CSc355: Section on AI Programming in Scheme

Geoff Coulson
Department of Computing, Lancaster University
geoff@comp.lancs.ac.uk

Administrative details
– Geoff Coulson
 • room C19, Infolab, phone 103064,
geoff@comp.lancs.ac.uk
 • web: http://www.comp.lancs.ac.uk/computing/staff/geoff/
– This part of the course
 • 3 lectures per week for two weeks

Scheme is based on LISP…
– LISP
 • “LISP: Processing language, or ‘lots of irrelevant silly parentheses‘” :-)
 • long pedigree; contemporary with FORTRAN
 – invented by John McCarthy in 1956
 • based on a pure ‘functional‘ approach
 – i.e. programs are sets of functions
 – functions return a value and don’t change their arguments
 – no global variables
 – leads to programs that are robust and easy to debug
 • usually interactive and interpreted
 • good for rapid prototyping as well as AI
– Scheme
 • LISP -> Scheme is roughly analogous to C -> Java

Learning to program in Scheme
– we take a pragmatic rather than an abstract approach
 • a “Scheme 48” interpreter is installed on the PCs in the lab
 • you can get this yourself from http://www.s48.org/index.html
 • there’s also an MIT Scheme interpreter on the central University unix server
 – you need to put the following in your login file:
 set path=($path /usr/local/packages/mit-scheme-7.3)
 set path=($path /usr/local/packages/mit-scheme-7.3/bin)
 • lots of programming and code examples involved
 • you will learn as much about a ‘different way of programming’ as about AI programming
 • this is the only way to really understand the material
 • exam questions will also be programming/code oriented

Outline of what’s to come
– core material
 • unit 1: introduction to Scheme: objects and lists
 • unit 2: introduction to Scheme: lists and recursion
 • unit 3: more built-in Scheme procedures
– applying the core material
 • unit 4: search
 • unit 5: more on search
 • (5 units in 6 lecture slots allows for some slippage…)

Books
– “The Structure and Interpretation of Computer Programs”, Abelson and Sussman (in library)
 • Lisp books (for background):
 – “Lisp”, Patrick Henry Winston and Berthold Klaus Paul Horn, Addison Wesley
 – there are many editions, any one is fine
 – contains an excellent short introduction to Lisp
Unit 1: Introduction to Scheme - objects and lists

- aims
 - to understand basic programming concepts in Scheme
 - to be able to go away and play with the Scheme interpreter

The Scheme interpreter

- start the interpreter (type “scheme”) and you get a prompt:

 >

 - Scheme evaluates expressions typed at the prompt in a so-called read, eval, print loop (REPL)

 > (+ 2 2)
 4

 >

 - can also read in files of expressions — i.e. full programs: use (load “filename.scm”)

Objects and lists

- Scheme consists of ‘objects’ and ‘lists’
 - objects
 - examples: 4 9.6 fred? f-smith "fred" #\a max
 - i.e. ‘symbols’ (including procedure names) and ‘values’
 - special boolean objects: #t and #f
 - no relation to Java ‘objects’!
 - lists
 - examples: (a b c) (((a))) ((26 a (b c)) b c 4.1)
 - i.e. sequences of objects or lists enclosed in brackets

Evaluating Scheme expressions

- example of an expression

 > (max (* (+ 6 3) (- 6 3)) 6 (* 2 1))
 27

 - an expression is a list of sub-exprs or objects
 - the first element must be a symbol that represents a procedure name
 - the remaining elements are arguments to the procedure
 - evaluation starts with the arguments
 - symbols evaluate to their values
 - values (numbers, strings etc.) evaluate to themselves
 - evaluation is a recursive process
 - then the results are passed to the named procedure
 - procedures can be either built-in or user defined

Procedures and special forms

- some expressions look like procedure calls but are not; they are built-in special forms
 - these follow individual special rules for evaluation
 - examples: quote, if, cond, define, let, begin and lambda...
 - discussion of all of these is coming up...

