Genetic Algorithms

CSc355

Alan Dix
dixa@comp.lancs.ac.uk

Manolis Sifalakis
mjs@comp.lancs.ac.uk
Lecture Overview

- Evolutionary Computation (EC) and Genetic Algorithms (GA)
- A Brief History
- Terminology from Biology
- Computational Model
- Search space and fitness landscapes (an example)
- GAs versus other search methods
- Why evolution
- Applications of GAs
- Sample Application: Genetic Programming (GP)
- Performance Tuning of GAs
- Reference material (for GAs and GP)
Evolutionary Computation

- Computational systems that use **natural evolution** (universal Darwinism) as an optimisation mechanism for solving engineering problems.
A Brief History

Evolution strategies: Real value parameter optimisation for device models [Rechenberg 1965, Schwefel 1975]

Evolutionary programming: Evolvable state-transition diagrams (FSM) to produce fit solutions for specific tasks [Fogel, Owens, Walsh 1966]

Other independent efforts for evolution-inspired algorithms
Biological Systems: A rough guide

- Living organisms consist of **cells**
- Each cell contains one or more **chromosomes** (DNAs & RNAs)
- A set of chromosomes provide the **organism blueprint**
- A chromosome is divided conceptually in **genes** (functional blocks of DNA)
- A (set of) gene(s) encodes a protein – a **trait** (e.g. eye color)
- **Alleles** are the possible encodings of a gene (blue, green, red, yellow)
- **Locus** is the position of a gene in the chromosome
Biological Systems: A rough guide

- **Genome**: Complete collection of chromosomes (genetic material)

- **Genotype** is a particular set of genes (encoded in chromosomes) in the genome that represent the genetic material of an individual

- **Phenotype** are the physical and mental characteristics related to a genotype (eye color, intelligence, height, hair type, etc) of an individual
Biological Systems: A rough guide

- Organisms whose chromosomes appear in pairs (most sexually reproducing species) are called **diploid**, if not they are called **haploid**

- During sexual reproduction **genetic recombination (crossover)** occurs whereby chromosomes exchange sets of genes to produce a **gamete** (haploid)

- **Mutation** is the product of copying errors in the recombination process (biochem action, ext radiation, etc)

- **Genetic fitness** refers to the probability that a new organism will survive to reproduce (viability) or the number of offspring an organism has (fertility)
Computational Model

- A chromosome is a string representation of a candidate solution to a problem

 Bin: 0110110101110101011
 Alpha: AABCAABCCDGGABCD
 Hex: 937ff4539acc27d4bb92

- The genes are single digits or subsets of digits at specific locations in the chromosome string

 Bin: 0110110101110101011

- An allele is the possible values a gene can take (0/1 if binary, a-z if alpha, 0-9 if decimal)
Computational Model

- **Crossover** exchanges substrings between chromosomes
- **Mutation** replaces a gene value with another from its allele
- **Inversion** swaps the head with the tail of the chromosome at a locus

<table>
<thead>
<tr>
<th>Crossover point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromo A: 01101101110101011</td>
</tr>
<tr>
<td>Chromo A: 1110000011010110011</td>
</tr>
<tr>
<td>Offspring: 0110110011010110011</td>
</tr>
</tbody>
</table>

| Offspring: 0110100011010110011 |
| Offspring: 0110100000010110011 |
| Parent: 01101001010110011 |
| Offspring: 010101100110110100 |
Computational Model

Main GA algorithm

1. Initialise Population
 - Generate initial population of candidate solutions
2. Evaluate
 - Apply fitness function to population members
3. Select Fittest
 - Choose the fittest member to form the new population
4. Recombine
 - Apply Genetic Operators and generate new population
The computational equivalent

A sample iteration
Example: Search space & fitness landscapes

\[F(x,y) = \frac{1}{1 + x^2 + y^2} \]

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>C2</td>
<td>-2</td>
<td>3</td>
</tr>
<tr>
<td>C3</td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>C4</td>
<td>0.5</td>
<td>-1</td>
</tr>
</tbody>
</table>

Chromosome Encoding: Cartesian Coords

X coord | Y coord
GAs versus other search methods

“Search” for what?

