles, denoting the user actions/events

Figure 3 shows a STN describing a portion of the dialogue of a simple drawing tool. The arcs
are also labelled with the feedback or system response resulting from the user's actions. Note how
cramped the arcs get { obviously a lot is happening at each event.

The STN for a full system would usually be enormous. To manage the complexity, STNs
are often described hierarchically. For example, Figure 4 shows the higher level dialogue for the
drawing tool, selecting between several sub-menus. The menu in Figure 3 corresponds to the
graphics sub-menu. Each of the sub-menus would have similar STNs describing them.

The hierarchical decomposition in this diagram is of states. Single states in the high-level
diagram correspond to an entire low-level STN. There are other possibilities for hierarchical de-
composition, for example, augmented transition networks allow both user actions and system
responses to be decomposed into further STNs.

3.2 Why do people use dialogue notations?

I said that we were focusing on dialogue descriptions because they often `come for free', a natural
product of the design process. There are several reasons for this:

� The use of UIMS or UIDEs.

� For dialogue speci�cation on paper.

� For rapid prototyping.

We'll look at these in turn.

UIMS

If we use a User Interface Management System (UIMS) or User Interface Development Environ-
ment (UIDE) this will usually include a formal description of the dialogue. This may be in the form
of production rules, a grammar or even some graphical representation. Some of these represen-
tations, especially production rules, do not completely separate the dialogue from the underlying
state. However, the conversion required is certainly far less work than generating the description
from scratch and is guaranteed to be consistent with the actual system.

8



Main
Menu

Graphics Sub-menu

Text Sub-menu

Paint Sub-menu

select ‘graphics’
pop-up

graphics sub-menu

select ‘ text’
pop-up

text sub-menu

select ‘paint’
pop-up

paint sub-menu

Figure 4: Hierarchical state transition network for complete drawing tool

Paper speci�cation

A second reason for the use of dialogue descriptions is simply as a paper speci�cation method,
just as one might use data-
ow diagrams for information systems or entity-relationship diagrams
for database design. Several years ago I was working in a data processing department producing
information systems under a forms-based transaction processing (TP) environment.

Programming a TP system is similar to many window systems, basically a stimulus-response
model. Your program gets a screen full of data and must decide what to do with it. When it has
processed that screen, it sends a fresh template to the user and then goes on to service a di�erent
terminal. Because of this form of programming, one cannot implicitly encode the dialogue within
the program structure. So, for example, it is quite di�cult to ensure that the user can only delete
a record after it has been displayed.

To ease the problem of writing (relatively) complex dialogues under this regime, the author
used 
owcharts to describe the interaction with each user. Figure 5 shows a 
owchart for a delete
sub-dialogue similar to those used.

Note two things, despite surface similarities, there are important di�erences both from normal
program 
owcharts and from STNs.

First, note that a 
owchart of the program implementing this dialogue would (because of the
stimulus-response model) be tree-like. It would have to explicitly store the dialogue state and
generally being totally incomprehensible without the corresponding dialogue description. Further-
more, the sorts of things one puts in the boxes of a dialogue 
owchart are di�erent from program

owcharts. For example, reading a record could be a complex activity, say searching through a
�le until the matching record is found. However, from the dialogue viewpoint this corresponds to
a single system action.

Note also that although super�cially like an STN, with boxes connected by arrows, the emphasis
is rather di�erent. The boxes represent system processes or user interactions, that is, the notation
is event/process oriented rather than state/oriented. We will return to this status/event distinction
in Section 4.

9



Finish

Finish

Y

other

N

Delete D1

Please enter

employee no.: ___

Delete D2

Name: Alan Dix

Dept: Computing

delete? (Y/N): _

Delete D3

Name: Alan Dix

Dept: Computing

delete? (Y/N): _

Please enter Y or N

read record
C1

answer?
C2

delete record
C3

Figure 5: Flow chart of deletion sub-dialogue

In a di�erent vein, formal notations are often criticised for the amount of work required.
However, the author's experience counters this. The author used these diagrams and converted
them, mechanically, but by hand into Cobol programs. Using this method I was able to produce
within days, systems which had previously taken months to complete. Furthermore, changes could
be accomplished within hours (no mean feat within such an environment!). Although, it might be
nice to think this was due to superior programming skills (!), this could in no way account for an
order of magnitude di�erence in productivity. That is, the adoption of a kind of formal notation
did not waste valuable time, but instead made phenomenal time savings.

