
Designing for Appropriation

Alan Dix
Computing Department, InfoLab21

Lancaster University, Lancaster, LA1 4WA, UK
+44 1524 510 319

alan@hcibook.com
http://www.hcibook.com/alan/papers/HCI2007-appropriation/

ABSTRACT

Ethnographies often show that users appropriate and adapt

technology in ways never envisaged by the designers, or even

deliberately subverting the designers’ intentions. As design can

never be complete, such appropriation is regarded as an

important and positive phenomenon. However designing for

appropriation is often seen as an oxymoron; it appears

impossible to design for the unexpected. In this paper we

present some guidelines for appropriation based on our own

experience and published literature and demonstrate their use in

two case studies. You may not be able to design for the

unexpected, but you can design to allow the unexpected.

Categories and Subject Descriptors

H.5.5 [Information Interfaces and Presentation]: HCI

General Terms

Design, Human Factors.

Keywords

appropriation, hackability, tailorability, guidelines.

1. INTRODUCTION
Appropriation is a common theme in ethnographies of new

technology use and is often seen as an important sign of users’

acceptance of technology. However, while much has been

written about the importance of appropriation, it is far harder to

find practical advice on how to design for appropriation.

Certainly reading accounts of appropriation can sensitize a

designer to the issue, as do more theoretical works emphasizing

the ecological fit of technology and the importance of

technology being embedded into users’ real work practices.

However, even in Dourish’s “Where the action is”, probably

one of the most well known texts in the area, the advice on

‘”Moving towards Design” is, quite reasonably, broad [9].

This paper was born out of the need to capture some of this

knowledge more explicitly, particularly for my own students of

HCI and because I was faced with writing about the issue for

the next edition of a textbook [6]. So I wanted a form, which

whilst still open, gives directed design guidance. Being more

specific is of course dangerous as one can be more wrong! So,

these design guidelines are not presented to foreclose debate,

but to present an incomplete but I hope useful practical

contribution and also a departure point for ongoing discussion.

The next section will present a short description of

appropriation for readers for whom it is not a familiar topic and

also discuss the reasons why it is important, followed by a brief

overview of some literature in the area. A set of design

principles is then proposed drawn from the literature and my

own experience. These are then illustrated by micro case

studies showing how they have been applied in real designs.

2. ABOUT APPROPRIATION

2.1 What is Appropriation?
In ethnographies and field studies a frequent observation is that

people do not 'play to the rules': they adapt and adopt the

technology around them in ways the designers never envisaged.

Think to your own experience: perhaps you have used a

screwdriver to open a paint tin, or heavy textbook to prop open

a door … or tried to open a bottle of wine without a corkscrew.

Improvisation is critical to 'getting things done'. Sometimes we

have exactly the right tool to hand, but often the particular

circumstances are not totally foreseen and we need to work with

what we have to hand.

We see the same process of appropriation with digital

technologies. Email is intended as a way to communicate with

remote colleagues, but some people email themselves web links

whilst browsing instead of using a bookmark, 'communicating'

with themselves; others use email attachments as a way to share

files with a colleague on the next desk.

These improvisations and adaptations around technology are

not a sign of failure, things the designer forgot, but show that

the technology has been domesticated, that the users understand

and are comfortable enough with the technology to use it in

their own ways. At this point we know the technology has

become the users' own not simply what the designer gave to

them. This is appropriation.

Appropriation may occur where there is no existing tool for the

task, for example, the users mailing themselves a web link

because bookmarks and email folders are distinct and they want

to organise them together. It may also occur where there is an

alternative method, but the appropriation is easier either at the

moment or because of learning time, for example, using email

for sharing files instead of configuring shared network folders.

 Alan Dix, 2007

Published by the British Computer Society

Volume 2 Proceedings of the 21st BCS HCI Group

Conference

HCI 2007, 3-7 September 2007, Lancaster University, UK

Devina Ramduny-Ellis & Dorothy Rachovides (Editors)

2.2 Advantages of Appropriation
Appropriation is important for several reasons:

situatedness – The end point of design has been described in

terms of intervention [6], not just an artefact or even the

artefact and its immediate ways of interaction with it, but the

way in which it changes the environment in which it is set.