- **Data** - Efficiently retrieve a piece of information, (Data mining) → Not AI

- **Paths to solutions** - Sequence of actions/steps from an initial state to a given goal, (AI-tree/graph search)

- **Solutions** - Find a good solution to a problem in a large space (search space) of candidate solutions
 - Aggressive methods (e.g. Simulated Annealing, Hill Climbing)
 - Non-aggressive methods (e.g. GAs)
Tree (Graph) Search

- Solution: Sequence of steps/Path through graph
- Solution “built” gradually (during graph traversal)
- Exhaustive search (constraints-assisted by heuristics)
- E.g. Depth-first, Breadth-first, Branch-&-Bound, …
Search for solutions aggressively

- Solution discovered gradually
- Problem: Can be trapped in local maximum
- Discovers a hilltop

E.g. Steepest Ascend

Choose in random candidate solution (string)

1-bit mutation

Record fitness

Fitter than previous fittest?
No

Yes
Store solution as fittest

Check convergence & return highest hilltop
Search for solutions with GAs

- Solution discovered probabilistically
- Problem: Can not guarantee discovery of hilltop
- Traces global maxima (wanders in whole search space)
- Combined w/ aggressive algorithm can find global maximum
Why evolution?

• Evolution is a **massively parallel** search method
 - Many computational problems require searching through a huge number of possibilities for solutions

• Evolution use **continually changing fitness criteria** as creatures evolve
 - Many computational problems require adaptive solutions that perform well in changing environments

• Evolution is **remarkably simple, yet responsible for extraordinary variety and complexity**
 - Many computational problems require complex solutions that are difficult to program by hand
Questionnaire 2
Applications of GAs

- **Numerical and Combinatorial Optimisation**
 - Job-Shop Scheduling, Traveling salesman
- **Automatic Programming**
 - Genetic Programming
- **Machine Learning**
 - Classification, NNet training, Prediction
- **Economic**
 - Biding strategies, stock trends
- **Ecology**
 - host-parasite coevolution, resource flow, biological arm races
- **Population Genetics**
 - Viability of gene propagation
- **Social systems**
 - Evolution of social behavior in insect colonies
Application: Genetic Programming (GP)

- **Automatic programming** implies the existence of computer programs that write … computer programs

- Early work on Evolutionary Computation (Evolutionary programming) aimed at automatic programming

- GP [Koza ’92,’94] used GAs for automatic programming
 - Evolve computer programs rather than write them
Genetic Programming: Overview

- Problem: We want to develop a system that builds programs that solve math equations

- Consider an instruction set for a zero-address VM (only stack, no registers)

- Solution encoding using byte strings for instruction strings:
 - Solution: OVER,ADD,MUL,ADD
 - Chromosome: 5 4 3 4

<table>
<thead>
<tr>
<th>Code</th>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DUP</td>
<td>X => A A</td>
</tr>
<tr>
<td>2</td>
<td>SWAP</td>
<td>X Y => Y X</td>
</tr>
<tr>
<td>3</td>
<td>MUL</td>
<td>X Y => (X*Y)</td>
</tr>
<tr>
<td>4</td>
<td>ADD</td>
<td>X Y => (X+Y)</td>
</tr>
<tr>
<td>5</td>
<td>OVER</td>
<td>X Y => X Y X</td>
</tr>
<tr>
<td>6</td>
<td>NOP</td>
<td>Null</td>
</tr>
</tbody>
</table>
Genetic Programming: Overview

- **Fitness Evaluation**: for random args calculate
 \[E = \text{Expected value} - \text{Executed instr stream} \]

