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Abstract. Qualitative–quantitative reasoning is the way we think infor-
mally about formal or numerical phenomena. It is ubiquitous in scientific,
professional and day-to-day life. Mathematicians have strong intuitions
about whether a theorem is true well before a proof is found – intu-
ition that also drives the direction of new proofs. Engineers use various
approximations and can often tell where a structure will fail. In compu-
tation we deal with order of magnitude arguments in complexity theory
and data science practitioners need to match problems to the appropri-
ate neural architecture or statistical method. Even in the supermarket,
we may have a pretty good idea of about how much things will cost
before we get to the checkout. This paper will explore some of the dif-
ferent forms of QQ–reasoning through examples including the author’s
own experience numerically modelling agricultural sprays and formally
modelling human–computer interactions. We will see that it is often the
way in which formal and mathematical results become useful and also
the importance for public understanding of key issues including Covid
and climate change. Despite its clear importance, it is a topic that is
left to professional experience, or sheer luck. In early school years pupils
may learn estimation, but in later years this form of reasoning falls into
the gap between arithmetic and formal mathematics despite being more
important in adult life than either. The paper is partly an introduction
to some of the general features of QQ-reasoning, and partly a ‘call to
arms’ for academics and educators.

Keywords: informal reasoning · estimation · mathematical models ·
order of magnitude · covid models · monotonicity.

1 Motivation

When I first read Hardy and Wright’s Number Theory [15] I was captivated.
However, as much as the mathematics itself, one statement always stood out
for me. In the very first chapter they list a number of “questions concerning
primes”, the first of which is whether there is a formula for the nth prime.
Hardy and Wright explicitly say that this seems “unlikely” given the distribution
of the series is “quite unlike what we should expect on any such hypothesis.” I
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think most number theorists would still agree with this assertion, indeed many
cryptographic techniques would collapse if it such a formulae were discovered.
Yet what is this sense that the structure of primes and the structure of formulae
are so different? It is not formal mathematics itself, else it would be a proof.

In engineering, computation, physics, indeed any quantitative or formal do-
main, the precise and provable sits alongside an informal grasp of the nature of
the domain. This was certainly true in my own early and more recent work on
formal modelling of human computer interaction: sometimes, as in the case of
undo, one can make exact and faithful statements and proofs, but more often
in order to achieve formal precision, one resorts to simplistic representations
of real-life. However, despite their gap from the true phenomena, these modes,
however lacking in fidelity, still give us insight.

I’m sure this will be familiar to those working in other areas where theoret-
ical models are applied to practical problems. There is a quantum-like tension
between the complexity of the world and our ability to represent it, between ac-
curacy and precision, between fidelity and formality. Yet, we do learn about real
phenomena from these simplified models, and in many contexts, from primary
school estimation to scientific research we use these forms of thinking – I call
this qualitative–quantitative reasoning.

This has become particularly important during Covid, when both simple
formulae and massive supercomputing models offer precise predictions of the
impact of specific interventions. However, even the most complex model embod-
ies simplifications and it is when the different models lead to qualitatively similar
behaviours that they are most trusted. Similar issues arise for climate change,
international economics and supermarket shopping.

Qualitative–quantitative reasoning is ubiquitous, but not often discussed –
almost a dirty secret for the formalist and yet what makes theory practical.
There are lessons for science and for schools, challenges for visualisation and
argumentation. I don’t know all of the answers, but by bringing this to the
surface I know there are exciting questions.

In the rest of this paper we’ll first move through a series of examples that each
exhibit different forms of QQ-reasoning. The final section will outline practical
and theoretical challenges.

2 Informal insights from formalism – the PIE model

My first work as an academic centred on creating formal models of interactive
systems [9], notably the PIE model [8], a simple input–output models of interac-
tion (see Figure 1). Whilst cognitive models try to model the mental behaviour
of humans, the intention here was to model the systems that people use and to
formalise key properties that lead to a system being usable.