While each word processor may be the same, each office,

home or laptop on a train is a different environment. We

cannot expect to be able to understand each environment

fully and to meet every possible task or need.

dynamics – Environments and needs change. Suppose we

designed specifically for a particular work group in a

particular office, and covered all eventualities for them. A

month later, a year later, new people would have joined the

group, the external business environment may have changed

their focus, there may be additional software or furniture that

changes the digital and physical workspace. Design for use

must be design for change.

ownership – With appropriation comes a sense of ownership.

This may simply be a feeling of control, users feeling they

are doing things their own way. It may also be explicit:

often people proudly show you the ways they use software

and technology to achieve their purposes. These positive

feelings can be as important as the things that are achieved.

Sometimes appropriation can be a form of subversion,

deliberately using something in a way it was not intended, not

just because of something the designer didn’t think about, but in

order to thwart its intentions. For example, in the days before

mobile phones were ubiquitous, people often avoided paying

the charge on a public payphone by saying something like:

"when I'm ready to be picked up I'll ring twice on the phone and

then hang up". Whether this is an advantage or disadvantage of

appropriation depends on who you are!

This form of subversion is often seen in work contexts: a

salesman might deliberately create a 'phantom order' and later

withdraw it in order to ensure there is stock available for a loyal

customer [1]. In this kind of setting the subversion is against the

formal rules in the system, but may be working towards the

same ultimate goal of making the best sales for the company.

2.3 Related Work
As noted, appropriation is a common theme in ethnographies of

the workplace and the home. In their study of mobile phone

use by teenagers, Carroll et al. proposed a framework, the

Technology Appropriation Cycle, for understanding the process

of technology appropriation [2]. They distinguish technology-

as-designed (as provided by the designer) and technology-in-

use (as embedded into the lives of users). These are then linked

through a process of appropriation whereby technology is either

never seriously considered (non-appropriation) or taken on

board selected and adapted by users (appropriation), but even if

appropriated may at some stage be rejected (dis-appropriation).

Focus on process is also evident in other writings, for example

several papers at the CHI2005 workshop on community

appropriation [13].

In a DIS2004 keynote Tom Moran suggested several “trends

supporting design”: open standards, web architecture,

portalization, freeform technologies [14]. These are focused

more on the ability of end-users to hack or modify systems and

are based on a long tradition of user-tailorable systems such as

the Xerox Buttons interface [12]. His keynote prefigured the

explosion in Web2.0 mashups, which have themselves triggered

a fresh focus on ‘hackable’ systems [11].

3. GUIDELINES FOR APPROPRIATION
The idea of designing for appropriation almost seems like an

oxymoron: "plan for the unexpected". However, whilst you

cannot design for the unexpected, you can design so that people

are more likely to be able to use what you produce for the

unexpected – they do the final 'design' when the need arises.

The fact that design for appropriation is possible is made most

clear by realising that some sorts of design make appropriation

difficulty or impossible. Consider an espresso machine. It is so

special purpose it is hard to imagine any alternative use.

(Although human ingenuity is such that I expect a rush of

emails telling me about alternative uses for espresso machines!)

This also shows that design for appropriation is not always what

is desired, the espresso machine does one thing very well

indeed – why do any more with it.

However, explicit design guidance to allow appropriation is less

clear. Here are some principles, but they should be taken as

ways to encourage reflection, not a tick list to verify.

allow interpretation – Don’t make everything in the system

or product have a fixed meaning, but include elements where

users can add their own meanings. For example, in MacOS

you can associate colours with file, but there is no fixed

meaning to a red file (maybe urgent, or problem) – it is the

user who provides the interpretation. Similarly, in MacOS

folders and Windows desktop you can position file icons

freely. Because location does not mean anything to the

system, the user is free to group files; perhaps have one

corner of a folder window means "finished with". Similarly

in a database system, a simple free text comment field

allows users to add details the designer never considered,

just like writing comments on a paper form.

provide visibility – Make the functioning of the system

obvious to the users so that they can know the likely effects

of actions and so make the system do what they would like.