- **Recombination operators**:
 - **Crossover**: break parent instruction streams at random point and exchange tails
 - Parent 1 Chromo: 4 6 3 2 1
 - Parent 2 Chromo: 5 4 2 3 4
 - Child 1 Chromo: 4 6 3 3 4
 - Child 2 Chromo: 5 4 2 2 1
 - **Mutation**: choose random position, replace instruction (gene) with another from the instruction set
 - Solution: OVER, ADD, SWAP, MUL, ADD
 - Chromo: 5 4 2 3 4
 - Solution: OVER, ADD, NOP, MUL, ADD
 - Chromo: 5 4 6 3 4
GP: The (pseudo-) code

```
Main()

    InitPopulation()
    max_fitness := 0

    foreach member chromosome
        fitness := EvaluateFitness(chromosome)
        if fitness > max_fitness
            max_fitness := fitness
            fittest_solution = chromosome

    while generation < MAX_GENERATIONS
        offspring := SelectAndRecombine(parents)
        fitness := EvaluateFitness(offspring)
        if fitness > max_fitness
            max_fitness := fitness
            fittest_solution = offspring

    print fittest_solution
```
GP: The (pseudo-) code

InitPopulation ()
 while num_of_programs < MAX_PROG
 command_list := RandomSelectCommands ()
 new_member := Concatenate (commands_list)

SelectAndRecombine ()
 while num of programs < MAX_PROG/2
 parent_1 := RouletteWheelSelection ()
 parent_2 := RouletteWheelSelection ()
 randomly choose x-over point
 child_1 := parent_1 [head] ^ parent_2 [tail]
 child_2 := parent_2 [head] ^ parent_1 [tail]
 foreach child
 mutation_pt := RandomlyChooseMutationPoint (child)
 new_instr := RandomlyChooseNewInstruction ()
 ReplaceInstruction (mutation_pt, new_instr)
GP: The (pseudo-) code

\begin{align*}
\text{Evaluate_fitness}(\) \\
\text{\textbf{forall}} \text{ chromosomes in population} \\
\text{\textbf{repeat} COUNT times} \\
\quad \text{args} := \text{GenerateRandomArgs}(\) \\
\quad \text{expected_result} := \text{SolveEquation}(\text{args}) \\
\quad \text{InterpetFSM}(\text{chromosome}, \text{args}) \\
\quad \text{\textbf{if}} \ \text{STACK_OVERFLOWN} \\
\quad \quad \text{fitness} += \text{TIER1} \\
\quad \text{\textbf{else if}} \ \text{stack[0]} \neq \text{expected_result} \\
\quad \quad \text{fitness} += \text{TIER2} \\
\quad \text{\textbf{else}} \ // \ \text{stack[0]} = \text{expected_result} \\
\quad \quad \text{fitness} += \text{TIER3} \\
\quad \text{avg_fitness} := \text{fitness of all chromosomes} / \text{MAX_PROG}
\end{align*}
GP: The (pseudo-) code

\[\text{InterpretFSM()} \]

- **push** args in stack and increase stack ptr
- **while** program counter < program_length
 - **pop** args from stack
 - result := \(\text{ExecuteCommand}(\text{args}) \)
 - **push** result in stack
Genetic Programming: Results

• Results of a few runs

 x^8:

 \[
 \text{DUP, MUL, DUP, MUL, DUP, MUL} \rightarrow ((x\times x)(x\times x))(x\times x)(x\times x)
 \]

 $2x + 2y + z$:

 \[
 \text{ADD, DUP, ADD, SWAP, ADD} \rightarrow ((x+y)+(x+y))+z
 \]

 $xy + y^2 + z$:

 \[
 \text{OVER, ADD, MUL, ADD} \rightarrow ((x+y)\times y)+z
 \]

 $x^3 + y^2 + z$:

 \[
 \text{DUP, DUP, MUL, MUL, SWAP, DUP, MUL, SWAP, ADD, SWAP, SWAP, ADD} \rightarrow ((x\times x\times x)+(y\times y))+z
 \]
Genetic Programming: Performance

![Fitness over time graph](image)
Performance of GAs

- Chromosome representation must capture the dependencies of genes
- Initial population must be diverse
- Selection must make sure the fittest chromosomes are propagated to the next population and at the same time maintain diversity
- Recombination should not destroy good genes
- Mutation must guarantee seeding of new genetic material
Some References – GA/GP

- **GA Seminal paper**

- **GA/GP Books**

- **Artificial Intelligence course textbooks**

- **GAs on-line tutorial**

- **GP on-line resources**
Some References – GA/GP

• Something different!
Questions ...
TSP with GAs