
Hidden Figures: Architectural challenges to
expose parameters lost in code

Alan Dix1[0000−0002−5242−7693]

1 Computational Foundry, Swansea University, Wales
2 Cardiff Metropolitan University, Wales alan@hcibook.com

http://alandix.com/

Abstract. Many critical user interaction design decisions are made in
the heat of detailed development. These include simple parameter choices
or more complex weightings in intelligent algorithms. Many would be ap-
propriate for expert design review, user-preference choices or optimisa-
tion by machine learning, but they are buried deep in the code. Although
the developer may realise this potential, the location of the decision is
far removed in the code from where user feedback occurs, data can be
collected and machine learning could be applied. This position paper
describes several case studies and use them to frame an architectural
challenge for tools and infrastructure to uncover these hidden variables
to make them available for machine learning and user inspection.

Keywords: Intelligent interfaces, machine learning, user interface ar-
chitecture.

1 Motivation

Many critical user interaction design decisions are not made by user experience
designers informed by extensive user research, but rather by a developer working
to a deadline needing to make a choice in order to progress. Sometimes these
are simple parameters such as the time-delay and pixel-precision for a double
click or the default choice in a menu. Some are more complex such as sets of
weightings within intelligent algorithms. Many would be appropriate for expert
design review, user-preference choices or optimisation by machine learning. Some
are identified and maybe tuned using techniques such as A–B testing. However,
often these parameters, values and decisions are buried deep in the code.

Consider the following code fragment:

ON mouseup

IF ABS(mousedown_x - current_x) <= 2

AND ABS(mousedown_y - current_y) <= 2

THEN TRIGGER click

This is configured to allow a maximum 2 pixel drift between mouse-down
and mouse up for it to be considered a click rather than a move/drag. There will

2 A. Dix

be similar constants for the number of milliseconds between two clicks for them
to be regarded as a double click, or in a touch-based interface for press vs hold.

It is often said that in code the only fixed numeric values should be 0 and 1,
any other parameters should be in some sort of constant declaration or configu-
ration. Equally where there is an enumeration, any use of a literal enumeration
value suggests a configuration setting, and a good coder might do this:

CONSTANT click_pixel_precision = 2

CONSTANT double_click_delay = 500

CONSTANT default_font = "Times Roman"

Imagine if these fixed values could be semi-automatically exposed in a user-
preferences dialog and/or made available for machine learning.

In fact, many systems do offer the ability to tune the double-click period
in user preferences, whereas the author has never encountered one that allows
tuning of the pixel threshold for a click. Indeed, the latter is often zero, no
movement allowed, which is particularly problematic for older or younger users,
and clearly not being made available to automated tuning either.

Whether these parameters are escalated to user preferences or automated
optimisation depends partly on the developer recognising their importance, but
also the difficulty of achieving this in most architectures. In the case of user
preferences, the path is slightly easier. The relevant configuration parameters
can be made into variables in some form of central context or configuration
object and set in a preferences dialog. Often this is easier to say than to achieve
as the ownership both organisationally and in terms of code encapsulation may
get in the way.

For automated analysis the path is far harder as the point of use needs to
be instrumented, data collected, stored, passed into some form of continual or
periodic batch learning algorithm and then made available for future execution
of the code.

In principle it is possible to do this. However, every infrastructure, notation,
toolkit and architectural paradigm has a ‘grain’, just like the grain of wood in
carpentry, [7]. It is may be possible to work across the grain, but far more likely
that developers will do the easy thing.

It has long been understood that the paths of connection in a user inter-
face often cut across the module and encapsulation boundaries of functionally-
defined architectures; hence the emergence and importance of frameworks such
as MVC [8] or PAC [2]. More recently the availability of toolkits such as React
(https://react.dev/ and Angular (https://angular.io/) has meant that real-time
interactive editing of backend data has become common, despite the inherent
complexity, as this has been managed within the frameworks.

Similarly, if we want good AI in UX, we need the right frameworks to make
this possible.