A built-in procedure: reverse

- if the symbol x has previously been given the value of (a b c), then:

 > (reverse x)
 (c b a)

 - n.b. reverse returns a new list, not a changed version of the given list

 - this is generally true; this is why Scheme is a ‘functional’ language
 - but there are a few exceptions...
A built-in special form: quote

- `quote` suppresses evaluation
 > `(quote (a b c))
 (a b c)
- i.e. the second sub-expr in the quote expression is not evaluated
- usually a quote in expressed in the (entirely equivalent) `macro` form: "(a b c)
 • e.g.,
 > `(reverse "(a b c))
 (c b a)

Extended car and cdr

- in a slightly bizarre way, `car` and `cdr` generalise to `cXXr`, `cXXXr`, `cXXXXr` etc.
 ...where each X is either
 - an 'a', signifying `car`, or
 - a 'd', signifying `cdr`
 - evaluation works right to left
 - examples
 > `(cadr '(a b c))
 b
 > `((caar '((a b) c))
 a
 > `(caadr '((a (b c)) d))
 b
 etc.

More built-ins: if (special form), equal? (predicate procedure)

- value of following is `bus` if x=land, `ship` otherwise
 > `(if (equal? x 'land) 'bus 'ship)
 ship
- note that `if` is a special form: only one of the two possible result expressions (consequent or alternative) is actually evaluated
- what is the value of the following?
 > `(if (equal? (car (reverse '(a b))) 'a) (+ 1 1) 77)
 work it out now...

More built-in procedures: car, cdr

car: returns a copy of the first element of a list
cdr: returns a copy of a list with first element removed
- examples
 > `(car '(a b c d)) is a
 (a b c d)
 > `(car '(a b c)) is (a)
 (a)
 > `(car '(1 2 3)) is +
 (1 2 3)
 > `(car '()) is ()
 ()
- car/cdr applied to a non-list results in an error
 > `(car 6)
 <error>

Another built-in procedure: cons

- procedure to add a new element to the front of a list
 > `(cons 'pie '(cake biscuit))
 (pie cake biscuit)
 > `(cons 'waffle
 (cons 'pie
 (cons 'cake
 (cons 'biscuit '())))
 (waffle pie cake biscuit))
- note again that a new list is returned; the arguments are not changed…
- "consing up a list"

Another special form: cond

- value of the following is `bus` if x=land, `ship` if x=sea, or `plane` otherwise
 > `(cond [(equal? x 'land) 'bus]
 [(equal? x 'sea) 'ship]
 [(else 'plane)])
- can take any number of (predicate result) "clauses"
- cond evaluates and returns the result of first clause whose predicate evaluates to `true` (or we hit the 'else')
- or it returns #f if no clauses evaluate to `true` and there’s no ‘else’ clause
- what is the value of the following?
 > `(cond [(equal? (car (reverse '(a b))) 'a) 41]
 [(else 77)])
The define special form

- symbols are given a value (we say: given a “binding”) via the `define` built-in special form
- example:

  ```lisp
  > (define bill (if (equal? (car (reverse '(a b))) 'a)
  (+ 1 1)
  77)
  > bill
  77
  ```

 - note that the first argument (the symbol) is not evaluated

More built-ins: `begin` (special form), `display` (procedure)

- we can define a list of expressions using the `begin` special form
 - expressions are evaluated sequentially
 - result of the `begin` is the result of the last expression; the rest are typically evaluated for side effects (e.g. I/O)
- example:

  ```lisp
  (begin (display "adding 2 and 2") (+ 2 2))
  ```

Another special form: `lambda`

- used to define procedures
- notation derived from lambda calculus
- example:
 - define a procedure that takes one argument:
    ```lisp
    > (lambda (x) (* x x))
    ```
 - now apply the procedure:
    ```lisp
    > ((lambda (x) (* x x)) 2)
    4
    ```
 - as above, procedure ‘body’ can be a list of expressions (value of last is returned)
 - as seen above, procedures are anonymous

Naming procedures

- we simply bind the value of a procedure to a symbol
 - e.g. `(define sqr (lambda (x) (* x x)))`
 - more examples
    ```lisp
    (define rac (lambda (l) (car (reverse l))))
    (define rdc (lambda (l) (reverse (cdr (reverse l)))))
    (define how-to-go (lambda (x)
        (cond ((= x 1) 'land)
              ((= x 2) 'sea)
              (else 'air))))
    ```
 - n.b. `=` is like `equal?` but does numerical testing
 - try defining “snoc”, a backward version of cons

Naming procedures 2

- a shorthand is available that avoids the use of `lambda`
  ```lisp
  (define rdc (lambda (l) (reverse (cdr (reverse l))))
  ```
  ```lisp
  ==
  (define rdc (lambda (l) (reverse (cdr (reverse l)))))
  ```

