using formalism in HCI
from cognitive models to placemats

what to model

- users
 - cognitive models
 - task models
- system
 - behaviour
 - architectural structure
- world
 - domain models

notations

- graphical
 - digital watch STNs, Petri Nets, CTT, UML
- textual
 - production rules (used in UI/MS and cog. models)
 - mathematical formulae, process algebras
- plain old sums
 - back of the envelope/placemat calculations

placemat math - menu sizes

- on-screen menus
 - e.g. web site navigation
- how many items per screen?
- frequent misapplication of Miller 7±2
- but how many is right?

placemat math (ii)

- menu tree has N items
- number of items per screen = M (breadth)
- depth (d) = \log(N) / \log(M)

placemat math (iii)

- \(T_{\text{total}} \) - time to find an item
 \(= (T_{\text{display}} + T_{\text{select}}) \times d \)
- \(T_{\text{display}} \) - time to display screen (fixed)
- \(T_{\text{select}} \) - time to select menu item
 \(= A + B \log(M) \) (Fitts’ Law)

- \(T_{\text{total}} = (T_{\text{display}} + A + B \log(M)) \times \log(N) / \log(M) \)
 \(\text{cancel} \)
 \(= ((T_{\text{display}} + A) \times \log(N)) / \log(M) + B \log(N) \)
best menu size?

\[T_{\text{total}} = \left(\frac{T_{\text{select}} + A}{\log(N)} \right) / \log(M) + B \log(N) \]

- larger \(M \) means shorter total time
- the bigger the better!

N.B. other factors
- visual search (linear if not expert)
- error rates
- minimum selectable size
- effective organisation of menu items

what to model

- **users**
 - cognitive models
 - task models
- **system**
 - behaviour
 - architectural structure
- **world**
 - domain models

what to model

- **users**
 - cognitive models
 - task models
- **system**
 - behaviour
 - architectural structure
- **world**
 - domain models

types of system model

- **dialogue – main modes**
 - specific system
- **full state definition**
- **abstract interaction model**
 - generic issues