Some aspects of this are amenable to strong proofs. Notably undo, which is
expected to have predictable properties (really important it works!) but which
also has a relatively straightforward algebraic definition:
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Fig. 1. The PIE model, a siple input–output modle of interactive systems

∀c ∈ Commands : c _ undo ∼ null (1)

(Here _ means performing the commands one after each other and ∼ means
“has the same effect in all contexts”.)

There are slight nuances to this, occasionally commands (such as typing) are
clumped, and some purely presentation-level commands (such as scrolling) are
ignored. However, this is pretty solid. One core question though is whether undo
itself is undoable; that is:

undo _ undo ∼ null (2)

Some systems appear to have this property, doing undo twice acts as a single-
step redo. This is often called flip undo. However, one of the early proofs in the
area showed that this was impossible for all but trivial systems [9]. To see this
consider two commands c1 and c2:

c1 ∼ c1 _ (undo _ undo)

= (c1 _ undo) _ undo

∼ null _ undo

∼ (c2 _ undo) _ undo

= c2 _ (undo _ undo)

∼ c2

(3)

That is all commands have the same effect, which can only happen if the
system has no more than two states.

As well as being a theoretical result it had the practical application that one
should not attempt to ‘debug’ pure forms of flip undo to attempt to make undo
just like any other command – this is impossible. Instead we have to accept
that undo commands (undo, redo, etc.) have to be treated as a separate kind
of command. In later work, Mancini’s thesis used category theory to show that
with fairly minimal assumptions, there are only two kinds of consistent undo



4 A. Dix

system: forms of flip undo (but where undo is treated as a special command)
and stack-based undo–redo [6, 18]

However, these cases of complete proofs were comparatively rare. Many as-
pects of interaction are far more complex.

The initial impetus for the PIE model came from Harold Thimbleby’s quest
for ‘Generative User interaction Principles’ (GUEPs) [25] and also the desire for
systems that were ‘what you see is what you get’. This was used to formalise
various forms of predictability and reachability properties, the former regarding
whether it was possible to infer the state of the system, and the effect of com-
mands from its display, and the later how easy it was to get to desired states
(undo is related to this).

Fig. 2. A simple formulation of predictability in the PIE model – require a function
from the display to the final result.

In relatively simple cases, such as medical devices, these properties can be
verified by model checking [2], but this is impossible for larger systems. Even
more critical issues such as the special undo commands become increasingly
frequent: models that accurately model real systems rapidly become Baroque
and those that are clean enough to reason with do not model reality.

This is not just a problem for interactive systems, but a general issue for
modelling – complexity and simplicity at odds However, anyone who has created
a formal specification of a substantial system will tell you that it is usually not
so much the final specification that matters, but the understanding you gain
through the process. Similarly. many theoretical treatments of issues are so far
from the real system that they cannot in any way be used to predict precise
behaviours, but nevertheless, the insights gained through theoretical analysis
and proofs yield understanding that may help in more practical situations.

3 Making decisions – electrostatically charged
agricultural crop sprays

Before modelling humans I modelled agricultural crop sprays.
Factory paint sprays often use electrostatically charged spray droplets, which

are then attracted to an earthed object, such as a car, ensuring a full coating
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and less waste. By a similar principle if an agricultural spray is charged it is
attracted to the crop potentially leading to better coverage, less waste and less
environmentally damaging spray drift. The main centres researching this in the
early 1980s were ICI and the National Institute for Agricultural Engineering. At
the latter we created numerical simulations of the movement of charged sprays
in order to understand their behaviour and improve design choices [7].

Given computer speeds then were measured in KHz rather than GHz and
memory in 10s of Kb, the models were, perforce, simple! However, even today
the complexity of a field of swaying wheat would challenge a super computer.
To make this tractable, the modelling was performed in two parts.

The first stage was to model the transport from crop sprayer to the top of the
crop (Figure 3). Note that this has been flattened to two dimensions (effectively
assuming a infinitely long spray boom!) to make the computation tractable. This
is relatively simple, a point source for the spray, with an area held at high voltage
(to represent the sprayer itself) and the crop top treated as a flat earthed surface,
ignoring the fine structure. The output from this stage is the speed and density
of the drops as they enter the top of the crop.