Block structure

- the following are equivalent except that the scope of ‘bill’ is global in the former and local in the latter
  ```lisp
  > (define bill 1)
  > (define (fred x) (+ x bill))
  > (define (fred x) (define bill 1) (+ x bill))
  ```
 - better to avoid global scope where possible...
Summary

- Scheme is an interpreted language and the interpreter evaluates Scheme expressions.
- Expressions are of the form
 (procedurename arg1 arg2 ... argn)
- Procedures follow standard evaluation rules; but special forms don’t.
- We saw some built-in procedures and special forms:
 * `max`, `+`, `-`, `*`, reverse, `quote`, `car`, `cdr`, `cXXr`, `cons`, `if`, `cond`, `define`, `begin`, `lambda`, `equal?`, `display`.

Unit 2: Introduction to Scheme - lists and recursion

- Aims
 - To understand some more basic Scheme programming concepts, particularly recursion.
 - To be able to go away and play more meaningfully with the Scheme interpreter.

Definition of “snoc”

- `(define snoc (lambda (a l) (reverse (cons a (reverse l)))))`
- `(snoc 'z '(w x y)) (w x y z)`

Repetition

- Jacopini identified six programming language facilities required to perform general computation:
 - Basic operations: `+`, `-`, `*`, `/`, `equal?`, `car`, `cdr`, `cons`, `...`
 - Input/output: `read`, `write`, `display`, `...`
 - Assignment or binding: `define`, `lambda`, `let`, `...`
 - Sequencing: `begin`, `if`, `cond`, `...`
 - Selection: `if`, `cond`, `...`
 - Repetition: `?`

- Repetition in Scheme is usually (not always) achieved using recursion.

Example: a “power2” procedure

- The problem...
 - Define a procedure `power2` that takes an integer argument `x` and returns 2^x.
 - So...
 - `(power2 0)` should return $2^0 = 1$
 - `(power2 1)` should return $2^1 = 2$
 - `(power2 2)` should return $2^2 = 4$
 - `(power2 3)` should return $2^3 = 8$
 - `...`

- Power2: the Scheme solution
 - Step 1: envisage a (potentially infinite) “tower” of calls with a non-recursive one at the bottom:
 - `(power2 3) = (\times 2 (power2 2))`
 - `(power2 2) = (\times 2 (power2 1))`
 - `(power2 1) = (\times 2 (power2 0))`
 - `(power2 0) = 1`
 - Step 2: express the procedure in terms of
 - i) The simple, non-recursive, case(s); and
 - ii) The recursive case(s):
 - `(define (power2 x)
 (if (= x 0) 1
 (* 2 (power2 (- x 1))))` simple, non-recursive, case
 - `...recursive case`
Let’s have that in English!

(define (power2 x)
 (if (= x 0)
 1
 (* 2 (power2 (- x 1)))))

= power2(x)
 if x is 0 then return 1
 else
 return 2 * (power2 with argument x-1)

Isn’t this circular?
 – we can use Scheme’s trace procedure…
 > (trace power2)
 > (power2 2)
 1. Trace: (POWER2 '2)
 2. Trace: (POWER2 '1)
 3. Trace: (POWER2 0)
 4. Trace: POWER2 ==> 4

 – so, power2 is evidently not a circular definition
 actually its a linear definition
 its linear because it is a tower with a ‘solid foundation’
 (i.e. a simple, non-recursive, case)

Recursive foundations
 – a firm foundation
 • man holds photo of himself 10 years younger in which he is
 holding a photo of himself 10 years younger in which ... of
 himself as a new born baby: END
 – some ‘shaky’ foundations
 • box of chocs on which a girl holds a box of chocs on which
 a girl holds a box of chocs...
 • look in a doubled mirror and see yourself in the mirror...
 “a horse is a four legged animal that is produced by two
 other horses…”
 • the numbskulls (little men inside little men…)
 • dictionary defn of recursion: recursion: see ‘recursion’...