10



Figure 6: Hyperdoc

Prototyping

Dialogue descriptions can be used to drive prototyping tools or simulators. This is rather like the
use with UIMS, but usually with a less extensive environment. One example of this is Heather
Alexander's SPI notation (Speci�cation Prototyping and Interaction) [11]. This uses a variant of
CSP for the dialogue description and then has tools which allow one to `run' the dialogue seeing
the possible interaction paths.

Another support tool is Hyperdoc developed by Harold Thimbleby [12], shown in Figure 6.
The screen shows part of the description for a JVC video-recorder. The top half of the screen is a
drawing of the interface. The buttons on the drawing are active { the simulation runs when they
are pressed. On the bottom left, we can see part of the dialogue description. This describes the
transitions from the state `playPause'. For example, if the user presses the `Operate' button, the
state will change to `o�Tapein'.

In fact, this tool does more than simply simulate the dialogue, it can perform several forms of
dialogue analysis.

3.3 Dialogue properties

Given a dialogue description, we can begin to look at what properties it satis�es. We look at these
under two headings

action properties which describe local phenomena at a particular state. That is, concerning
single actions.

state properties which concern the movement between states, which may encompass whole
trains of actions.

After looking at these two kinds of properties, we will consider two examples of their use.

Action properties

There are several dialogue properties which are to do with local dialogue actions:

completeness { look at each state, is there an arc coming from that state for each possible user
action? If not, what is the e�ect on the system if the user performs this action? This is a
good way of checking for `unforeseen circumstances'.

11



determinism { is the behaviour uniquely de�ned for each user action. In a simple STN this
corresponds to checking that there is at most one arc labelled with each user action from
a particular state. Non-determinism can be deliberate, corresponding to an application
decision. However, it can be a mistake, and this is especially easy in complex hierarchical
STNs, production rules systems etc. Automatic tools can help check for this.

consistency { does the same user action have a similar e�ect in di�erent states? If not are these
dialogue modes visibly di�erent?

If we look back to Figure 3 we can check it for completeness. The action `select-line' is not
mentioned in either of the line states, but this is deliberate. The line option is assumed to be on
a pop-up menu and so cannot occur except from the menu state. The remaining actions are then
single and double clicks. What happens if we double click in either of the circle states? Is this
signaled to the user as an error by a beep, simply ignored, does it do something odd (a feature!)
or does it crash the program?

State properties

Another set of properties are more global, considering how easy or di�cult it is to get from one
state to another:

reachability { can you get anywhere from anywhere? That is, imagine you are at a particular
dialogue state and you want to get to a di�erent state. Is there a sequence of user actions
which is guaranteed to get you there? In addition, we may want to ask just how complicated
and long that sequence is.

reversibility { can you get to the previous state? Imagine you have just done an action, but
wished you hadn't. This is a special case of reachability, but one which we expect to be
especially easy { we all make mistakes. Note this is not undo { returning to a previous
dialogue state does not in general reverse the semantic e�ect.

dangerous states { there are some states you don't want to get to. Does the system make it
di�cult to perform actions which take you to these dangerous states?

As an example, we can check the reversibility of the drawing tool (Figures 3 and 4). Imagine
we want to reverse the e�ect of \select `line'" from the graphics Menu state. We can perform
three actions:

click { double click { select `graphics'

These return us to the graphics pop-up menu. However, these will leave a vestigial circle on
the display. That is, in this case, as we warned, reversing the dialogue is not undo.

Note also that this reachability for dialogue states is equivalent to the de�nition for full system
states, but weaker. A system cannot be reachable in the PIE sense if it is not reachable at the
dialogue level, but, like undo, dialogue reachability does not guarantee full reachability.

In graph theoretic terms, dialogue reachability is called strong connectivity and the Hyperdoc
tool, described previously, is able to perform this analysis for the designer.

3.4 Example { Digital watch

3.4.1 User's documentation

A digital watch has a very limited interface { 3 buttons. These must control the watch display
(time/calendar) a stopwatch mode and an alarm.

We only consider one of the buttons, button `A', which is used to move between the four main
modes: time/calendar, stopwatch, alarm setting and time setting.