This is particularly important when the effects of actions are

distant or at different time, for example in a collaborative

application. Often systems, particularly networks, try to

cover up or hide the underlying 'details'. This is fine so long

as it is totally and permanently hidden, but often the details

leak out (e.g., at the limits of wireless coverage). Users find

their way round these problems if they are made clear

(signal level bars on a mobile phone allow you to find better

signal). The notion of ‘seamful’ design [3] deliberately

exposes these 'seams' in coverage and connectivity in order

to create games and applications. Note the common

usability heuristic ‘visibility of system status’ usually refers

to the relevant state; whereas it is often the irrelevant state

and internal process that can be appropriated.

expose intentions – While appropriation can be very

powerful, we have also seen that it can be used to subvert

systems. Rather than trying to prevent such subversion the

designer can deliberately aim to expose the intention behind

the system. This means that (cooperative) users can choose

appropriations that may subvert the rules of the system and

yet still preserve the intent. For example, if logging into a

system is a slow process, then one member of a work group

may login once at the beginning of the day and then

everyone else use the logged-in system. If the purpose of

the login is security, then this may be fine so long as the

machine is never left unattended, however if the purpose is

to adapt the system to individual users then this

appropriation would be inappropriate. Exposing the

intentions behind a system can be a frightening thing – you

cannot hide behind "well that's the way it works". However,

doing this can make the assumptions explicit and if they are

wrong then they need to be re-examined. In the login

example, if the purpose is personalisation would it be

possible to allow a single secure login but have a facility to

quickly swap between users.

support not control – As a designer you want to do things

right, to make them as efficient and optimal as possible.

However, if you optimise for one task you typically make

others more difficult. In some situations, such as very

repetitive tasks, then designing explicitly for the task may be

the correct thing to do, perhaps taking the user step by step

through the activities. However, more often the tasks

description is incomplete and approximate, in particular

ignoring exceptions. Instead of designing a system to do the

task you can instead design a system so that the task can be

done. That is you provide the necessary functions so that the

user can achieve the task, but not drive the user through the

steps. Dourish describes this as "informal assemblage of

steps rather than rote procedure driven by the system" [9].

Of course you still want the common tasks done efficiently

and so you may provide fast paths, or wizards to perform

frequent activities using the basic tools and operations …

remembering of course visibility, making sure the user

understands what is being done.

plugability and configuration – Related closely to the idea of

support is to create systems where the parts can be plugged

together in different ways by the user. Quoting from Dourish

again "Users, not designers manage coupling" [9]. This is

most obvious in programmable or scriptable systems and

there is considerable work in making these more accessible

to the user. This ability to plug-and-play components

becomes a critical issue in ubiquitous computing and

Newman et al. discuss the idea of recombinant computing

[15] were systems are created bottom-up from small end-

user combinable components. In more a traditional interface

MacOS Automator allows the user to chain together small

actions from different applications, so that, for example, you

can create a workflow that takes a collection of images,

sepia tints them, and then mails them all to a group of people

from your address book. Similarly Yahoo! Pipes

(pipes.yahoo.com) allow users to create and share mashups

of RSS feeds and search results.

encourage sharing – People are proud of their appropriations

of technology, so let them tell others about it! If one user

learns a good trick for using an application or device, then

this may be useful to others as well. Documentation can be

enhanced by end-user contributed material; many web sites

offer tips and advice on different software, and this can be

designed as an integral part of a system, perhaps a 'tips'

button that allows users to annotate functions with their

favourite tricks. This could function across institutions

making use of the communities of practice to which the user

belongs. This sharing is even more important in the case of

programmable systems. Even if the configuration or

scripting is designed to be 'easy' it will still be only a small

subset of users who actively script. However, if you make it

easy for more confident or more technically adroit users to

share with others then your product grows all on its own.

The success of Xerox Buttons was an early example of this

[12]. More recently, the MacOS Dashboard has this

shareable quality, as does the Firefox architecture. Both

allow the creation of plugins using a combination of small

XML and HTML files and Javascript; importantly both have

web sites dedicated to sharing these. As an online

application, the Yahoo! Pipes interface not only allows

sharing of complete pipes, but also makes it easy to see the

graphical ‘code’ of pipes and hence copy and adapt them.

learn from appropriation – After a while one old, but broad

bladed screwdriver becomes 'the' paint-tin opener. What

was once a temporary use of a tool has become specialised.