Example: a pile of stones
 – define a procedure that returns a list of n instances of
 the symbol stone (e.g. (stone stone stone) with n=3)
 – step 1: envisage the tower
 (pile 3) = (cons 'stone (pile 2))
 (pile 2) = (cons 'stone (pile 1))
 (pile 1) = (cons 'stone (pile 0))
 (pile 0) = '()

 – step 2: express as i) simple and ii) recursive cases

Example: list length
 – return the length of a list
 – the design
 • simple case: length of empty list is 0
 • recursive case: length of a list is length of (cdr the-list) + 1
 – the solution

Example: list membership
 – the problem: is a symbol s present in a list l?
 – the design
 • simple case: s is not present if l is empty; or s is present
 if it is equal to the car of l
 • recursive case: s is present if it is a member of the cdr of l
 – the solution

Example: list length
 (define (length l)
 (cond ((null? l) 0)
 ((equal? s (car l)) #t)
 (else (member? s (cdr l)))))
Example: summing a list
- the problem: return the sum of a list of ints
- the design:
 • simple case: the sum of an empty list is 0
 • recursive case: the answer is the first number in the list (car) added to the sum of the cdr
- the solution???
 • over to you…

Example: symbol-count
- count all the symbols in a potentially nested list
 • note difference from length
 - `'(((a b c) a (a b c)) a ((a b c d) ((a)) a))` returns `14`
- the design
 • simple case: the argument is an empty list (answer: 0); or the argument is not a list at all but a single symbol (answer: 1)
 - `(symbol? symbol?)` returns #t iff its argument is a symbol
 • recursive case: the symbol-count of the car of the list + the symbol-count of the cdr of the list

Symbol-count (cont.)
- the solution
  ```scheme
  (define (symbol-count l)
    (cond ((symbol? l) 1)
          ((null? l) 0)
          (else (+ (symbol-count (car l))
                   (symbol-count (cdr l))))))
  ```
 - n.b.
 • the first recursive call on a one-symbol list leads to the ’symbol?’ case
 • the second recursive call on a one-symbol list leads to the ’null?’ case

Append: another example with multiple simple cases
- the problem: concatenate two lists
 - `(append '(a b c) '(d e))` returns `(a b c d e)`
 - `(append '(a b c) '())` returns `(a b c)`
 - `(append '(a (b c)) '(d e))` returns `(a (b c) d e)`
- the solution
  ```scheme
  (define (append l1 l2)
    (cond ((null? l1) l2)
          ((symbol? l1) (cons l1 l2))
          (else (append (reverse l1) l2))))
  ```

Append example
```scheme
(append '(a b c) '(d e)) ->
(append '(a b) '(c d e)) ->
(append '(a) '(b c d e)) ->
(a b c d e)
```

Aside: an alternative formulation of `append` using anonymous functions (lambda)
```scheme
(define (append l1 l2)
  (cond ((null? l1) l2)
        ((symbol? l1) (cons l1 l2))
        (else (append (reverse l1) l2))))
```
```scheme
'rdc'
```
```scheme
'rac'
```
Append and list

- `append` is also available as a built-in procedure
 - takes an arbitrary number of arguments rather than just two
- the built-in procedure `list` is similar to `append` except it makes a list out of its arguments—it doesn’t ‘run its args together’

```lisp
> (append 'a b) 'c d)
(a b c d)
> (append '(a b) 'c d))
(a b c d)
> (list 'a b) 'c d)
(a b) c d)
> (list '(a) (b)) 'c d))
((a) (b) c d))
```

Another one for you to try at home…

- define a procedure `flatten` that returns a ‘flat’ list that contains in order all the symbols in its single list argument
 - for example
    ```lisp
    > (flatten '(((a b c) d e f g) h ((i j k l) (m n) a)))
    (a b c d e f g h i j k l m n a)
    ```
- hints
 - there are two simple cases
 - you probably need to use both `list` and `append`
 - not a million miles away from symbol-count! (i.e. work separately on the `car` and `cdr` of the argument)

Summary

- we’ve seen how Scheme handles repetition - through recursion
- we’ve studied how to break problems down into recursive solutions
 - simple case(s) and recursive case(s)
 - converging to simple case by (e.g.)
 - decrementing a counter (e.g. pile of stones)
 - ‘cdr’ing down lists (e.g. list length, member)
 - ‘car and cdr based recursion’ (e.g. `flatten`, `append`)
- along the way we’ve met some more built-ins
 - `symbol?`, `null?`, `append`, `list`, `length`, `member`, `trace`

First, the homework answer

- problem: define a procedure `flatten` that returns a flat list of all the symbols in its argument

```lisp
> (flatten '((a b c) d e f g) h ((i j k l) (m n) a)))
(a b c d e f g h i j k l m n a)
```
- solution:

```lisp
(define (flatten s)
  (cond
    ((null? s) '())
    ((symbol? s) (list s))
    (else (append (flatten (car s))
                  (flatten (cdr s))))))
```