Figure 7 shows a portion of the user instructions. It is a simple state transition network.
We can analyse this network. The time and alarm setting modes are dangerous states, we

don't want to set the time by accident. These states are guarded { you have to hold the button
down for two seconds. This button is very small and it is di�cult to hold it down by accident.

12



S M T W T F S
g

S M T W T F S
g

S M T W T F S
g

S M T W T F S
g

A

A

A

A

time display stop watch

time setting alarm setting

depress
button “A”
for 2 sec.

AM

STP

ALMSET

Figure 7: Instructions for digital watch

What about completeness? The idea of holding the button down suggests that we ought to
distinguish the actions of depressing and releasing button `A'. So, what do these actions do in the
di�erent modes?

Although the STN is incomplete this is acceptable for the user instructions so long as un-
documented sequences of actions do not have a disastrous e�ect. However, the designer must
investigate all possibilities to check this.

3.4.2 Designer's documentation

Extensive experiment eventually revealed the complete STN for the watch, shown in Figure 8.
This includes for each state the e�ect of the three actions:

� depress A

� release A

� wait two seconds

S M T W T F S
g

S M T W T F S
g

S M T W T F S
g

S M T W T F S
g

S M T W T F S
g

S M T W T F S
g

time display stop watch

time setting alarm setting

depress A release Arelease A

2 secondsdepress A

depress A

2 seconds

release Arelease A
AM

STP

STP

ALMSET

Figure 8: Design diagram for digital watch

Notice that this required the addition of two meta-stable versions of the time/calendar state
and the stopwatch state. This is the sort of diagram that the designer would need to analyse and
to pass on to the implementor.

The diagram looks fairly complex | and we've only looked at one button!

13



3.5 Example { Dangerous states

One of the word processors being used to prepare this document exhibits dangerous states. It has
two main modes, the main mode where you edit the text, a menu and help screen from where you
perform �ling operations. You switch between these modes with the `F1' key. In addition, from
the menu you can exit the word processor by hitting the `F2' key. These modes and the exit are
shown in Figure 9.

edit menu exit
F1

F1

F2

Esc

Figure 9: Main modes of text editor

If the text has been altered it is automatically saved upon exit. However, if you have altered
the text, but then decide to abandon your edits, this automatic save can be turned o� by hitting
the escape key in the Menu mode. Subsequent edits will reset this and the text will be again be
saved. Of course, not saving altered text is dangerous (but may be required). We therefore get
the diagram in Figure 10 with dangerous states hatched.

edit menu exit

edit menu exit

F1

F1

F2
save

F1

F1

F2
NO save

any
update

Esc

Esc

Figure 10: Revised STN with dangerous states

This multiplying of states is a semantic distinction, but can be recorded in the dialogue. We
can then ask at a dialogue level whether or not it is easy to get into the dangerous states by
accident. The user spends most of the time in the edit state, so the most dangerous sequence is
`F1-Esc-F2 { exit with no save. This is rather close to the sequence `F1-F2' { exit with save, but
is this mistake easy to make?

If we decided it was, we can insert a guard, such as a dialogue box asking for con�rmation. In
fact, the word processor has no such guard.

The dialogue is not as is sometimes claimed independent of presentation. There are various
lexical and presentation issues which impinge on the dialogue. In particular, the layout of keys on
a keyboard or menu items on a screen a�ects the sort of lexical errors which occur. For example,
the author's old computer had the function keys on a separate keypad. One could not accidentally

14



hit `Esc' in the middle of the sequence `F1-F2'. However, the author's current keyboard layout is
as in Figure 11 { disaster!

Esc F1 F2 F3

Figure 11: Dangerous function key layout

4 Status/event analysis

We have already seen the state/event dichotomy when discussing dialogue notations. Some are
better at states others at events. Really both are needed to understand interactive systems.

Status/event analysis is a semi-formal, \engineering" level, technique which looks at the inter-
play between status and events in an interface [13, 1]. Status here refers to not just dialogue or
system state, but any persistent aspect of the system, such as the display.

Status/event analysis is based on two foundations:

formal modelling { understanding gleaned from variants of the PIE model.

na��ve psychology { common sense or very simple perceptual psychology.

It is `engineering level' in the sense that you do not require a deep understanding of either
formal models or psychology.

