
1

Machine Learning

Dr. Corina Sas

Computing Department
Lancaster University

Overview
Supervised learning

Artificial Neural Networks (some)
Decision Trees
Learning Vector Quantisation

Unsupervised learning
Self Organising Maps

Machine Learning Algorithms
Supervised algorithms - require a set of classified examples.

Examples:
Artificial Neural Networks (some)
Decision tress
Learning Vector Quantisation (LVQ)

Unsupervised algorithms - do not require classified examples.
Examples:

K-means clustering
Hierarchical clustering
Principal component analysis
Self Organising Maps (SOM)

Supervised learning
Creates a function from the training data (inputs and
their outputs).
Task: predict the values of this function for any valid
input (not necessarily part of the training set).
Generalisation from training set to unseen inputs.

Artificial Neural Network

Neuron
Multilayer perceptron
Backpropagation
Recurrent NNs

Neurons
Neurons – basic
information processing
structures

Cell body (soma)
Dendrites
Axon
Axon terminals

http://www.mind.ilstu.edu/curriculum2/neuro/neuron_1.html

2

Information Processing
Neuron functions:

Receive input information
Process it
Send information as output.

Neural network
Synapses enable information to flow
Input information determine neuron to generate electric
signal (action potential)

When the electric property of the membrane reaches a
point (threshold)

Action potential is transmitted along the axon and its output
is sent to other neurons

Multilayer Perceptron
Input layer generate impulses
Transmitted to the units in hidden layer

Connections: excitatory (+1),
inhibitory (-1), or (0).

A hidden unit becomes active if the
sum of its inputs exceed a threshold
value.
Hidden unit produces an output which
is sent to the output layer.
A output unit becomes active if the sum
of its inputs exceed a threshold value

weights

Multilayer Perceptron
Training:

Repeatedly presented with sample inputs and desired targets.
During training a pattern is applied to the input layer, and
the stimulus is propagated through the layers until an output
layer unit is activated.

Output and targets compared and error measured.
Adjusts weights until correct output for every (most of) input.

If the correct output layer unit is activated, the output of the
corresponding hidden layer units is increased
If the incorrect output layer unit is activated the output of
the corresponding hidden layer units is decreased.

Training phases
Error back-propagation – minimises the error between the network output and the

training samples.
Forward pass – an activity pattern is applied and its effect is propagated through the

net.
Activations of hidden layer units calculated from net input (sum input
layer units they are connected to *connection weights) then passing
through transfer function.

Input to hidden unit k: netk = ∑ wki* xi

Output of hidden unit k: outputk = f(netk)
Activations of output layer units calculated from the activation of hidden
layer units (net input*connection weights) then passing through transfer
function.

Input to output unit i: neti = ∑ wik* outputk
Output of output unit i: outputi = f(neti)

Training phases
Backward pass

The network output is subtracted from the target output to
produce an error, which is propagated backwards through the
network.
Compute the difference between actual activation of each
output (yk) and desired target (dk): error = dk – yk
Learning rate parameter η used to control amount weights
which are updated during each cycle.
The weights are not fixed but adjusted, according to:

wki(t+1) = wki(t)+ η[dk(t) – yk(t)] xi(t),

The two phases are repeated many times for different input
patterns and their targets, until error between actual outputs
and targets output is small for all training patterns.

Backpropagation
Backpropagation is an example of supervised learning
Training inputs and their corresponding outputs are
supplied to the network
The network calculates error signals, and uses these to
adjust the weights
After many passes, the network settles to a low error on
the training data
It is then tested on test data that it has not seen before,
to measure its generalisation ability

3

Recurrent Networks
Time in cognition

Cognitive processes and behaviours unfold in real
time

Embodying time in NNs
Time should be represented by its effect on
processing rather than an extra dimension of the
input

Jordan and Elman NNs

Jordan Recurrent NNs
Jordan (1986) added recurrent

connections by coping the
output units in the context units
Input neurons receive
information directly from the
input patterns
Output neurons provide the
response learned by the network
Hidden neurons whose major
role consists of discovering the
significant features within the
input patterns
Context neurons which store
short-term memory of the
network, in terms of the output
node activation patterns from
previous time step.

Elman Recurrent NNs
Elman (1990) modified Jordan’s
net
Context neurons which store
short-term memory of the
network, in terms of the hidden
node activation patterns from
previous time step.
Hidden units develop internal
representations which are
encodings of the temporal
properties of the sequential
input

Decision Trees
Decision trees are powerful tools for classification
and prediction.
Unlike neural networks, decision trees represent
rules, easily understood by humans.
Typical inductive approach to learn knowledge on
classification.