Fig. 3. Agricultural spray above the canopy (left) model of electro-
static spray (right) real sprayer (image right: Pauline Eccles (CC BY-
SA 2.0); https://commons.wikimedia.org/wiki/File:Crop spraying, Bromsash -
geograph.org.uk - 1367703.jpg)

As is evident there are already several simplifications here. However, the
within canopy modelling is far more difficult. In reality crops have leaves, seed
heads and are dfferent sizes. In the model these are treated as flat vertical lines
(Figure 4). Furthermore this as also a 2D model, so the crop is effectively mod-
elled as infinitely long parallel metal plates. Indeed, for some experiments with
real spray, such plates were used with paper collectors in order to obtain physical
spray coverage data.

The speeds and density of drops entering the canopy from the above crop
model could be used to match the relevant within-crop model in order to create
an end-to-end model of how initial flow rates, drop size, charge etc. affect spray
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Fig. 4. Within the crop canopy (left) model of electrostatic spray
(right) real wheat (image right: Stephencdickson (CC BY-SA 2.0);
https://commons.wikimedia.org/wiki/File:Green wheat.jpg)

deposition. The output data was copious, but was categorised into three classes
(Figure 5):

Class I – great penetration: spray misses crop and mostly ends up in the
earth

Class II – uniform deposit: spray creates a relatively even coverage

Class III – little penetration: spray ends up mostly at the top of the crop

Of these, it is (2) we want; both (1) and (3) effectively waste spray and may
leave untreated potions of crop.

Fig. 5. Electrostatic spray coverage (left, Class I) misses crop and ends on the ground;
(middle, Class II) good coverage of the crop; (right, Class III) too concentrated at the
top of the crop.
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In rough terms looking at the inputs to the within canopy model, the first
class corresponds to fast or low charge droplets, and the last to slow or high
charge particles, but this simple correspondance is more complex when looking
at the complete above and within canopy models. High charge on small drops
can lead to high space charge of 10s of thousands of volts (rather like the way
a rain cloud builds up charge to create lightening) and this can then accelerate
the drops as they enter the canopy so counter intuitively mean they end on the
ground (Class I).

This knowledge itself was useful as it was hard to measure space charge.
However, part of the aim was to go beyond the scientific knowledge to practical
design advice. The mathematical model allowed one to make precise predictions
as to which class a particular set of input parameters would yield, but of course
the model was very far from reality. Instead dimensional analysis was used to
reduce the input set to two main dimensionless features (π1, π2), the modelling
runs were then plotted into the two dimensional design space and a map pro-
duced of how the input parameters corresponded to the classes, rather like the
phase space of a gas–liquid–solid for water (Figure 6).

Fig. 6. ‘Phase space’ of different classes of spray pattern

While we had little confidence in the precise values of the modelling, the
overall shape of this map was useful. For example, if we were getting too much
spray on the ground (Class III), we might either try to increase dimensionless
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parameter π1 or to reduce parameter π2, either of which could be manipulated
using different concrete parameters.

Note how the very precise, but massively over simplified numerical model
was used to create a qualitative understanding of the design space, which could
then be used to make useful engineering interventions.

4 Orders of magnitude – climate change and complexity

4.1 Infinitesimals and limits

I recall reading Conway’s “On numbers and games”[4] while still at school and
being transported by the shear exuberance of the text. There can be a tendency
to skip to the second half (part one) a joyous exploration of the odd aritmetic
properties of games. However, the first half (part zero) is equally exciting dealing
with, what has become known as, ‘surreal numbers’ – both transfinite ordinal
arithmetic (fairly commonly taught in maths courses), but also (less commonly
taught) the way this can also give a formal treatment of infinitesimals.