4.1 Properties of events

Consider alarm clocks. These demonstrate most of the important properties of status and events.

status: the watch face. You can look at the watch face whenever you like.

event: an alarm. It happens at a particular moment, if you aren't there when the alarm goes,
you miss it.

status change event: when a particular time passes that is an event, whether or not anyone
notices. In general, any change of status can be viewed as an event.

actual and perceived events: you don't necessarily notice an event straight away. There is
usually a gap.

polling: if you are waiting for a particular time, you occasionally glance at the watch face. That
is you poll the status to make the status change become a perceived event.

granularity: what constitutes an event depends on timescale. If we are interested in planning a
day (timescale of hours) then an alarm is an event. However, whilst waking up (timescale
of seconds or minutes) the alarm ringing is a status.

4.2 Design implications

Applications have timescales depending on the tasks which they ful�ll. Events happen in the
system and at the interface. Do these actual events become perceived events for the user, and if
so, is the lag within an acceptable timescale for the application?

There are problems if perceived feedback is too slow or too fast.

15



application dialogue screen user

depress mouse button
over ‘delete’

highlight ‘delete’

release mouse button
do delete

remove highlight

changes
in text

closure so NO
perceived feedback

Figure 12: Screen button { hit

too slow { if the lag between actual and perceived event is too great, the recipient may respond
too late. For example, if the operator in a power plant were sent an email saying `meltdown
imminent', the plant may have vapourised before the operator read the mail.

too fast { if the perceived event is too fast, it may interrupt a more immediate task. For example,
if alarms began to ring when the stock of 6mm bolts was running low, then the operator
may get distracted from dealing with the potential meltdown.

4.3 Na��ve psychology

We can use simple psychology:

� We can predict where the user is looking:

at the mouse { when positioning

at the insertion point { intermittently when typing

at the screen { if you're lucky

� We know certain e�ects cause immediate events:

audible bell { when the user is in the room.

peripheral vision { movement or large change.

� Closure at the end of a task has predictable e�ects:

loss of attention { including the mouse pointer

concurrent activity { the user may begin a new activity whilst �nishing o� the last one.

4.4 Example { screen button widget

On-screen buttons invoke an application action. They are activated by clicking the mouse over
them However, users often mis-click the button. Furthermore the mistake is often missed. This is
a common widget in virtually every graphical interface, and the error is common too. Why?

16



application dialogue screen user

depress mouse button
over ‘delete’

highlight ‘delete’

move off ‘delete’

remove highlight

release mouse button

no feedback

Figure 13: Screen button { miss

To analyse this problem we draw status-event diagrams (Figures 12 and 13). To do this we
draw a timeline for each layer of the system: application, dialogue, screen and user. Time runs
down the page and arrows between the timelines represent events.

Figure 12 shows the case when the button is successfully activated (a hit) and Figure 13 shows
the case when the user slips the mouse o� the screen-button just before the mouse-button is
released (a miss).

The two diagrams are very similar. They di�er in which user action occurs �rst, the release
or the movement of the mouse. However, after the user has positioned the mouse over the target,
closure is reached. Therefore the two actions occur concurrently. The mistake is likely.

Why is the mistake not noticed? The highlighting of the button is salient as it is at the target
of a mouse positioning task. However, the feedback of application action is not perceived. The
user has attained closure and moves on to the next task.

Solution { the button widget must provide feedback when it invokes an application event,
for example, a simulated key click. That is the actual event at the application must become a
perceived event for the user.

Note, this is an expert slip, a novice would explicitly check the application feedback. This
means that testing doesn't help to discover or rectify the problem.

4.5 General use of status/event analysis

Status{event diagrams may show di�erent parts of an interface. For example, in an analysis of the
arrival of email, the corresponding diagrams had timelines for the �le system, the mail program
`mailtool', the screen, and the user. In all cases, status entities (the �le system and the screen)
mediated the events in the system. Not only was there a gap between the actual events on the
screen and the user's perceived event, there was also a gap between the actual event of mail
arriving (in the �le system) and the perceived event for the mailtool. In general these diagrams
are particularly powerful at tracing these gaps.

The application of the status/event distinction is wider than the use of status{event diagrams.
Unfortunately, most dialogue notations (and other formal notations) deal primarily with one
phenomena or other. However, we have seen that the interactions between status and event
phenomena is particularly interesting, emphasising the need for both to be considered together.
Status{event diagrams do this for speci�c scenarios, but one would like also have full dialogue
notations dealing with status/event phenomena.

