Rainbow - colours in the eye and on the screen

who I am

Alan Dix
Lancaster University
also aQive and vfridge

email: alan@hcibook.com
http://www.hcibook.com/alan/

play with colours

• colour is surprisingly complex
 – physics, aesthetics, psychology
• using colour can be fun
 – experiment, play with it!
• context matters
 • we all see colours differently
 • perception of colour depends on surroundings
 • different at midday or night

the eye of the beholder
context matters

good use of colour

• using conventions (red for alarms etc.)
• ‘branding’ parts of an interface
• occasional emphasis
• redundant coding
 – i.e. in addition to other means
 • e.g. web link colours - also underlined
 – for diagrams, etc.

bad use of colour

• over use - without very good reason (e.g. kids’ site)
• colour blindness
• poor use of contrast
• do adjust your set!
 – adjust your monitor to greys only
 – can you still read your screen?
'physics' of colour

• 'colour' is the wavelength of light
 • like pitch is the wavelength of sound

• spectrum
 – from red - longest
 – to violet - shortest
 – and beyond …
 • red → infra red (heat) → microwaves → radio
 • violet → ultraviolet → … nasty radiation

mixing colour

• mixing paint
 blue + yellow = green
 (really cyan)

• mixing lights
 red + green = yellow

• called additive and subtractive colour

additive colour - mixing light

– physically both colours in the mixed light
– like a chord in music
– light is really red + green
– we see yellow

subtractive - mixing paint

– cyan paint absorbs a lot of red
– yellow paint absorbs a lot of blue
– cyan + yellow absorbs most of the red and blue
 leaving mainly green light reflected
– so we see green

primary colours

• in music we hear chords and harmony
 \[C + G \neq E \]
• there are no primary ‘notes’ in music

 so why three primary colours?
 not physics … but the eye

in the eye

two types of sensory cells:

• rods
 – see black and white and grey
 – best in low light
 – good at seeing movement

• cones
 – see colours
 – best in bright light
how we see colour

... three types of cones:
– red, green and blue!
– well nearly...
 … like 3 radios tuned to different stations
– each type sensitive to a range of light frequencies
– eye compares ‘response’ of each kind
– each mix has same response as some pure colour
– 3 receptors => 3 dimensions of colour

rods and cones

• how many
 – more in the centre (fovea) than the edges
 => better central vision
• where they are
 – cones towards centre, rods towards edge
 => peripheral vision
 low-light, good at movement, black and white
• how fast
 – black and white faster (in brain) than colour

how computers do colour

• lots of spots of red, blue and green
• eye merges them to form colours
• like pointillist painting

• colours described using RGB
 – amount of each colour they have
 – e.g. #ff00ff = purple

variations

• different colour models:
 – HSL, CMYK, CIE
 – used for different purposes
• screen depth
 – number of bits used per pixel
 – 24 = 8 bits per colour (RGB) = 16 million colours
 – 32 as above, also ‘alpha channel’ (transparency)
 – 16 = 5 bits per colour = ‘thousands of colours’
 – 8 too few to split, need designed palettes

palettes

• mapping:
 256 colours (8 bits) → selection of full (24 bit) RGB
• options:
 – application palettes (‘why funny things happen’)
 – system palette (slightly different between platforms)
 – ‘web safe’ colours
 • 6 colour levels for each RGB channel 6x6x6 = 216
 • combinations of hex 00,33,66,99,cc,ff
 • e.g. #cc3300, #0000ff, #999999

who it was

Alan Dix
alan@hcibook.com
http://www.hcibook.com/alan/
http://www.hcibook.com/alan/teaching/bigui/

see also
www.colormatters.com