Properties

- Scheme symbols may have associated properties
 - each symbol can have any number of properties
 - a property is a `(name val)` pair; the choice of both names and values is entirely up to the programmer
 - properties are implemented as global ‘2-d table’; each symbol’s properties are kept in an list like this: `((name1 val1) (name2 val2) ... (name1 val1))`
 - 2d-put! and 2d-get are used to set and get properties

Unit 3: More Scheme procedures

- aims
 - to introduce more examples of Scheme code
 - to introduce some new Scheme facilities that will be used in the application-oriented units
- properties
 - second-order procedures (`sort`, `map` and `apply`)
 - `remove-if`
 - lambda (again)
Example: Using map and apply

Map and apply

- map and apply are second-order procedures
- map 'interates' a procedure over a list of arguments...

\[\text{map odd? '(1 2 3)} \]

• (n.b. odd? returns #t if its argument is an odd number)
\[
\text{map = '(1 2 3) '(3 2 1); 2 lists for a 2 arg proc (1 #t #t)}
\]
• note that (map + '(1 2 3)) produces an error as it needs at least 2 arguments
• to apply a function to a list of arguments we can use apply

\[\text{apply + '(1 2 3)} \]

\[\text{#f #t #f} \]

Map and apply (cont.)
- we can use map and apply to define a faster symbol counting procedure (i.e. one with less recursion)

\(\text{define (symbol-count1 s) original version} \)

\[\text{cond ((null? s) 0)} \]
\[\text{(symbol? s) 1)} \]
\[\text{else (* (symbol-count1 (car s)) \}} \]
\[\text{(symbol-count2 (cdr s)))))))} \]

\(\text{define (symbol-count2 s) new version} \)

\[\text{cond ((null? s) 0)} \]
\[\text{(symbol? s) 1)} \]
\[\text{else (apply + (map symbol-count2 s)))))} \]

- let's check it out with (symbol-count2 '((a b) c)) ...

Old symbol-count

\[\text{> (symbol-count1 '((a b) c))} \]

1. Trace: (SYMBOL-COUNT '((A B) C))
2. Trace: (SYMBOL-COUNT '((A B))
3. Trace: (SYMBOL-COUNT '(A))
4. Trace: (SYMBOL-COUNT 'A)

\3

New version with map/ apply

\[\text{> (symbol-count2 '((a b) c))} \]

1. Trace: (SYMBOL-COUNT2 '((A B) C))
2. Trace: (SYMBOL-COUNT2 '((A B))
3. Trace: (SYMBOL-COUNT2 'A)
4. Trace: (SYMBOL-COUNT2 'B)
5. Trace: (SYMBOL-COUNT2 'C)

\3

* note that there is significantly less recursion = faster

Sort

- another simple second-order procedure

\[\text{sort sequence <2-place-predicate>} \]

- we can use any 2-place predicate that defines an ordering (i.e. if x pred y return #t; if x pred y return #f)

\[\text{> (sort '(6 3 5 9 2))} \]
\[\text{(2 3 5 6 8 9)} \]

\[\text{> (sort '(0 6 3 5 9 2))} \]
\[\text{(0 6 5 3 2)} \]

Remove-if

- a useful second-order procedure that takes a predicate (predicate) and a list, and returns a "filtered" list that is identical except that the elements for which the predicate is true are omitted

\[\text{> (define (remove-if pred) \)} \]
\[\text{(cond ((null? l) l)} \]
\[\text{(pred (car l))) (remove-if pred (cdr l))) \}
\[\text{(else (cons (car l) \)}} \]
\[\text{(remove-if pred (cdr l))) \}

\[\text{> (remove-if fruit? 'broccoli milk apple bread butter pear)} \]
\[\text{(broccoli milk bread butter)} \]
Anonymous procedures revisited

- suppose we want to know which items in a list of groceries are fruit
 - we already know how to do the following:

    ```scheme
    (define (fruit? x)
      (equal (2d-get x 'kind-of) 'fruit))
    ```

    ```scheme
    (map fruit?
      '(broccoli milk apple bread butter pear))
    ```

    ```scheme
    (#f #f #t #f #f #t #f)
    ```

Anonymous procedures (cont.)

