using formalism in HCI
from cognitive models to placemats

what to model

• users
 – cognitive models
 – task models

• system
 – behaviour
 – architectural structure

• world
 – domain models
notations

- graphical
 - digital watch STNs, Petri Nets, CTT, UML

- textual
 - production rules (used in UIMS and cog. models)
 - mathematical formulae, process algebras

- plain old sums
 - back of the envelope/placemat calculations

placemat math - menu sizes

- on-screen menus
 - e.g. web site navigation

- how many items per screen?

- frequent misapplication of Miller 7±2

- but how many is right?
placemat math (ii)

- menu tree has N items
- number of items per screen = M (breadth)
- depth (d) = $\log_2(N) / \log_2(M)$

placemat math (iii)

$$T_{total} = \text{time to find an item}$$
$$= (T_{display} + T_{select}) \times d$$

$$T_{display} = \text{time to display screen (fixed)}$$
$$T_{select} = \text{time to select menu item}$$
$$= A + B \log(M) \quad \text{(Fitts’ Law)}$$

$$T_{total} = (T_{display} + A + B \log(M)) \times \frac{\log(N)}{\log(M)} \times \frac{\log(N)}{\log(M)}$$
$$= \left((T_{display} + A) \times \log(N) \right) / \log(M) + B \log(N)$$
best menu size?

\[T_{total} = \left(\frac{T_{display} + A \times \log(N)}{\log(M)} + B \log(N) \right) \]

- larger \(M \) means shorter total time
- the bigger the better!

N.B. other factors
- visual search (linear if not expert)
- error rates
- minimum selectable size
- effective organisation of menu items

what to model

- users
 - cognitive models
 - task models

- system
 - behaviour
 - architectural structure

- world
 - domain models
what to model

- users
 - cognitive models
 - task models
- system
 - behaviour
 - architectural structure
- world
 - domain models

types of system model

- dialogue – main modes
- full state definition
- abstract interaction model

specific system

generic issues