Systems Engineering

- Designing, implementing, deploying and operating systems which include hardware, software and people

What is a system?

- A purposeful collection of inter-related components working together towards some common objective.
- A system may include software, mechanical, electrical and electronic hardware and be operated by people.
- System components are dependent on other system components
- The properties and behaviour of system components are inextricably inter-mingled

Problems of systems engineering

- Large systems are usually designed to solve 'wicked' problems
- Systems engineering requires a great deal of co-ordination across disciplines
 - Almost infinite possibilities for design trade-offs across components
 - Mutual distrust and lack of understanding across engineering disciplines
- Systems must be designed to last many years in a changing environment

Software and systems engineering

- The proportion of software in systems is increasing. Software-driven general purpose electronics is replacing special-purpose systems
- Problems of systems engineering are similar to problems of software engineering
- Software is (unfortunately) seen as a problem in systems engineering. Many large system projects have been delayed because of software problems

Emergent properties

- Properties of the system as a whole rather than properties that can be derived from the properties of components of a system
- Emergent properties are a consequence of the relationships between system components
- They can therefore only be assessed and measured once the components have been integrated into a system
Examples of emergent properties

1. The overall weight of the system
 - This is an example of an emergent property that can be computed from individual component properties.

2. The reliability of the system
 - This depends on the reliability of system components and the relationships between the components.

3. The usability of a system
 - This is a complex property which is not simply dependent on the system hardware and software but also depends on the system operators and the environment where it is used.

Types of (emergent) property

1. Functional properties
 - These appear when all the parts of a system work together to achieve some objective. For example, a bicycle has the functional property of being a transportation device once it has been assembled from its components.

2. Non-functional (emergent) properties
 - Examples are reliability, performance, safety, and security. These relate to the behaviour of the system in its operational environment. They are often critical for computer-based systems as failure to achieve some minimal defined level in these properties may make the system unusable.

The ‘shall-not’ properties

1. Properties such as performance and reliability can be measured
2. However, some properties are properties that the system should not exhibit
 - Safety - the system should not behave in an unsafe way
 - Security - the system should not permit unauthorised use
3. Measuring or assessing these properties is very hard

Systems and their environment

1. Systems are not independent but exist in an environment
2. System’s function may be to change its environment
3. Environment affects the functioning of the system e.g., system may require electrical supply from its environment
4. The organizational as well as the physical environment may be important

System hierarchies

Human and organisational factors

1. Process changes
 - Does the system require changes to the work processes in the environment?
2. Job changes
 - Does the system de-skill the users in an environment or cause them to change the way they work?
3. Organisational changes
 - Does the system change the political power structure in an organisation?
The system engineering process

1. Usually follows a ‘waterfall’ model because of the need for parallel development of different parts of the system
 - Little scope for iteration between phases because hardware changes are very expensive. Software may have to compensate for hardware problems
2. Inevitably involves engineers from different disciplines who must work together
 - Much scope for misunderstanding here. Different disciplines use a different vocabulary and much negotiation is required. Engineers may have personal agendas to fulfil

The system design process

1. Partition requirements
 - Organise requirements into related groups
2. Identify sub-systems
 - Identify a set of sub-systems which collectively can meet the system requirements
 - Causes particular problems when COTS are integrated
3. Assign requirements to sub-systems
 - Critical activity for parallel sub-system development
 - N.B. emergent properties
4. Specify sub-system functionality
5. Define sub-system interfaces

System design problems

1. Requirements partitioning to hardware, software and human components may involve a lot of negotiation
2. Difficult design problems are often assumed to be readily solved using software
3. Hardware platforms may be inappropriate for software requirements so software must compensate for this

System architecture modelling

1. An architectural model presents an abstract view of the sub-systems making up a system
2. May include major information flows between sub-systems
3. Usually presented as a block diagram
4. May identify different types of functional component in the model
Intruder alarm system

Component types in alarm system

1. Sensor
 - Movement sensor, door sensor
2. Actuator
 - Siren
3. Communication
 - Telephone caller
4. Co-ordination
 - Alarm controller
5. Interface
 - Voice synthesizer

Functional system components

1. Sensor components
2. Actuator components
3. Computation components + memory
4. Communication components
5. Co-ordination components
6. Interface components

System components

1. Sensor components
 - Collect information from the system’s environment e.g. radars in an air traffic control system
2. Actuator components
 - Cause some change in the system’s environment e.g. valves in a process control system which increase or decrease material flow in a pipe
3. Computation components
 - Carry out some computations on an input to produce an output e.g. a floating point processor in a computer system

All components are now usually software controlled

summary

1. software is part of a larger system
 - hardware, software, people, environment
2. emergent properties
 - the whole more than the sum of the parts
3. system development
 - design subsystems and interrelations
 - hardware, software, people, environment