This crystalising of appropriation leads to a new tool and the

entrepreneur might spot this, notice the particular kinds of

screwdriver that made good paint-tin openers and then

design a special purpose tool just for the job. By observing

the ways in which technology has been appropriated, we

may then redesign the technology to better support the newly

discovered uses. This is a form of co-design where the users

are considered an integral part of the design process. This

closing of the Technology Appropriation Cycle has been

called design from appropriation [2]. Of course any

redesign should also take into account potential further

appropriation. This learning from appropriation is

particularly easy in some web applications (e.g. blogging or

photosharing sites) where the results of users appropriation

of the application are easily visible to the designers.

A common feature to these principles is openness, making

things that allow themselves to be used in unexpected ways,

echoing in some ways the idea in literature of an ‘open’ or

‘writerly’ text [4]. It is also to some extent about humility,

knowing that you do not understand completely what will

happen in real use, no matter how good your user-centred

design process has been.

4. IN PRACTICE
We will now look at two micro case studies of how these

principles work in practice. The first is a post hoc analysis of

learning from appropriation and the latter an example of

deliberate design for appropriation.

4.1 OnCue – Learn from Appropriation
OnCue is a desktop tool available during the dot.com years [5].

It appeared as a small floating tool palette and when the user

copied or cut any text onCue examined it using primitive

‘intelligence’ to decide what kind of thing was in the clipboard

and offered various web and desktop services that could use this

kind of data; for example, a name might trigger a phone lookup.

An early and enthusiastic adopter was interviewed about his use

of onCue. During the discussion it turned out that sometimes

he had a name, postcode, or something that he wanted to use

onCue to lookup, but it was not in a document to copy. So he

opened an empty document in a text editor, typed into it and

then copied the text. Only at that point did onCue fire up and

offer suggestions. It was interesting that he did not consider

this laborious process a major ‘problem’ partly because onCue

was giving him sufficient value and partly, because (as noted

earlier) he was rather proud of his workaround.

At the risk of hurting his pride (!) a redesign was suggested and

in the second release of onCue clicking the onCue icon would

open up a small search-engine-like type-in box beneath the

onCue tool palette. We should note that this use of onCue had

been entirely unforeseen by the designers (although in

retrospect it seems obvious), and the redesign was entirely due

to following the principle of ‘learn from appropriation’.

4.2 eCommerce Design for Appropriation
The second mini case study concerns a small eCommerce web

site, although for commercial confidentiality some of the details

have been altered. The system gathered online orders, but if the

order included books, where stock levels varied, payment was

delayed until the book administrator could verify that all the

books were in stock and only then charge the customer’s card.

A few months after initial deployment the book administrator

asked whether it was possible to make a modification to the

administration system. When an order was not completed for

some reason she wished to be able to indicate the reason

explicitly, rather than leave it simply uncompleted. This was

partly for her benefit, and partly to flag up such transactions for

the finance staff. She suggested a simple ‘incomplete’ flag.

The requirement was straightforward; however, following the

‘support not control’ principle it was decided not to create an

interface feature that directly addressed the expressed need.

Instead a more generic status flag with a number of different

icons was added: stars, question mark, etc. In addition a notes

field was added. Following the principle ‘allow interpretation’

we did not prescribe a particular use of either of these, but left it

to users to make their own use of the elements (see Fig 1.).

Figure 1. Fields for user interpretation

At first these were used only for the initial purpose, but over

time we saw the use change. In particular, in early use, orders

that were incomplete due to an out-of-stock book were simply

labeled generically “book out of stock”, whereas later these

were marked with a different icon from other orders and the

name of the book put in the notes field, acting as a sort of ‘to

do’ showing which books needed reordering – the user had

appropriated the system in a way that would have been

impossible with a more task-focused, but closed design. Due to

staff turn-over we were unable to discuss this, but is clear that

the design was successful in allowing appropriation..

