

Artificial Life – Ethology

CSc 355

Alan Dix dixa@comp.lancs.ac.uk

Manolis Sifalakis mjs@comp.lancs.ac.uk

Lecture Overview

- What is Alife
- Brief history timeline
- Synthetic Ethology and Food Chains
- Example: Food Chain model
 - Agent Anatomy
 - (Pseudo-) code
 - Sample iteration
 - Results
 - Observations
- Reference List

What is Alife?

- Alife [Langton] is set of mechanisms used to model and simulate evolving natural systems
 - Insect ecologies, animal behavior, negotiating entities, resource use in artificial economies
 - Studies the evolution of agents, or populations of computer simulated life forms in artificial environments
 - Complements traditional biology by trying to recreate biological phenomena

What is Alife?

- Traditionally AI: a top down approach
- Alife: works from the bottom up

Brief history - Timeline

Jacques de Vaucanson (1739, pre-computer) Artificial Duck

John Von Neumann (late 1940s) Theory of automata

Self-replicating Machine

Homer Jacobson

Illustrated basic self-replication with a model train set

(1950s)

John Horton Conway (1960s)

The Game of Life (Most famous cellular automaton)

Edgar F. Codd (1968)

Simplified Von Neumann's Cellular automaton from 29 states to 8 states

Christopher Langton (1979)

First self-replicating computer organism using only an Apple II desktop computer (1989)

Founder of Artificial Life

Stephen Wolfram (1982)

1-D Cellular Automata applied to natural phenomena (seashell patterns, plant growth)

The Unit of Theoretical Behavioural Ecology
Free University of Brussels
(mid 1980s)
Self-organization theories to

Self-organization theories to research the behavior of social insects

Synthetic Ethology & Food Chains

- Synthetic Ethology
 - Study of animal behavior in which simple, synthetic organisms are allowed to behave and evolve in a synthetic world.
 - Branch of zoology
- Food Chain
 - Describes the hierarchy of living organisms within an ecosystem.

Example: Food Chain Model (FCm)

3 Entities

- Plants:
 - Fixed location, consumed by herbivores
- Herbivores:
 - Migratory agents, eat plants, eaten by carnivores
- Carnivores:
 - Migratory agents, eat herbivores, die from starvation
- Environment
 - Toroid grid
 - Each cell occupied by one or more agents

The Agent

Agent perception of the environment

FCm: Agent "Life & Death issues"

- Energy (E) / Metabolism
 - Eat \rightarrow E = E + 1
 - For each step \rightarrow E = E X, (H: X=1, CX=2)
 - If $E == 0 \rightarrow \text{Die}$

Reproduction

- If $E > 90\% \rightarrow \text{Reproduce asexually}$
- <u>Lamarckian</u>: Offspring inherits parents' NNet followed by random mutation of weights

Death

- Starvation (no food found)
- Eaten (only for herbivores


```
Main ()
   Init()
  while (run < MAX_RUNS)</pre>
     SimulateOnce ()
Init ()
  landscape := InitLandscape ( )
   GrowPlants ( landscape [plants] )
  while ( agents < MAX_AGENTS )</pre>
     agent := CreateAgent()
     if ( agent.type == herbivore )
        PositionAgent ( landscape [herbivores] )
     else
        PositionAgent ( landscape [carnivores] )
```



```
SimulateOnce ()
  forall agent types
     foreach agent
       PerceiveEnvironment (agent)
       ForwardPropagateInputs (agent.Nnet)
       ComputeAction (agent)
     switch (agent.action)
       case TURN_LEFT:
       case TURN_RIGHT:
          agent.direction := UpdateOrientation (agent)
       case MOVE_FRONT:
          agent.position := UpdatePosition (agent)
       case EAT:
          Eat (agent)
```



```
UpdateEnergy (agent, agent.action)
if agent.energy == 0
   KillAgent (agent)
else
   agent.age += 1
if agent.energy > REPRODUCTION_LEVEL
   ReproduceAgent (agent)
```



```
GrowPlants ()
  location := SelectRandomLocation (landscape [plants] )
  if no plant in location
     landscape [plants] [location.x] [location.y] := 1
CreateAgent ()
  agent.energy := MAX_ENERGY / 2
  agent.age := 0
  agent.generation := 1
  agent.type := carnivore | herbivore
  foreach neuron in Nnet
     SetWeight (neuron)
```



```
PositionAgent ( )
  location := SelectRandomLocation (landscape [agent.type])
  if no agent in location
     landscape [agent.type] [location.x] [location.y] := 1
  agent.direction := SelectRandomDirection ( )

Eat ( )
  if agent.type == CARNIVORE
     UpdateLandscape (landscape [herbivores] )
  else
     UpdateLandscape (landscape [plants] )
```



```
KillAgent ( )
  UpdateLandscape (landscape [agent.type] )
  if num of agent of this type < MAX_AGENTS / 4
     CreateAgent()
ReproduceAgent ()
  if num of agents of type < MAX_AGENTS / 2</pre>
     // Inheritance of NNet in offspring
     new_agent := DuplicateAgent ( agent )
     // Randomly mutate neuron weights
     foreach neuron in new_agent.Nnet
        if mutation_probability > 50%
           SetWeight (neuron)
     PositionAgent (landscape [agent.type])
```


Proximity U11

Plant

FCm: A sample iteration

inputs = [0 1 0 0 0 0 0 0 0 0 0 1]

outputs left = 1 right = -1 front = 0 eat = 1

		С		
			Р	
		H		

		С	
		H	

FCm: Simulation Results

FCm: Simulation Results

FCm: Observations and Conclusions

- Competition
 - Carnivores evolve NNets, good at locating and eating herbivores
 - Herbivores evolve NNets that find plants and avoid carnivores
- Evolved Strategies
 - Herding: Herbivores follow other herbivores in front
 - Ambushing: Carnivores find plants and then wait for herbivores to wander by

FCm: Observations and Conclusions

- Parameters tuning
 - Number of plants >= number of herbivores
 - Number of agents must be small so as not to crowd the simulation
 - Number of carnivores <= 2 * Number of herbivores</p>

Reference List

- Seminal paper
 - Christopher G. Langton. Artificial Life. Proceedings of interdisciplinary workshop on the Synthesis and Simulation of Living Systems, Los Alamos, 1987. Addison-Wesley. 1989
- Zooland: "The Artificial Life Resource"
 - http://surf.de.uu.net/zooland/
- Book chapter on Artificial Life
 - M. Tim Jones. 2003: Al Application Programming.
 Charles River Media, Inc.

Questions ...