- but it’s a pain to have to think up a name and explicitly define fruit? when it may only be used once
 - lambda enables us to conveniently define an ‘anonymous’ procedure on the fly:

    ```scheme
    (map (lambda (x) (equal (2d-get x 'kind-of) 'fruit))
      '(broccoli milk apple bread butter pear))
    ```

    ```scheme
    (#f #f #t #f #f #t #f)
    ```

Summary

- we have covered the following:
 - 2d-get, 2d-put!, map, apply, sort, odd?
 - (note a common convention for naming procedures: a ‘?’ suffix denotes a predicate; a ‘!’ suffix denotes a procedure with side effects)
 - we now know what a second-order procedure is
 - it’s a procedure that takes a procedure as an argument (or returns a procedure as a result)

Unit 4: Search

- aims
 - to apply our working knowledge of Scheme
 - to understand the ‘search problem’ (ubiquitous in AI)
 - to develop a generic search program that can be specialised for a range of search strategies
 - and then to specialise our generic search program to do depth first search

The search problem

- given a problem domain with lots of decision points or potential solutions…
- we search through the decision tree or the space of solutions
- examples
 - given a roadmap, find a road route from Lancaster to London
 - find your way out of a maze
 - find the best move in a game such as chess, draughts or noughts-and-crosses
 - find the correct way to parse a sentence
 - “tree flies like an arrow”
 - make a goal-directed plan from a set of available sub-plans
 - e.g. make a plan for “put block A on block B” from:
 - All Blocks, move block, clear block, place block

Representing search

- a search problem is characterised as a search space
 - (graph) of states (nodes)
 - begin at a start state from which there are links to a number of possible successor or child states (from which there are in turn further successors, etc., etc.)
 - walk the links until we encounter the goal: a finish state
- a search space is naturally represented as a graph or a tree
- many search strategies are available
 - e.g. depth first search or breadth first search
Search strategy 1: depth first search

“Examine one child of the start node; if this is not the finish node, examine one of its successors (children), again ignoring the rest.

Do the above repeatedly. If there are no links left to explore at a given level, back-up to the last place there was a choice and continue from there.”

Search strategy 2: breadth first search

– movement is ‘level by level’:
 “at each state examine all the children of that state; if we fail to find a finish state among these, move down to one of the children and proceed from there”
 – i.e. the links one level down are fully examined before we go down to the next level

Representing a search space

– a tree can easily be represented as a nested list
 \[(s (j (k (r (w))) x) (t (u (y)) (v (z))))\]

Depth first search in a nested list (tree)

– basic bfs is in a nested list is trivial!

\[
\text{(define \(\text{search} \ finish-state \ tree\))}
\begin{align*}
\text{\(\text{cond} \ (\text{equal?} \ finish-state \ tree) \ \#t\)} \\
\text{\(\text{\#f}\) if there is not}
\end{align*}
\]

\[
\text{\(\text{else} \ (\text{or} \ (\text{search} \ finish-state \ (\text{car} \ tree)) \ (\text{search} \ finish-state \ (\text{cdr} \ tree)))\))}
\]

– but this approach has severe limitations
 – it only works on trees, not graphs
 – it assumes the tree is already available (i.e., pre-computed)
 – it only returns #t or #f; it doesn’t remember the route it took to get to the finish
 – we can’t easily extend it to breadth first search and other strategies
 – so, we will take a more general approach...

A better search space representation

– use a ‘children’ property to represent a graph

\[
\begin{align*}
\text{2d-put! 'a 'children '(l o)} \\
\text{2d-put! 'l 'children '(m f)} \\
\text{2d-put! 'm 'children '(n)} \\
\text{2d-put! 'n 'children '(f)} \\
\text{2d-put! 'o 'children '(p q)} \\
\text{2d-put! 'p 'children '(f)} \\
\text{2d-put! 'q 'children '(f)}
\end{align*}
\]

– all trees are also graphs, so we get trees for free

A general search program (skeleton)

– search just calls search1, having put the given start state in a list...

\[
\text{(define \(\text{search} \ x \ f\))}
\begin{align*}
\text{(define \(\text{search1} \ queue \ finish\))}
\begin{align*}
\text{\(\text{cond} \ (\text{null?} \ queue) \ \#f\) not found} \\
\text{\(\text{\#t}\) if found}
\end{align*}
\end{align*}
\]