5. DISCUSSION
Arguably the design features suggested by the appropriation

principles seem trivial. In fact, this is often the case, designs

that are closed are often more apparently sophisticated, because

they may do more for the user, but ultimately do not allow the

users to do more for themselves. Good design for appropriation

in practice however is clearly not trivial given the lack of

suitable features in many systems and the results of

innumerable ethnographies, hence the importance of explicit

advice as well as case studies and vignettes.

It is evident from the case studies that design for appropriation

(a) is possible, (b) can work and (c) is not so complex as it may

appear. Clearly all systems have boundaries, but we can design

them so that the space of possibilities for design by users in the

context of use is expanded. In some situations, (e.g. safety

critical systems) it is important for users to operate systems

exactly as designed, hence the importance of ‘expose

intentions’ as users will inevitable bypass controls (as in

Chernobyl) if they do not understand why they are there.

The guidelines are not new in that most can be found in some

form embedded in the literature, for example, variants of the

first two can be found (albeit buried somewhat) in [7].

However, I believe this is the first attempt to systematically

extract this knowledge and to present it in an applicable form.

Validating design principles is hard as simple post-hoc

evaluation is methodologically unsound [10]. However, a more

thorough theoretical framework or model of appropriation

would be valuable to both validate these principles and suggest

future directions of study.

6. REFERENCES
[1] Ainger, A. and Maher, R. The 'Salesman's' Promise

(CSCW in Sales). Chapter 5 in Remote cooperation:

CSCW issues for mobile and tele-workers. A. Dix and R.

Beale (eds.), Springer Verlag. 1996.

[2] Carroll, Jennie., Howard, S., Vetere, F., Peck, J. and

Murphy, J. Identity, power and fragmentation in

cyberspace: technology appropriation by young people. In

Proc. of Australian Conf. on Information Systems, 2001.

[3] Chalmers, M. and Galani, A. Seamful Interweaving:

Heterogeneity in the Theory and Design of Interactive

Systems. In Proc. DIS 2004, ACM Press, 2004, 243-252.

[4] Cuddon, J.. The Penguin Dictionary of Literary Terms and

Literary Theory, 4
th

 ed. Penguin, 1998.

[5] Dix, A., Beale, R. and Wood, A. Architectures to make

simple visualisations using simple systems. In Proc.

AVI2000, ACM Press, 2001, 51-60.

[6] Dix, A, Finlay, J., Abowd, G., and Beale, R.. Chapter 5.

Interaction design basics. Human-Computer Interaction,

3
rd

 ed.. Prentice Hall, 2004.

[7] Dourish, P. The appropriation of interactive technologies:

some lessons from placeless documents. Computer

Supported Cooperative Work 12, 4 (Sep. 2003), 465-490

[8] Dourish, P. Where the Action Is: The Foundations of

Embodied Interaction. Cambridge: MIT Press, 2001.

[9] Dourish, P. Implications for Design. In Proc. CHI 2006

(Montreal, Canada), ACM Press, 2006, 541-550.

[10] Ellis, G. and Dix, A. 2006. An explorative analysis of user

evaluation studies in information visualisation. In Proc. of

BELIV '06. ACM Press, New York, NY, 1-7.

[11] Galloway, A., Brucker-Cohen, J., Gaye, L., Goodman, E.,

and Hill, D. 2004. Design for hackability. In Proc. DIS'04.

ACM Press, New York, NY, 2004, 363-366.

[12] MacLean, A., Carter, K., Lövstrand, L., and Moran, T..

User-tailorable systems: pressing the issues with buttons.

In Proc. CHI '90. ACM Press, 1990, 175-182.

[13] March, W., Jacobs, M., and Salvador, T. Designing

technology for community appropriation. In Proc. CHI '05

Extended Abstracts, ACM Press, 2005, 2126-2127

[14] Moran, T., Everyday Adaptive Design (keynote). DIS’02.

http://www.sigchi.org/dis2002/

[15] Newman, M., Sedivy, J., Neuwirth, C., Edwards, W.,

Hong, J.., Izadi, S., Marcelo, K., and Smith, T. Designing

for serendipity: supporting end-user configuration of

ubiquitous computing environments. In Proc. DIS'02.

ACM Press, 2002, 147-156.