17



5 Summary

We saw that formal modelling techniques, although powerful and useful, require a high level of
formal expertise. In order to `give away' the bene�ts of this work to the typical human-factors
practitioner less maths' intensive approaches are required.

Dialogue notations of various forms are often used during the interface design process. We
have seen how simpli�ed forms of the usability properties can be tested on dialogue descriptions,
sometimes with automatic support. Furthermore, the dangerous states example showed how
the dialogue description can form a focus for information from both the semantic level (what is
dangerous) and the lexical level (what slips are easy to make).

Finally, we saw how status{event analysis can uncover expert slips which are very di�cult to
uncover during even extensive user testing. Status{event analysis is particularly useful where the
interface is not purely reactive. Thus it is especially useful in open-systems and multi-user systems.
The author is currently investigating the use of analytic techniques in the area of cooperative
working.

Annotated bibliography

General

1. Alan Dix, Janet Finlay, Gregory Abowd, and Russell Beale. Human-Computer Interaction.
Prentice Hall International UK, Hemel Hempstead, 1993.

The material in this paper is drawn largely from Chapters 8 and 9 of this book, which expand
upon several of the areas.

Formal models of interaction

2. A.J. Dix. Formal methods for interactive systems. Academic Press, London, 1991.

This covers the PIE model and many extensions and other models, including those on which
status/event analysis is based.

3. M. D. Harrison and H. W. Thimbleby, editors. Formal Methods in Human Computer Inter-

action. Cambridge University Press, Cambridge, 1990.

An edited collection covering a range of formal techniques.

4. Harold W. Thimbleby. User Interface Design. ACM Press, Addison-Wesley, New York, 1990.

A wide ranging book which some extensive explicit formal material, and employing a formal
approach to problems in much of its informal material.

5. A.J. Dix and C. Runciman. Abstract models of interactive systems. In P. Johnson and
S. Cook, editor, HCI'85: People and Computers I: Designing the Interface, pages 13{22.
Cambridge University Press, Cambridge, 1985.

The original PIE paper.

6. B. Sufrin. Formal speci�cation of a display editor. Science of Computer Programming, 1:157{
202, 1982.

A classic paper describing the formal speci�cation of a display based text editor.

Undo

In case the reader's appetite for the fascinating area of undo has been wetted here are a few papers
to read. In addition, see Chapter 2 and 4 of [2] and Chapter 12 of [4].

7. Gregory D. Abowd and Alan J. Dix. Giving undo attention. Interacting with Computers,
4(3):317{342, 1992.

A formal analysis of undo in the context of group editing.

18



8. James Archer, Jr., Richard Conway, and Fred B. Schneider. User recovery and reversal in
interactive systems. ACM Transactions on Programming Languages, 6(1):1{19, January 1984.

A classic paper analysing di�erent forms of undo.

9. Je�rey Scott Vitter. US&R: A new framework for redoing. IEEE Software, 1(4):39{52,
October 1984.

Takes undo and redo to its extreme!

10. Yiya Yang. Undo support models. International Journal of Man-Machine Studies, 28(5):457{
481, May 1988.

Informal analysis and review.

Dialogue

As well as the following, see Chapter 8 of [1] which describes dialogue properties in more detail
and any book on UIMS.

11. H. Alexander. Formally-based Tools and Techniques for Human-Computer Dialogues. Ellis
Horwood, Chichester, UK, 1987.

Describes her SPI notation which is both quite powerful and very easy to read.

12. H. W. Thimbleby. Literate using for �nite state machines. University of Stirling, 1993.

Describes the Hyperdoc tool, which supports simulation, dialogue analysis and automatic
documentation.

Status/event analysis

See Chapter 9 of [1] for status{event diagrams and Chapter 10 of [2] for its formal roots.

13. Alan Dix. Beyond the interface. In J. Larson and C. Unger, editors, Engineering for Human-
Computer Interaction, IFIP Transactions A-18, pages 171{190. North-Holland, 1992. Pro-
ceedings of IFIP TC2/WG2.7 Working Conference, Ellivuori, Finland, 10-14 August 1992.

Relates status/event phenomena to the timescales overwhich they operate and the concept of
pace.

19


