Sample Answer 1

The aim of this is partly to give more opportunity to get credit for individual reflection on substantial coursework and partly to distinguish those who were actively engaged from those who were free-riders!

Each coursework is different so no real sample answer here, but things I'm looking for …

(i) Easy marks to get them started

(ii) They may not have thought of this explicitly in relation to their coursework, but was discussed several times in relation to examples.

(iii) Will give one mark for simply giving each example and extra 2 marks each depending on quality of description.

(iv) The focus is on how they would tackle outstanding problems using a user-centred way of thinking. Possible answers would include more detailed scenarios, user testing, experiments, formal analysis.
Sample Answer 2

(i) Different properties of a network/telecomms channel
- bandwidth – amount/rate of information transfer
- latency – average end-to-end delay
- jitter – variation in delay

(ii) This answer may be organised as media within sites (as here) the other way round, or a mix.
X–A – high bandwidth, low delays and low jitter – good for everything!
X–B – high latency will behave badly with both audio and video for interactive conversations (a) & (b). In particular, normal conversation has very small gaps (fraction of a second) which are used by participants to hand-over to one another. The participants will have problems similar to trans-continental satellite links.
The high latency will not hinder streaming video/audio which can simply be slightly delayed.
X–C – low bandwidth – will mean high compression and/or loss of quality. This will rule it out for Hi-Fi audio and high quality video. Interactive audio may cope (depending on how low the bandwidth) and web cam can simply have reduced frame rate and resolution.
X–D – high jitter – (without buffering) will mean that both interactive and streaming audio will be badly affected (we can not stand delays/missing parts of speech). The interactive video will simply occasionally have broken frames which is acceptable. Depending on the level of jitter this will probably mean the quality is too bad for hotel video application.

(iii) Buffering can be used to change jitter into delay (there are various diagrams of this in the course notes, or they can simply describe why). This effectively means that X–D can then be used for streaming audio/video, but still not suitable for interactive audio except at 'trans-Atlantic' style quality.

(iv) In case X–B, the applet based solution would be necessary to achieve good interactive feedback for free-hand drawing. However, applet security would mean that the server would need to sit on the same machine as the web server (or need signed applet). Also the software will need to be more complicated as there will be the possibilities of race conditions when updates are done simultaneously by different participants. Feedthrough will also be poor.
In case X–C, the central server solution may be chosen as the low latency and jitter mean that it can give fully interactive feedback even for mouse movements (ideally students may quote figures of around 200 ms maximum round trip feedback time for this). This will have an easier implementation. There may still be problems however in updating photo images on the individual displays, perhaps a delay when the application is first launched as the photos are downloaded over the low bandwidth connection. Feedthrough better.
Sample Answer 3

(i) Lots of possible things in each category, for example:
 • Presentation/lexical – colours of buttons, labels on buttons, words in audio
 warnings, layout of control panel, …
 • Dialogue/syntactic – need to conform alarm-red state and emergency
 shutdown, STNs, enabling of manual override in red state, …
 • Application/semantic – change of actual target values, contacting of
 emergency services, control of exploding bolts,

(ii) Switch is about rapid semantic feedback (under dialogue control), and is for
 things like line drawing, highlighting of icons based on detailed semantic
 differences. The buttons etc. on the control panel don’t really need this rate of
 feedback.

(iii) CS.4 – no ‘+’ transition from RED state, no ‘−’ transition from GREEN state.
 Suggest that these should simply do nothing, but perhaps have an audible beep so
 that you know that the action is being ignored.
 CS.5 – no ‘+’ transition from TEMP or RED states. No ‘−’ from GREEN and
 TEMP state. CONFIRM and CANCEL undefined from nearly all states. Would
 suggest doing nothing (with beep) for all except ‘−’ from TEMP state. In this state
 the system looks similar to RED state which suggest that ‘−’ should take the
 system back to AMBER. This also means that ‘+’ followed by ‘−’ always gets you
 back to the same state. Students may also notice that the TEMP state and RED
 state are indistinguishable – perhaps make TEMP state be flashing red light?