– ‘queue’ is an ordered list of nodes for us to examine next

– expand returns the children of given node
Specialisation to depth first search

- fill in the blanks as follows
 • ‘expand’ becomes
 (define (expand node) (2d-get node 'children))
 • ‘appropriate merge’ becomes
 (append (expand (car queue)) (cdr queue))

(define (dfs s f)
 (define (dfs1 queue finish)
 (cond ((null? queue) #f)
 ((equal? finish (caar queue)) (reverse (car queue)) #t)
 (else (dfs1 (append (expand (car queue))
 (cdr queue))
 finish))))
 (dfs1 (list s) f))

Another trace

> (dfs 's 'f)
1. Trace: (DFS 'S 'F)
2. Trace: (DFS1 '(S) 'F)
3. Trace: (DFS1 '(L O) 'F)
4. Trace: (DFS1 '(M R O) 'F)
5. Trace: (DFS1 '(N R O) 'F)
6. Trace: (DFS1 '(R R O) 'F)
7. Trace: (DFS1 '(R O) 'F)
8. Trace: (DFS1 '(O) 'F)
9. Trace: (DFS1 '(P Q) 'F)
10. Trace: (DFS1 '(T Q) 'F)
11. Trace: (DFS1 '(Q) 'F)
12. Trace: (DFS1 '(T) 'F)
13. Trace: (DFS1 '() 'F)
13. Trace: DFS1 ==> #f

Making dfs return a route

- new code in bold font

(define (dfs s f)
 (define (dfs1 queue finish)
 (cond ((null? queue) #f)
 (equal? (caar queue) finish) #t)
 (else (dfs1 (append (expand (car queue))
 (cdr queue))
 finish))))
 (dfs1 (list s) f))

(define (expand route)
 ; return list of new routes
 (map (lambda (child) (cons child route))
 (2d-get (car route) 'children)))

Making dfs return a route (cont.)

- add code in bold font

(define (dfs s f)
 (define (dfs1 queue finish)
 (cond ((null? queue) #f)
 (equal? (caar queue) finish) #t)
 (else (dfs1 (append (expand (car queue))
 (cdr queue))
 finish))))
 (dfs1 (list s) f))

(define (expand route)
 ; return list of new routes
 (map (lambda (child) (cons child route))
 (2d-get (car route) 'children)))

A trace for a ‘town to town’ search

> (trace dfs dfs1)
1. Trace: (DFS 'S 'F)
2. Trace: (DFS1 'S 'F)
3. Trace: (DFS1 '(L O) 'F)
4. Trace: (DFS1 '(M R O) 'F)
5. Trace: (DFS1 'N R O) 'F)
6. Trace: (DFS1 'R R O) 'F)
7. Trace: DFS1 ==> #t
8. Trace: DFS1 ==> #t
9. Trace: DFS1 ==> #t
10. Trace: DFS1 ==> #t
11. Trace: DFS1 ==> #t
12. Trace: DFS1 ==> #t
13. Trace: DFS1 ==> #t

Making dfs return a route (cont.)

- pack the required information into the queue elements
 - the queue formerly developed like this (in our first example graph):
 (s) -> (l o) -> (m f o) -> (n f o) -> (f f o)
 - we will change it so it develops like this:
 (s)
 (l s) (o s)
 (m l s) (f l s) (o s)
 (n m l s) (f l s) (o s)
 (f n m l s) (f l s) (o s)
 - success achieved when
 (equal? (car queue) finish))
A dfs example with closed loops

- here’s the data structure

 (2d-put! 'a 'children '(a b))
 (2d-put! 'b 'children '(a b f))
 (2d-put! 'c 'children '(s a c))
 (2d-put! 'f 'children '(a c))

- given the queue develops as follows:

 ((s))
 ((a s) (b s))
 (s a s) (a b a s) (c b a s) (f a s) (b s))
 (b c b a s) (f c b a s) (f a s) (b s))
 (b c b a s) (f c b a s) (f a s) (b s))

 ... and on the next expansion we detect success
 (equal? (caar queue) 'f)

Summary

- search is a problem with states and a state space
- basic tree search is trivial but restrictive;
 a general search procedure is more useful
 * can be easily adapted to do dfs, bfs, ...
 * uses an explicit graph state space representation that
 is very flexible and extensible (graphs + trees)
 * returns the route traversed
 * detects and avoids loops