Even if you’ve not come across these formal infinitesimals, you will have been
taught calculus using lots of εs and limit proofs:

f ′(x) = lim
ε→0

(f(x+ ε)− f(x)) (4)

Crucially we learn that we can often ignore order of magnitude smaller terms:
ε terms when dealing with ‘ordinary’ sized numbers, or ε2 terms when dealing
with εs:

f(x+ ε)− f(x) ≈ εf ′(x) (5)

4.2 Day-to-day reasoning

In everyday life we also understand this, we may say “it’s only a drop in the
ocean”. Formally we may use ‘much greater than’ (�) or ‘much less than (�),
but also informally we effectvely use rules such as as:

A� b ∧ b > c =⇒ A� c (6)

and:

A� b =⇒ A+ b ≈ A (7)

Unfortunately, less well understood in day-to-day logic is that the ocean is
made up of drops, that is:

A� bi ∧ N is very large =⇒ A 6≈ A+

N∑
i=1

bi (8)
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In fact, there are ‘thrifty’ sayings that capture this: “many a mickle makes a
muckle’, or “mind the pennies and the pounds look after themselves”. However,
despite out best environmental or fair trade intentions, it is too easy when decid-
ing on purchases in the supermarket, or choosing whether to walk or jump in car,
to simply think “it won’t make a difference”. For ten thousand years, human-
ity was able to think like that, assuming that our individual impact would be
absorbed by the vastness of land, sea and air. This underpins Locke’s “as much
and as good” proviso for the fair acquisition of land [17, Chap. V, para. 27],
effectively assuming that nature’s bounty is inexhaustible.

Of course, we now face the imminence of climate change, the ubiquity of
plastics in the the oceans and, with Covid, the critical nature of thousands of
personal precautions, each insignificant in themselves, yet between them allowing
or preventing the spread of disease. Looking back, we are also able to see that
these impacts, while ever-accelerating, are not entirely new; for example, it is
possible that the desertification of central Australia was due to slash-and-burn
farming by early settlers thousands of years ago [19].

4.3 Algorithmic complexity

In complexity theory, we argue formally about such order of magnitude relations
using big and little ‘O’ notation. At a practical level we also get used to effectively
counting the levels of directly or indirectly embedded loops to get an idea of the
exponent r in O(Nr).

Just like with plastic waste, we can sometimes forget that these are about
theoretical limits and that in practice an O(N2) algorithm with a small contant
K, may actually be faster than an O(N logN) with large K.

An extreme example of this is the linear programming simplex algorithm
[5], one of the most successful early examples of operational research. Simple
linear programming problems consist of N linear constraints over M variables
(N > M). The optimal value of a linear objective function must lie at one of
the vertices (Fig. 7). The simplex algorithm is basically a form of hill–climbing
optimisation, moving from vertex to neighbouring vertex following the direction
of maximum gain.

Given a linear objective function, the simplex algorithm is guaranteed to
terminate after a finite number of steps, and in practice is linear in the number
of constraints N . I say ‘in practice’, because in theory it can be much worse.
Indeed it is possible to create Byzantine examples were the simplex algorithm
visits all CNM vertices. That is its worst case behaviour is O(NN−M ).

In fact there are alternative algorithms for linear programming that have
better worst case behaviour (I once heard of one that was O(N logN), but not
been able to track it down). However, in practice they are all far slower in terms
of average case complexity.
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Fig. 7. Linear programming – the linear constraints create a polytope fea-
sible region, the optimal value of a linear objective is on one of the
vertices (image https://commons.wikimedia.org/wiki/File:Linear optimization in a 2-
dimensional polytope.svg)

4.4 Sorting

Furthermore, the real world is finite. For some graph/network problems, where
algorithms are often exponential or multiple-exponential, N more than five or six
is enough to end up in the theory ‘limits’. However, for other problems practical
limits may be more significant.

We all know that sorting is O(N logN), but in fact every real sorting algo-
rithm works on finite sized keys within a computer with finite disk space. When
sorting finite keys, in principle bucket-sorts give algorithms with time linear in
N . See, for example, the IBM Punch Card Sorter in action [23] – this required
just W passes to sort W -character keys, that is effectively an O(N W ) algorithm.