(iv) There was a potential for accidentally getting into state RED, which is a
 ‘dangerous state’ of the STN. The CONFIRM button reduces the likelihood of an
 accidental RED state (perhaps there had been too many false alarms before the
 consultant’s visit?). If the student is observant or has done question 4 before this,
 may also notice that there is a potential for missing the CONFIRM action and thus
 dangerously failing to get into RED state.
Sample Answer 4

(i) Red represents danger (cultural, but pretty universal), so good to represent alert
state and for emergency shutdown and confirm button. Similarly green represents
safety. In UK and some countries green/amber/red also used for traffic lights, and
alarm panel reflects this (recruiting real world knowledge). Red also good to grab
attention and seems 'close' (visual perception and 3D vision), so good choice for
making CONFIRM button obvious when it needs to be pressed
But . red/green colour blind users would have some problems. The alarm state
indicator is fine as colour is a redundant cue and can simply use location, butt
perhaps text label would help. The confirm button however fails completely as
the only way f telling it needs to be pressed is the green to red colour change
which would be invisible. Perhaps making it red and flash would be better

(ii) The sub-panels give some logical grouping, especially good for original alarm
control, but spoil a bit with revised alarm behaviour where the CONFIRM button
is part of the same logical interaction – perhaps an additional CONFIRM button
on the Alarm panel would have been better. The location of Emergency
shutdown immediately above the CONFIRM does emphasise both grouping and
sequence, but perhaps should either be part of same panel or have a line/coloured
box drawn on the control panel linking them.
The manual override controls are all grouped together, but the position and layout
of the keypad are unusual (?problems for left handed users). The normal
sequence is select target, move right to the keypad (OK for most eurpean
settings), but then back left again for SET button, perhaps the last a little
unnatural. Again linking the three sub-panels with a drawn box or colouring them
could increase the emphasis that they have a common function. The main
sequence/grouping problem is that they are only enabled in red mode hence
changes to them involve going back and forth across the control room.
In general it seems the uniform size of the sub-panels is causing some problematic
design choices..

(iii) See next sheet

(iv) oops I’ve answered some of that in the above (so may students and I’ll watch for
it). Have a separate CONFIRM button on the Alarm control panel, making it
flash so it is more raedily seen in peripheral vision. Distinguishing red from
temporary red state by perhaps flashing the red light would also help prevent the
initial mode error. Also, when the user tries to select a target and enter a value, a
warning of some sort should be issued. This could simply be a 'this doesn't work'
beep, but better would be a warning written on the manual override panel with
perhaps lights up when not in RED alarm state.
Answer 4 continued

Annotated scenario for Q4 part iii

[[Original text in italics to aid reading, the expected answer is in normal type. This is a very full answer. This situation mirrors quite closely a mode and closure error in Excel that we discussed at length in class.]]

Note: Jenny has been 6 hours on a night shift, so errors are likely especially under stress.

1. Jenny notices the core reaction rate has risen very rapidly
 one perhaps wonders why this wasn't noticed earlier, perhaps a problem in positioning of displays?
2. she realises she must immediately change the reactor target …
 OK
3. she goes to the Alarm Control Panel … presses ‘+’ twice
 Jenny has remembered that she needs to be in RED state to use manual override
4. the Emergency Confirm button glows red
 OK, Jenny should press CONFIRM now, but having pressed then ‘+’ and seen the RED alarm state light glow she gets the 'aha' feeling of closure and forgets to press CONFIRM. The red is CONFIRM button is intended to remind her but …
5. she moves across to the Manual Override panel …
 clearly Jenny didn't notice the CONFIRM button, presumably because it is at the bottom of the panel and she is looking at the Alarm control at the top. Peripheral vision is good at black and white (contrast) changes, but not colour.
6. she selects 'Pressure' from the pull down on the Manual Override panel
 which won’t work because she is in the wrong Alarm state – this is a mode error caused by the original closure error, but when she is at the far left of the control panel the current system mode (temporary red alarm state) is not visually (or audibly clear).
7. she types the new value '6000' using the keypad
 and forgets to press SET – another a closure error
8. she notices that the number on the Reactor Targets panel has not changed
 happily she does double check this rather than simply moving on which would have easily been possible
9. she realises she forgot to press the SET button on the Manual Override panel
 OK realises this one, perhaps because of better logical grouping
10. she presses the SET button
 OK, but …
11. the value still doesn’t change
 still in wrong mode (alarm state temp red)
12. an automatic audio warning sounds "60 seconds to core meltdown"
 good choice of warning modality to use sparingly for critical information. In a big control room a visual alarm would easily be missed.
Answer 4 continued …