Unit 5: More searching

- aims
 * to continue the exploration of search started in
 the previous unit
 * breadth first search
 * best first search
 * hill climbing
 * branch and bound
 * beam search

Breadth first search

- modifying our dfs program to do bfs is trivial!
 just add new routes to the back of queue rather than the front

(define (bfs s f)
 (define (bfs1 queue finish)
 (cond ((null? queue) #f)
 ((equal? finish (caar queue))
 (reverse (car queue)))
 (else (bfs1 (append (cdr queue)
 (expand (car queue)))
 finish))))

Evolution of the queue of routes in bfs

- ((s)) ->
- ((l s)(o s)) ->
- ((o s)(m l s)(f l s)) ->
- ((m l s)(p o s)(q o s)(n m l s))
- ... and on the next expansion we detect success
 (equal? (caar queue) 'f)

Best first search

- dfs expands the first route in the queue
- bfs expands the last route in the queue...
- best first search expands the 'best' route
 * 'best' is that which is estimated to be nearest to a
 finish node
 * determining 'best' requires a heuristic (informed
 guess)
 * the heuristic sorts the queue of routes according to a
 predicate closer?
Best first search

```scheme
(define (best s f)
  (define (best1 queue finish)
    (cond ((null? queue) #f)
          ((equal? finish (caar queue))
            (reverse (car queue)))
          (else (best1 (sort (append (car queue)
                                      (cdr queue))
                        (lambda (x y) (closer? x y finish)))
                     finish))))
  (best1 (list (list s)) f))
```

An implementation of `closer`?

- the following works if we consider ‘as-the-crow-flies’ geographical distance to be a good heuristic
- we assume properties called X and Y to represent coordinates
- we assume the existence of a sqrt square-root procedure

```scheme
(define (closer? a b target)
  (define (distance n1 n2)
    (sqrt (+ (square (- (2d-get n1 'X)
                      (2d-get n2 'X)))
            (square (- (2d-get n1 'Y)
                      (2d-get n2 'Y))))
        (< (distance (car a) target)
           (distance (car b) target)))
```

Hill climbing

- like best first search, but, rather than sorting the whole queue, we sort only the children of the first queue item and place them at the head of the queue
- hill climbing is thus a compromise between best first search and dfs
 - it minimises best first search’s overhead of queue sorting on each expansion
 - while still giving some direction to the blindness of DFS
- homework: define a hill climbing variant of our search program

Branch and bound search

- `guaranteed` to find the ‘shortest’ route from start to finish
- works by sorting the queue of routes in terms of distance travelled so far - always expand the shortest route next
- just use best first search with `shorter?` as sort predicate:

```scheme
(define (shorter? route1 route2)
  (define (route-length p)
    (cond ((null? (cdr p)) 0)
          (else (+ (distance (car p) (cadr p))
                   (route-length (cdr p)))))
    (< (route-length route1) (route-length route2)))
```

Beam search

- think of someone searching in the dark with a torch with a fixed beam width...
- only keep a fixed number, w, of routes in the queue
 - if there are more than w routes in the queue discard all but the first w
 - then expand all the remaining routes in the queue and sort according to closer?
- beam search is not guaranteed to find a finish node!

```scheme
(define (beam s f w)
  (define (beam1 queue finish w)
    (cond ((null? queue) #f)
          ((equal? (caar queue) finish)
            (reverse (car queue)))
          (else (beam1 (sort (apply append
                               (map 'expand
                                    (first-w queue w))
                               (lambda (x y) (closer? x y finish)))
                             finish w))
                             (beam1 (list (list s)) f w)))
  (beam1 (list (list s)) f w))
```

Beam search (cont.)
Summary
– we have applied our generalised search program to implement the following:
 • breadth first search
 • best first search - heuristic search
 • hill climbing - gives heuristic direction to DFS
 • branch and bound - guaranteed to find ‘shortest’ route
 • beam search - not guaranteed to find an existing finish
– we have looked at a simple heuristic - distance - which is used by closer? and shorter?

Overall conclusion on the Scheme material
• we have learned some Scheme concepts and vocabulary
• we have learned to program using recursion
 – simple and recursive cases
 – converging to simple case by
 • decrementing integer (e.g. pile of stones)
 • cdr’ing down lists (e.g. list length)
 • car and cdr based recursion (e.g. flatten)
• we have looked at search
 – designed a generic search space representation
 – designed a generic search procedure
 – specialised the generic search procedure with various strategies...