Artificial Life – Ethology
CSc 355

Alan Dix
dixa@comp.lancs.ac.uk

Manolis Sifalakis
mjs@comp.lancs.ac.uk

Lecture Overview

• What is Alife
• Brief history – timeline
• Synthetic Ethology and Food Chains
• Example: Food Chain model
 - Agent Anatomy
 - (Pseudo-) code
 - Sample iteration
 - Results
 - Observations
• Reference List

What is Alife?

• Alife [Langton] is set of mechanisms used to model and simulate evolving natural systems

 - Insect ecologies, animal behavior, negotiating entities, resource use in artificial economies

 - Studies the evolution of agents, or populations of computer simulated life forms in artificial environments

 - Complements traditional biology by trying to recreate biological phenomena

Brief history - Timeline

Synthetic Ethology & Food Chains

• Synthetic Ethology
 - Study of animal behavior in which simple, synthetic organisms are allowed to behave and evolve in a synthetic world.

 - Branch of zoology

• Food Chain
 - Describes the hierarchy of living organisms within an ecosystem.
Example: Food Chain Model (FCm)

- 3 Entities
 - Plants:
 - Fixed location, consumed by herbivores
 - Herbivores:
 - Migratory agents, eat plants, eaten by carnivores
 - Carnivores:
 - Migratory agents, eat herbivores, die from starvation

- Environment
 - Toroid grid
 - Each cell occupied by one or more agents

FCm: Agent “Life & Death issues”

- Energy (E) / Metabolism
 - Eat: $E = E + 1$
 - For each step: $E = E - X$, ($X=1$, $C=2$)
 - If $E = 0$ → Die

- Reproduction
 - If $E > 90\%$ → Reproduce asexually
 - Lamarckian: Offspring inherits parents’ NNet followed by random mutation of weights

- Death
 - Starvation (no food found)
 - Eaten (only for herbivores)

FCm: The (pseudo-) code

```python
SimulateOnce ( )
for all agent types
  foreach agent
    PerceiveEnvironment (agent)
    ForwardPropagateInputs (agent.Nnet)
    ComputeAction (agent)
    switch (agent.action)
      case TURN_LEFT:
      case TURN_RIGHT:
        agent.direction := UpdateOrientation (agent)
      case MOVE_FRONT:
        agent.position := UpdatePosition (agent)
      case EAT:
        Eat (agent)
```

```python
Main ( )
Init ( )
while (run < MAX_RUNS)
  SimulateOnce ( )

Init ( )
landscape := InitLandscape ( )
GrowPlants ( landscape [plants] )
while ( agents < MAX_AGENTS )
  agent := CreateAgent ( )
  if ( agent.type == herbivore )
    PositionAgent ( landscape [herbivores] )
  else
    PositionAgent ( landscape [carnivores] )
```

FCm: The (pseudo-) code

```python
... UpdateEnergy (agent, agent.action)
if agent.energy == 0
  KillAgent (agent)
else
  agent.age += 1
if agent.energy > REPRODUCTION_LEVEL
  ReproduceAgent (agent)
```
FCm: The (pseudo-) code

GrowPlants()
 location := SelectRandomLocation(landscape[plants])
 if no plant in location
 landscape[plants][location.x][location.y] := 1
CreateAgent()
 agent.energy := MAX_ENERGY / 2
 agent.age := 0
 agent.generation := 1
 agent.type := carnivore | herbivore
 foreach neuron in Nnet
 SetWeight(neuron)

PositionAgent()
 location := SelectRandomLocation(landscape[agent.type])
 if no agent in location
 landscape[agent.type][location.x][location.y] := 1
 agent.direction := SelectRandomDirection()
Eat()
 if agent.type == CARNIVORE
 UpdateLandscape(landscape[herbivores])
 else
 UpdateLandscape(landscape[plants])

KillAgent()
 UpdateLandscape(landscape[agent.type])
 if num of agent of this type < MAX_AGENTS / 4
 CreateAgent()
ReproduceAgent()
 if num of agents of type < MAX_AGENTS / 2
 // Inheritance of NNet in offspring
 new_agent := DuplicateAgent(agent)
 // Randomly mutate neuron weights
 foreach neuron in new_agent.Nnet
 if mutation_probability > 50%
 SetWeight(neuron)
 PositionAgent(landscape[agent.type])

FCm: A sample iteration

FCm: Simulation Results
FCm: Observations and Conclusions

- Competition
 - Carnivores evolve NNets, good at locating and eating herbivores
 - Herbivores evolve NNets that find plants and avoid carnivores

- Evolved Strategies
 - Herding: Herbivores follow other herbivores in front
 - Ambushing: Carnivores find plants and then wait for herbivores to wander by

- Parameters tuning
 - Number of plants \geq number of herbivores
 - Number of agents must be small so as not to crowd the simulation
 - Number of carnivores $\leq 2 \times$ Number of herbivores

Reference List

- Seminal paper

- Zooland: "The Artificial Life Resource"
 - http://surf.de.uu.net/zooland/

- Book chapter on Artificial Life

Questions ...