Decision Trees
Training set consists of a set of objects, each
described through a set of values on a fixed
collection of attributes.
Pre-defined set of classes to each object from the
training set is pre-assigned and each object of the
testing set will be assigned by the decision tree.
Each object belongs to only one class
There should plenty of training cases (hundreds)
Decision tree – a representation of a decision
procedure for determining the class of an object by
testing its value on the set of attributes.

Example

Yes

Outlook

Humidity

Sunny Overcast Rain

High Normal

Wind

Strong Weak

No Yes YesNo

http://www.uonbi.ac.ke/acad_depts/ics/course_material/FoundationsofAI/

4

Example
Outlook

Humidity

Sunny Overcast Rain

High Normal

No Yes

http://www.uonbi.ac.ke/acad_depts/ics/course_material/FoundationsofAI/

Each internal node tests an attribute

Each branch corresponds to an
attribute value node

Each leaf node assigns a classification

SOM
Unsupervised learning
which maps multi-
dimensional data into a
two-dimensional
representational space
Visualisation of
multidimensional data

similar patterns are
close to each other and
dissimilar patterns are
far apart

SOM
Input layer

A multidimensional vector with each unit coding the value
from one dimension

Output layer
A two-dimensional vector, where each node is associated
with a reference vector (mi): a set of weights from each
input node to the specified output node.

Matrix of connections between each output unit and all the
input units.

Initially each neuron has own set of (random) weights
 (Kohonen, 1996)

SOM
Each input vector is compared to all the reference vectors (weights) and the

location of the best match is defined as winner.
Best match described in terms of a metric, i.e. Euclidean distances

Difference between input vectors and weights of SOM units
D=(∑ (neti – wik)

2)1/2 (square root of the sum of the squared
differences)

Update all weights in neighbourhood around winning unit.
As learning proceeds size of neighbourhood diminished
A winner node has its reference vector adjusted to better match the input

vector
Positive excitatory feedback between SOM unit and nearest neighbours

Causes all the units in ‘neighbourhood’ of winner unit to learn.
As distance from winning unit increases degree of excitation falls
until it becomes inhibition.
Adjustment occurs for a neighbourhood around the winner node:

mi(t+1) = mi(t) + η [x(t) – mi(t)].

SOM
Training

Ordering phase – neurons in different areas of the
network learn to correspond to coarse cluster in the date
Fine-tuning phase – neurons adjust to reflect fine
distinctions, much lengthy

Winner-takes-all strategy
Nodes in the output map compete to each other to
represent the input vectors.
Output layer = competitive layer
Competitive learning – adaptive process through which
neurons from the output layer become slowly sensitive
to the input data, learning to represent better different
types of in inputs.

SOM
Preserving continuity – maps similar inputs to
neighbouring map locations.
The greater variance between the input vectors
features, the better their representation on the
output map.
These features should correspond to the most
important dimensions of the inputs.

5

LVQ
Learning Vector Quantisation (Kohonen, 1995) – supervised
Input layer of multidimensional vectors described by their
features
Output layer whose neurons correspond to predefined classes
Matrix of connections between each output unit and all the
input units – weights vectors.
Since each weight vector corresponds to a class, the vectors
are considered labelled.
Classifying an input vector – computing the distances
(Euclidean dist.) between it and all the weight vectors and
assigned it to the class associated with the closest weight
vector (for which the distance is minimum).

LVQ
Closest weight vector – the winning node.
When both the input vector and the weight vector
belong to the same class (correct classification), then
the weight vector is modified to become a better
approximation of the input vector.
When the input vector is incorrectly classified, then
the weight vector is adjusted such that to increase its
distance of the input vector (since they belong to
different classes).

Example
Trajectory classification

Data pre-processing
degree of occupancy of a predefined set of spatial locations
and an extra input node representing the degree of rotating
in VE (29 nodes)
NV = log10 (9 × LOC + 1) Exploration Level0

Series1

6
5
4
3
2
1

13
12
11
10
9
8

20
19
18
17
16
15

27
26
25
24
23
22

7 14 21 28
Exploration Level0

Series1

6
5
4
3
2
1

13
12
11
10
9
8

20
19
18
17
16
15

27
26
25
24
23
22

7 14 21 28

Map visualisation

LVQ
Once the SOM was trained, the codebook vectors
were used for initialising the weights for LVQ
algorithm.
Overall: classification accuracy increased from 72%
obtained using random initialisation to 87%.

