Rainbow
colours in the eye and on the screen

Alan Dix
email: alan@hcibook.com
http://www.hcibook.com/alan/

Rainbow - colours in the eye and on the screen

- play with colours
- use of colour
- ‘physics’ of colour
- how we see colour
- how computers do colour
- see also: www.colormatters.com

play with colours

- colour is surprisingly complex
 - physics, aesthetics, psychology
- using colour can be fun
 - experiment, play with it!
- context matters
 - we all see colours differently
 - perception of colour depends on surroundings
 - different at midday or night

the eye of the beholder
context matters

good use of colour

- using conventions (red for alarms etc.)
- ‘branding’ parts of an interface
- occasional emphasis
- redundant coding
 - i.e. in addition to other means
 - e.g. web link colours - also underlined
 - for diagrams, etc.

bad use of colour

- over use - without very good reason (e.g. kids’ site)
- colour blindness
- poor use of contrast
- do adjust your set!
 - adjust your monitor to greys only
 - can you still read your screen?
'physics' of colour

- 'colour' is the wavelength of light
 - like pitch is the wavelength of sound
- spectrum
 - from red - longest
 - to violet - shortest
 - and beyond …
 - red → infra red (heat) → microwaves → radio
 - violet → ultraviolet → … nasty radiation

mixing colour

- mixing paint
 - blue + yellow = green (really cyan)
- mixing lights
 - red + green = yellow
- called additive and subtractive colour

additive colour - mixing light

- physically both colours in the mixed light
- like a chord in music
- light is really red + green
- we see yellow

subtractive - mixing paint

- cyan paint absorbs a lot of red
- yellow paint absorbs a lot of blue
- cyan + yellow absorbs most of the red and blue leaving mainly green light reflected
- so we see green

primary colours

- in music we hear chords and harmony
 \[C + G \neq E \]
- there are no primary ‘notes’ in music
 - so why three primary colours?
 - not physics … but the eye

in the eye

- two types of sensory cells:
 - rods
 - see black and white and grey
 - best in low light
 - good at seeing movement
 - cones
 - see colours
 - best in bright light
how we see colour

... three types of cones:
- red, green and blue!
- well nearly ...
 ... like 3 radios tuned to different stations
- each type sensitive to a range of light frequencies
- eye compares ‘response’ of each kind
- each mix has same response as some pure colour
- 3 receptors => 3 dimensions of colour

rods and cones

- how many
 - more in the centre (fovea) than the edges
 => better central vision
- where they are
 - cones towards centre, rods towards edge
 => peripheral vision
 - low-light, good at movement, black and white
- how fast
 - black and white faster (in brain) than colour

how computers do colour

- lots of spots of red, blue and green
- eye merges them to form colours
- like pointillist painting
- colours described using RGB
 - amount of each colour they have
 - e.g. #ff00ff = purple

variations

- different colour models:
 - HSI, CMYK, CIE
 - used for different purposes
- screen depth
 - number of bits used per pixel
 - 24 = 8 bits per colour (RGB) = 16 million colours
 - 32 as above, also ‘alpha channel’ (transparency)
 - 16 = 5 bits per colour = ‘thousands of colours’
 - 8 too few to split, need designed palettes

palettes

- mapping:
 - 256 colours (8 bits) → selection of full (24 bit) RGB
- options:
 - application palettes (why funny things happen?)
 - system palette (slightly different between platforms)
 - ‘web safe’ colours
 - 6 colour levels for each RGB channel 000000 to ff0000 => 216
 - combinations of hex 00,33,66,99,cc,ff
 - e.g. #a03300, #0000ff, #999999

who it was

Alan Dix
alan@hcibook.com
http://www.hcibook.com/alan/
http://www.hcibook.com/alan/teaching/bigui/
see also
www.colormatters.com