You might wonder how this squares with the well-known information-theory-
based O(N logN) lower bound for sorting algorithm. First, the theoretical bound
depends on it being necessary to compare sufficient items to determine a total
order on the items. If W < logN there will be many equally placed items.
Second, the information theory bound is incredibly broad, even working with
magical oracles that tell you where to put items – effectively it is lower bound
on the time taken to read the result. Even with bucket sorts you need to output
the items! Finally, if there are N items the memory has to be at least big enough
for these and hence both memory accesses and addresses are (O(logN), pushing
real behaviour back into the O(N logN) territory (although note that by similar
arguments Quicksort is really O(N (logN)2)!

If you feel that these practical bit-twiddling examples feel a little contrived,
there is the story of a Google employee giving a talk at Cambridge. During the
presentation one of the eminent computer scientist in the audience did some
quick complexity calculations in their head, and at the end stood up and said,
“I like your algorithm, but unfortunately it doesn’t scale”. The Google employee
responded, “well it works for 10 billion web pages”.
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4.5 What is computation?

The lower bound result for sorting is relatively rare, and, as noted, is based
on information theory measures and hence works for oracles as well as ‘real’
computation. One of the reasons for this is that while we have had an abstract
measure of information content dating back more than 70 years [21, 22], our
computational metrics are, in comparison, weak.

One of my own intuitions (albeit not as informed as Hardy and Wright’s!) is
that some variant of Galois theory may be a way to get traction. Of course, this
may simply be because the story of Évariste Galois is one of the great romances
of mathematics – writing in his garret, the night before the fatal duel “there is
no time, there is no time ...”.

Galois theory is about what numbers it is possible to construct using the
solution to particular equations [24] (for example square roots in geometric con-
structions). This is rather like non-existence proofs in computability such as the
halting problem.

Of course in computing we also want to know how many steps it takes. While
standard Galois theory does not address this, one can have variants where you
are allowed only finite numbers of extension operations. The resulting sets form
a tower (see Figure 8) and have some nice mathematical properties:

∀a ∈ Qn(
√

2), b ∈ Qm(
√

2) : {a+ b, a− b, a ∗ b, a/b} ⊂ Qn+m(
√

2) (9)

That is the sets are homomorphic to the semigroup of positive integers. If
one looks at more complex Galois extensions with multiple radicals, such as
Qn,m,s(

√
p,
√
q,
√
r); one ends up with a simple product semigroup if p, q and

r are co-prime, but may yield more complex semigroups if they have common
factors (e.g. 12, 50, 30).

As is evident this feels rather like counting computational steps of different
kinds, so may be a fruitful path. I have never moved beyond this stage myself;
perhaps a reader will be inspired to dig further!

5 Knowing what to model – Covid serial interval

During the summer of 2020 an estimate I made of the potential impact of uni-
versity re-opening on Covid-19 deaths [10] was publicised and criticised as over-
stating the problem. In hindsight both later estimates by the UK Government
SAGE group and actual case data in September and October showed that in fact
I had been optimistic. At one point in the summer, in a BBC Radio interview,
Kit Yates (University of Bath academic and popular science writer) had stated
that the time between infections (called the serial interval) used in the paper of
3.5 days was too short and the real figure should be 5.5 days. In fact the actual
modelling was independent of this figure (it just changes the time scale), but this
did bring my attention to the wide variation in estimates of the serial interval.
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Fig. 8. Computational Galois theory

Yates was absolutely correct in that the WHO Covid-19 information at the
time used a 5.5 day estimate, however, at the same time the growth graphs
used by the BBC used a 3.5 day figure. Furthermore SAGE estimates of UK R
factor, when compared with the doubling time, were effectively using a 3.5 day
period (although this will have arisen out of detailed models). If one then looks
further at meta-analysis papers reviewing large numbers of studies, the range of
estimates varies substantially [20]. Why the discrepancy?