Annotated scenario for Q4 part iii, continued …

13. she presses the SET button repeatedly
 typical user reaction, happily doesn't cause bad effects!
14. still the value doesn't change
 still in wrong mode and despite repeated failure still doesn’t think of a mode error
 – which is normal behaviour in error situations – the expected mode is part of the
 assumptions she brings to her problem solving
15. she starts again, selects 'Pressure' from the pulldown, types 6000 and presses SET
 presumably thinking that the previous part-finished action sequence before
 'confused' the system
16. still the value doesn't change
17. the audio warning says "30 seconds to core meltdown"
18. Jenny runs across the room to the Emergency Shutdown panel
 no, still doesn't realise that the problem is the wrong alarm state, but now aiming
 to shutdown the reactor to avoid meltdown
19. "20 seconds to core meltdown"
20. she presses "Immediate Emergency Commence” button
 correct action in dire emergency
21. the emergency conform button glows red
 but this time is close to the button she has just pressed (in fact it would have
 already been glowing when she got there, but perhaps didn’t notice as she was
 running and stressed) and so this time she notices the CONFIRM button …
22. "10 seconds to core meltdown"
23. she presses the "Emergency Confirm" button
 … at last!
24. she hears the crash of the explosive bolts …
 actually there is nothing quite so good as real physical feedback whether visual,
 tactile or, as in this case, audible
25. the audio system announces "reactor shutdown successful"
 but restarting the reactor will take weeks costing vast amounts of money!
Sample Answer 5

The missing state variables probably only become apparent when attempting to describe actions, but you can't describe actions without state, hence the advice.

(i) State description

| Alarm_State: {Green, Amber, TempRed, Red} |
| Confirm_Needed: Boolean [that is true or false] |
| Target_Pressure: Nat [that is { 0, 1, 2, ... }] |
| Target_Temp: Nat |
| Target_Flow: Nat |
| Manual_Override_Value: Nat |
| Target_For_Override: { Pressure, Temp, Flow } |
| Shutdown_State: {Normal, Waiting_Confirm, Confirmed} |

Although it would be possible not to have the Confirm_Needed flag and instead use the states of the Alarm_State and Shutdown_State, I have recommended using such flag variables to encourage clarity, rather than relying on complex cases involving 'special values'.

(ii) Completed state change descriptions

confirm

`set Confirm_Needed to false`

`if (Alarm_State is TempRed) then set Alarm_State to Red`

`if (Shutdown_State is Waiting_Confirm) then set Shutdown_State to Confirmed`

cancel

`set Confirm_Needed to false`

`if (Alarm_State is TempRed) then set Alarm_State to Amber`

`if (Shutdown_State is Waiting_Confirm) then set Shutdown_State to Normal`
Answer 5 continued

(iii) Additional state change operations

alarm_higher [plus key is pressed]

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm State is Red or Alarm State is TempRed</td>
<td>do nothing</td>
</tr>
<tr>
<td>Alarm State is Amber</td>
<td>set Alarm State to TempRed and set Confirm_Needed to true</td>
</tr>
<tr>
<td>Alarm State is Green</td>
<td>set Alarm State to Amber</td>
</tr>
</tbody>
</table>

shutdown [IMMEDIATE SHUTDOWN COMMENCE button pressed]

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shutdown State is Normal</td>
<td>set Shutdown State to Waiting_Confirm and set Confirm_Needed to true</td>
</tr>
<tr>
<td>otherwise</td>
<td>do nothing [N.B. don't go from Conformed to Waiting!]</td>
</tr>
</tbody>
</table>

select_target(targ) [the target pulldown has been used]

<table>
<thead>
<tr>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>set Target_For.Override to targ</td>
</tr>
<tr>
<td>set Manual.Override_Value to zero</td>
</tr>
</tbody>
</table>

set_target_value [the SET button has been pressed]