In the rest of this paper, we will look at three case studies of system that are to
some extent ‘intelligent’, but within each lie buried parameters and values which

Hidden Figures 3

could be amenable to machine learning to tune and improve the user experience.
In terms of the quadrants of AI for HCI (Fig. 1), this work lies towards to the
bottom right, that is HCI applied to help developers of AI systems, but where
the ultimate goal of the AI development is in the upper quadrant, short and
long-term interactions incorporating AI.

This paper presents an open problem for the community, with hints of a
first direction, but no solution. the author hopes that this will inspire other
researchers to identify similar patterns in their own work and maybe eventu-
ally work towards systematic and generic architectural paradigms for AI-rich
interactions.

Fig. 1. The AI for HCI quadrants.

2 Case studies

These issues are not theoretical. Here are three case studies that the author has
been directly involved in where they have arisen in practice.

2.1 Reading list parsing

Figure. 2 shows a prototype that was produced some years ago, when the author
was working for Talis, which creates reading list software for higher education.
The reading list parser makes initial best guesses at which lines to combine to
make a single reference and then uses Crossref (https://www.crossref.org/) to
produce structured reference data for the resulting blocks. The user can also
fine-tune chosen blocks using the ‘split’ and ‘join’ separators and also edit the
returned references. Crossref returns highly accurate references, but avoids pars-
ing as it effectively uses free-text search over structured bibliographic data [9].

When the system was first created Crossref included few books and non-
journal articles, and so other services were used to supplement it. A separate

4 A. Dix

Fig. 2. Reference list parser: right-hand side is raw text; left-hand side parsed refer-
ences.

book search was implemented using Open Library data (https://openlibrary.org/)
and and Apache Solr free text index [10]. In addition, Freecite API (now retired)
was used to parse the raw text references [1].

There could be results from more than one service, and some services, includ-
ing Crossref, may return several responses, so the responses need to be ranked.
To do this each result was assigned a relevance score. A number of metrics were
used including whether the first author was in the free text reference, whether
the words of the text fields in the structure reference included most of the words
in the text, etc. Some metrics had internal parameters and there were also pref-
erences between the various sources (see Fig. 3). However these were always
‘best guesses’ and never tuned even though the user’s choices to override system
selections could in principle have been used as feedback for machine learning.

Fig. 3. Reference list parser parameters: server side above (fragment), client side below

2.2 Matching historic records

In the InConcert project a few years ago the author was working with musicol-
ogists looking at London concerts from the middle of the 18th Century to the
beginning of the 20th Century. For more recent events concert programmes are

Hidden Figures 5

often extant, but for the 19th Century the main source of information is concert
notices in newspapers, as seen in Figure 4.

Fig. 4. Concert notice in 19th Cnetury newspaper.

The data had been hand transcribed from the notices in a semi-structured
form, but needed substantial interpretative work in order to make it usable for
scholarly analysis. This included matching named entities (people and venues)
within a dataset and between different datasets and also matching of different
concert notices that refer to the same actual concert. Both kinds of matching
needs to be fuzzy. For names people may use initials or full names and have
different honorifics and for places there mat be variant spellings and descriptions.
Events are more complex as there may be some or all of location, date, time,
concert title, and there may be variations in many including of course that the
venues may only fuzzily match.

Automatic matches were made and ranked for the musicologists to hand-
check. The aim was to get the automatic matching as good as possible, but also
not to miss potential matches [6, 4]. As in the case of the reading list parser,
there were many parameters and weights to combine individual features, such
as matched dates and levels of partially matched concert titles, to a single score.
Again these were ‘best guesses’ and never tuned even though in the next stage
the musicologists would accept or reject matches which would, in principle, give
good feedback for machine learning of the parameters.

2.3 Data detectors

The final example is from Snip!t, an experimental web service that was some-
where between a web scrapbook and extended bookmark service. It allowed
segments of web pages to be snipped to save for later, but retaining their prove-
nance link to the original web page [3]. In addition, it borrowed techniques from
onCue, a dot-com era intelligent internet interface, which used data detectors (a
simple form of intelligent matching) to find semantic information in unstructured
text [5].