In part this may be due to the fact that, while R0 and the serial interval are
often stated as if they were fundamental parameters of the disease, they both
depend critically on many social and environmental factors: how many contacts
people have, whether indoors or outdoors, etc. In particular, R0 tends to be
higher and the serial interval shorter in densely populated areas in cold and
damp climates – as is typical in the UK, but R0 is lower and the serial interval
longer in more thinly populated areas as is the case in many parts of Africa and
the USA outside major cities (and even in the suburbs).

The above statement is already a qualitative–quantitative argument, but one
that is perhaps so obvious it doesn’t appear to be so.

A little less obvious is the complex, but comprehensible, way in which the
serial interval changes when either individual caution or statutory control mea-
sures modify the spread of disease.

1. If, when infected people become symptomatic, they take substantial self-
quarantining actions, this will mean less post-symptomatic contagion, but
have no impact on pre-symptomatic contacts. This therefore reduces the
serial interval.
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2. For asymptomatic cases, some contacts are sporadic such as fellow passangers
on public transport. For these contacts the likelihood of contagion is lower,
but the average timing of those infected unlikely to be affected.

3. For asymptomatic cases, some contacts are frequent such as work colleagues
and family members. For these contacts, they will have some reduction in
the eventual probability of catching the disease, but crucially if they do catch
it, they are likely to take longer to do so. That is, for this group the serial
interval increases.

Note that effect (1) decreases the serial interval, effect (3) reduces it and
effect (2) makes no difference. This interplay of positive and negative effects is
not uncommon. One might be prompted to use further QQ-reasoning to compare
the effects – it is assumed that for Covid-19 asymptomatic infections are a major
driver of growth, so that might suggest (3) will be more significant than (1).
Alternatively one might use the analysis to perform more detailed and precise
modelling.

Finally there is a third sampling-based influence on the serial interval. Fig-
ure 9 shows the distribution of serial times for 468 infection pairs from [12]. Note
the large variation: once someone is infected they may pass it on to some peo-
ple straight away, but others only after a considerable period. It is the average
period that is usually quoted, but this hides considerable variation.

Fig. 9. Distribution of the serial interval from [12]. A is based on 468 pairs of cases and
B in a subset of the 122 most reliable infection pairs. Note the negative serial intervals
will be due to pre-symptomatic infections as the time measured is between the onset
of symptoms of the pair.

Imagine we have perfect retrospective knowledge so that we know who caught
the disease, from whom and when. There are two ways we coud measure the
distribution.

1. Forward – consider at each infectious person (source), who they infect and
when. This is the canonical serial interval.
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2. Backward – consider at each infected person, who they were infected by
(source) and how far into that source’s infection.

During a period of disease growth (R > 1), the number of infectious people
increases with time, meaning method (2) will encounter more people infected
recently and hence create a shorter estimate of the serial interval than method
(1). Similarly during a period of disease decline (R < 1) the serial interval
calculated by (2) will be longer than by (1).

The serial interval combines with R to give the exponential rate of growth.
If one uses the ’true’ serial interval form (1) this ends up a little too large (when
R > 1), but estimate (2) is too short. The value that gives the exponential
approximation, the effective serial interval, is between the two.

If we wish to work out exactly how these estimates differ, we will need more
precise modelling. However, the QQ-reasoning suggests what we should be mod-
elling and directs us towards what we should be looking for in the modelling.

6 Monotonic reasoning – change at the shops and the
impact of automation

Some years ago I was in a charity shop, probably buying books, I usually am.
I gave the woman who was serving a ten pound note and she started to count
out change – more than ten pounds of change. I told her and we worked out the
right sum for the change. I think she had simply mistyped a figure into the till,
but the thing that surprised me was that she hadn’t noticed. This was probably
due to what is often called ‘automation bias’, the tendency to believe what a
computer tells us, even when patently wrong. Of course, automation errors, when
they happen, are often gross hence the importance of being able to have a broad
idea of what is a reasonable answer. In this case I was using a simple form of
monotonic reasoning:

b > 0 =⇒ A− b < A (10)

We may also do similar reasoning in two dimensions using the Poincaré prop-
erty – every closed non-self intersecting line in 2D space has an inside and an
outside. If you have crossed a city ring road going into the city and have not
re-crossed it, then you must still be inside. However, whether this is a logical ar-
gument or more of a ‘gut’ knowledge about the world depends on spatial ability
... or perhaps learnt skill.

