special visualisations

Alan Dix
Lancaster University, UK
www.hcibook.com/alan/teaching/delos

overview
Note NOT a comprehensive overview
- selected visualisations relevant to DL
 • book inspired visualisation
 • hierarchical data
 - classification trees, etc.
 • multiple attributes
 - exploration and visualisation
 • very large datasets …

the book as metaphor

• book shelves, page turning, etc.
 - e.g. webbook
• properties of physicality
 - bookmarks, page corners
 - flicking, skimming
 - natural movements
 - thickness of pages

butterfly browser

• 3D visualisation of citations and references
 “open” book represents a document
 right page for citations from newer docs.
 left page lists references to older docs.

but gratuitous 3D ???

hard to read angled text and ...
worst distortion at left edge most imp. for readability

hierarchical data

• hierarchies are everywhere!
 - file systems
 - organisation charts
 - taxonomies
 - classification trees
 - ontologies
 - xml
problems with trees ...

- hard to fit text labels
- width grows rapidly
- overlapping low level nodes

use 3D?

- cone tree
 - use stacked circles of subtrees

cone trees → cam trees

- horizontal layout makes labels readable
- small things matter!

good use of 3D

- still have occlusion ...
 - but ‘normal’ in 3D
- shadows help to disambiguate
- but text labels difficult

dissect 2D space - treemaps

http://www.cs.umd.edu/hcil/treemap-history/

- takes tree of items with some ‘size’
 - e.g. file hierarchy, financial accounts
- alternatively divides space horizontally/vertically for each level, proportionate to total size

<table>
<thead>
<tr>
<th>x</th>
<th>x/a</th>
<th>y</th>
<th>y/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>x/a</td>
<td>4</td>
<td>y/c</td>
<td>1</td>
</tr>
<tr>
<td>x/b</td>
<td>2</td>
<td>y/c</td>
<td>1</td>
</tr>
<tr>
<td>y/c</td>
<td>1</td>
<td>y/d</td>
<td>1</td>
</tr>
<tr>
<td>y/c</td>
<td>1</td>
<td>y/e</td>
<td>1</td>
</tr>
</tbody>
</table>

treemaps (2)

- later variants improved the shape and appearance of maps
treemaps (3)

• plus algorithms for vast data sets, for thumbnail images, etc. etc.

... for digital libraries

• could use treemaps where
 - hierarchy is document categorisation
 - 'size' is number of hits in search or popularity of section

distort space ...

• tree branching factor b:
 - number of nodes at depth \(d \) = \(b^d \)
• Euclidean 2D space:
 - amount of space at radius \(r = 2\pi r \)
 - not enough space!
• non-Euclidean hyperbolic space:
 - exponential space at radius \(r \)
• hyperbolic browser
 - lays out tree in hyperbolic space
 - then uses 2D representation of hyperbolic space

multiple attributes

• often data items have several attributes
• e.g. document:
 - type (journal, conference, book)
 - date of publication
 - author(s)
 - multiple keywords (perhaps in taxonomy)
 - citation count
 - popularity

traditional approach ...

boolean queries

> new query
? type='journal' and keyword='visualisation'
= query processing complete - 2175 results
 list all (Y/N)
> N
> refine query
 refine: type='journal' and keyword='visualisation'
 + author='smith'
 = query processing complete - 0 results

HiBrowse

• multiple selection boxes
 - 'or' within box - 'and' between boxes

<table>
<thead>
<tr>
<th>Keywords</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>digital libraries</td>
<td>173</td>
</tr>
<tr>
<td>HCI</td>
<td>53</td>
</tr>
<tr>
<td>formal models</td>
<td>57</td>
</tr>
<tr>
<td>interaction</td>
<td>157</td>
</tr>
<tr>
<td>task analysis</td>
<td>17</td>
</tr>
<tr>
<td>visualisation</td>
<td>39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>173</td>
</tr>
<tr>
<td>catani</td>
<td>63</td>
</tr>
<tr>
<td>dix</td>
<td>9</td>
</tr>
<tr>
<td>jones</td>
<td>17</td>
</tr>
<tr>
<td>shneiderman</td>
<td>153</td>
</tr>
<tr>
<td>smith</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tags</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>173</td>
</tr>
<tr>
<td>book</td>
<td>53</td>
</tr>
<tr>
<td>conference</td>
<td>17</td>
</tr>
<tr>
<td>journal</td>
<td>39</td>
</tr>
<tr>
<td>other</td>
<td>0</td>
</tr>
</tbody>
</table>
HiBrowse (ii)

- shows how many items with particular value
 - e.g. 39 documents with keyword='visualisation' and type='journal'

<table>
<thead>
<tr>
<th>Keywords</th>
<th>All</th>
<th>Catarci</th>
<th>Dix</th>
<th>Jones</th>
<th>Shneiderman</th>
<th>Smith</th>
<th>Wilson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital libraries</td>
<td>173</td>
<td>53</td>
<td>9</td>
<td>17</td>
<td>24</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>HCI</td>
<td>173</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formal models</td>
<td>173</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interaction</td>
<td>157</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task analysis</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visualisation</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Web</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HiBrowse (iii)

- can predict the effect of refining selection
 - e.g. selecting 'smith' would give empty result

<table>
<thead>
<tr>
<th>Keywords</th>
<th>All</th>
<th>Catarci</th>
<th>Dix</th>
<th>Jones</th>
<th>Shneiderman</th>
<th>Smith</th>
<th>Wilson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital libraries</td>
<td>173</td>
<td>53</td>
<td>9</td>
<td>17</td>
<td>24</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>HCI</td>
<td>173</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formal models</td>
<td>173</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interaction</td>
<td>157</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task analysis</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visualisation</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Web</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HiBrowse (iv)

- refining selection updates counts in real time

<table>
<thead>
<tr>
<th>Keywords</th>
<th>All</th>
<th>Catarci</th>
<th>Dix</th>
<th>Jones</th>
<th>Shneiderman</th>
<th>Smith</th>
<th>Wilson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital libraries</td>
<td>45</td>
<td>19</td>
<td>1</td>
<td>17</td>
<td>24</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>HCI</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formal models</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interaction</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task analysis</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visualisation</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Web</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

starfield (i)

- scatter plot for two attributes
 - colour/shape codes for more
- adjust rest with sliders
 - dots appear/disappear as slider values change
- dynamic filtering
- developed for engineering models
 - like Starfield ...
 - but sliders show histogram
- how many in category (like HiBrowse)
 - ... and how many 'just miss'

red = full match
black = all but one attribute
greys = fewer matching attr's
Influence Explorer (ii)

- some versions highlight individual items in each histogram
- similar technique has been used to match multiple taxonomic classifications

Information Scent

- Starfield shows what is currently selected
- explore using trial and error
- HiBrowse and Influence Explorer show what would happen
- Pirolli et al. call this Information Scent
 - things in the interface that help you know what actions to take to find the information you want

very large datasets

too many points/lines to see solutions ...

- space-filling single-pixel per item Keim's ViS3D
- random selection (see Ellis & Dix, AVI2002)
- clustering visualise groups not individuals