Figure 5 (left) shows Snip!it in action. A post code on a web page has been
‘snipped’, the system recognises this and then suggests potential things to do
with a postcode. The postcode recogniser is a simple regular expression:

6 A. Dix

Fig. 5. Data detectors in Snip!t: (left) web service; (right) keyed name recogniser.

([A-Za-z][A-Za-z0-9]{1,3})[\t]{1,6}([0-9][A-Za-z]{2})

However, other recognisers are more complicated. On the right of Figure 5 is one
which uses initial data-lookup of personal names derived from census records in
order to trigger a recogniser which combines this with regular expressions.

The matching is a simple Yes/No, but really some matches are better than
others, for example a name from the data source is more likely to be a real name
than something that simply matches the pattern of an initial capital. However,
the complexity of choosing and then tuning these meant it was never done.

3 Architectural challenge

As we have seen there are often rich opportunities for machine learning to opti-
mise parameters of user interfaces. However, even when the developer is aware
of this potential, the location of the decision is far removed in the code from
where user feedback would occur. Code would have to be substantially reworked
in order to enable the automation flows. If user interfaces are to make full use
of AI potential, we need architectures and frameworks to enable this.

The examples, we have seen have a relatively similar structure. At the point
the relevant parameters are noticed, they need to be marked, for example, using
structured commenting so that a post-processing tool can harvest them. Once
extracted, a UX designer can choose to present them in user preferences and/or
mark them for automated learning. In the latter case it is also important that
the uses of the relevant parameters are recorded in the code where they feed into
dependent values, and also where these dependent values are presented to the
user; this would enable user behaviour to be re-connected to the parameterisation
for creating learning sets. The final stages of machine learning and then using
this to update configuration is relatively straightforward.

Of course this is not the only pattern of AI use in user interaction, so frame-
works have to open and flexible enough for a wider variety of patterns. It may
even be that AI techniques can be used as part of the analysis of existing code
bases in order to uncover hidden UX variables for tuning.

Hidden Figures 7

References

1. Brown University: Freecite – open source citation parser. Retrieved from Internet
Archive 29/5/2023, https://tinyurl.com/freecite (2008)

2. Coutaz, J.: Pac, an object oriented model for dialog design. In: Human–Computer
Interaction–INTERACT’87, pp. 431–436. Elsevier (1987)

3. Dix, A.: Context and action in search interfaces. In: Search Computing: Trends
and Developments, p. 35–45. Springer-Verlag, Berlin, Heidelberg (2011)

4. Dix, A.: Designing user interactions with ai: servant, master or symbiosis. The AI
Summit London, 22nd Sept. 2021. https://www.alandix.com/academic/talks/AI-
Summit-2021-UI-with-AI/ (2021)

5. Dix, A., Beale, R., Wood, A.: Architectures to make simple visualisations using
simple systems. In: Proceedings of the Working Conference on Advanced Visual
Interfaces, AVI ’00. p. 51–60. ACM (2000). https://doi.org/10.1145/345513.345250

6. Dix, A., Cowgill, R., Bashford, C., McVeigh, S., Ridgewell, R.: Spreadsheets as user
interfaces. In: Proceedings of the International Working Conference on Advanced
Visual Interfaces, AVI’2016. pp. 192–195. ACM (2016)

7. Dix, A., Finlay, J., Abowd, G.D., Beale, R.: Design focus: Going with the grain.
In: Human-computer interaction, p. 301. Pearson Education (2003)

8. Krasner, G.E., Pope, S.T., et al.: A description of the model-view-controller user
interface paradigm in the smalltalk-80 system. Journal of object oriented program-
ming 1(3), 26–49 (1988)

9. Labs, C.: Resolving citations (we don’t need no stinkin’ parser). Dated: 29/11/2017.
Accessed: 29/5/2023. (2017)

10. Smiley, D., Pugh, E., Parisa, K., Mitchell, M.: Apache Solr enterprise search server.
Packt Publishing Ltd (2015)