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm State is not Red</td>
<td>do nothing</td>
</tr>
<tr>
<td>otherwise</td>
<td>...</td>
</tr>
<tr>
<td>Target_For.Override is Pressure</td>
<td>set Target_Pressure to Manual.Override_Value</td>
</tr>
<tr>
<td>Target_For.Override is Temp</td>
<td>set Target_Temp to Manual.Override_Value</td>
</tr>
<tr>
<td>Target_For.Override is Flow</td>
<td>set Target_Flow to Manual.Override_Value</td>
</tr>
</tbody>
</table>
Answer 5 continued

(iv) annotated scenario

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>no system actions</td>
</tr>
<tr>
<td>3</td>
<td>press '+' twice</td>
</tr>
<tr>
<td></td>
<td>alarm<sub>higher</sub>:</td>
</tr>
<tr>
<td></td>
<td>Alarm State = Amber</td>
</tr>
<tr>
<td></td>
<td>alarm<sub>higher</sub>:</td>
</tr>
<tr>
<td></td>
<td>Alarm State = TempRed</td>
</tr>
<tr>
<td></td>
<td>Confirm Needed = True</td>
</tr>
<tr>
<td>4</td>
<td>button glows because Confirm Needed = True</td>
</tr>
<tr>
<td>5</td>
<td>no system action</td>
</tr>
<tr>
<td>6</td>
<td>select pressure</td>
</tr>
<tr>
<td></td>
<td>select<sub>target</sub>(Pressure):</td>
</tr>
<tr>
<td></td>
<td>Target For Override = Pressure</td>
</tr>
<tr>
<td></td>
<td>Manual Override Value = 0</td>
</tr>
<tr>
<td>7</td>
<td>types the new value '6000'</td>
</tr>
<tr>
<td></td>
<td>Keypad<sub>digit</sub>(6):</td>
</tr>
<tr>
<td></td>
<td>Manual Override Value = 6</td>
</tr>
<tr>
<td></td>
<td>Keypad<sub>digit</sub>(0):</td>
</tr>
<tr>
<td></td>
<td>Manual Override Value = 60</td>
</tr>
<tr>
<td></td>
<td>Keypad<sub>digit</sub>(0), Keypad<sub>digit</sub>(0):</td>
</tr>
<tr>
<td></td>
<td>Manual Override Value = 6000</td>
</tr>
<tr>
<td>8, 9</td>
<td>no system action</td>
</tr>
<tr>
<td>10</td>
<td>presses the SET button</td>
</tr>
<tr>
<td></td>
<td>set<sub>target_value</sub>:</td>
</tr>
<tr>
<td></td>
<td>nothing happens (Alarm State not Red)</td>
</tr>
<tr>
<td>11</td>
<td>no system action</td>
</tr>
<tr>
<td>12</td>
<td>system action outside control panel being modelled</td>
</tr>
<tr>
<td>13, 14</td>
<td>as with step 10,11 nothing changes</td>
</tr>
<tr>
<td>15, 16, 17</td>
<td>as steps 6, 7, 10, 11 and 12</td>
</tr>
<tr>
<td>18</td>
<td>no system action</td>
</tr>
<tr>
<td>19</td>
<td>as step 12</td>
</tr>
<tr>
<td>20</td>
<td>presses "Immediate Emergency Commence"</td>
</tr>
<tr>
<td></td>
<td>shutdown:</td>
</tr>
<tr>
<td></td>
<td>Shutdown State = Waiting_Confirm</td>
</tr>
<tr>
<td></td>
<td>Confirm Needed = true</td>
</tr>
<tr>
<td>21</td>
<td>button glows because Confirm Needed = True</td>
</tr>
<tr>
<td>22</td>
<td>no system action</td>
</tr>
<tr>
<td>20</td>
<td>presses "Immediate Emergency Commence"</td>
</tr>
<tr>
<td></td>
<td>confirm:</td>
</tr>
<tr>
<td></td>
<td>Shutdown State = Confirmed</td>
</tr>
<tr>
<td></td>
<td>Confirm Needed = false</td>
</tr>
<tr>
<td>24, 25</td>
<td>action outside description of control panel (but v. important!)</td>
</tr>
</tbody>
</table>