Many economic issues depend on more or less complex chains of of monotonic
reasoning. Figure 10 shows two arguments for and against the value of automa-
tion. On the left hand side there is the ‘pro’ argument: automation leads to
increased productivity, hence increases overall prosperity and this makes people
better off. However, on the right-hand side is the counter argument that increased
automation leads to less need for labor, hence unemployment and poverty.
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Fig. 10. Positive and negative impact of automation

Rather like the Covid examples, different arguments lead to positive and
negative effects. We might resolve this by estimating (more QQ-reasoning!) the
size of the effects. Perhaps more pertinently we might ask, “who benefits?”

Laying out an argument in this way also makes it easier to debate the steps
in the inferences, rather like argumentation systems such as IBIS (issue-based
information system) [16, 3]. For example, the link that suggests that automation
leads to less labour has been questioned using the example of Amazon, which in
2016 installed 15,000 robots, but instead of reducing labour in fact also increased
their employees by 46% [13]. This has then been used to argue that robots
increase employment [14]. However, it is likely that the growth is due to the
left hand thread in Figure 11: robots, improved competitiveness, helped the
company grow its sales and hence increased employment at Amazon. Seeing this
immediately brings to mind the right hand arc of the same figure, that the
growth of Amazon has probably shrunk other businesses and hence decreased
employment elsewhere.

Fig. 11. Does automation create jobs?
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7 Formalising and visualising QQ – Allen’s Interval
Calculus

Figures 10 and 11 are both a visualisation of the argument and also a type of
formal representation of the qualitative–quantitative reasoning about automa-
tion. It a form of high-level argumentation, similar to safety cases used in the
nuclear and aviation industry. While the validity of each judgement step (‘this
increases that’) is a human one, given such lower-level judgements, the overall
reasoning can be verified:

given
increase in A leads to an increase in B (human judgement)

and
increase in B leads to an increase in C (human judgement)

conclude
increase in A leads to an increase in C (formal inference)

We can find other examples of formalisation of QQ in the literature. Some
force you to make the informal judgements very precise, for example fuzzy logic
demands a precise shape for the uncertainty function and Bayesian statistics
require that you encode your belief as if it were a probability [11]. Other meth-
ods embrace the human-like reasoning more wholeheartedly, including various
representations of näıve physics or informal reasoning used in cognitive science
and artificial intelligence such as Allen’s Interval Calculus [1] for reasoning about
temporal events (see Figure 12).

Fig. 12. Different temporal relations (from [1])
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8 Discussion and call to action

We have seen a variety of examples of qualitative–quantitative reasoning. Some
were about gaining informal understanding from formal or theoretical models;
some were about rough sizes: montonicity and orders of magnitude; and some
were about numerical modelling: how to guide what we model and how to turn
idealised or simplified models into representations that are useful for decision
making. While many of the examples were about academic or professional use,
others were about the general populous. Indeed, in a data-dominated world,
understanding numerical arguments is essential for effective citizenship.

We have also seen that there are existing methods and representations to help
with qualitative–quantitative reasoning, but relatively few given the criticality
in so many walks of life.

There are three lessons I’d like the reader to take away:

– recognise when you are you using qualitative–quantitative reasoning so that
you can think more clearly about your own work, and perhaps make it more
accessible or practically useful

– realise that it is a potential area to study theoretically in itself – are there
ways to formalise or visualise some of the informal reasoning we use about
formal things!

– seek methods and tools to help others think more clearly about this: in
universities, industry and schools.
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