
19 LADA — A Logic For The Analysis Of Distributed Actions

Alan Dix

Abstract

This paper presents a formalism, LADA , aimed especially at the description of systems
and situations which arise during the design and analysis of groupware. We are
particularly interested in highly distributed systems and so LADA explicitly models
entities (people and things) acting at different unconnected locations. It not only
describes the behaviour of the computer software, but also the social protocols required
for its successful use. Temporal logic formulae which follow the subjective history of
people and other entities are used to simplify the expression of some of the complicated
properties required of real systems.

19.1 Introduction

Groupware systems are often distributed either over local area networks or over wider
distances. In addition, some systems operate on computers which rarely or never directly
communicate over a network, instead relying on email or floppy disk transfers. Traditional
distributed systems try to minimise the interference between multiple users and even multiple
processes, for example, by locking mechanisms. However, cooperation between users
suggests that this emphasis on transparency is unacceptable and it is replaced by a desire for
mutual awareness [9]. Furthermore, traditional distributed systems rarely deal with systems
with infrequent communications (although there have been some recent exceptions notable
the Coda File System [8]).

Given these extra complications, it is not surprising that groupware systems are difficult to
program and even more difficult to debug. In addition, the consequences of crashes are also
more serious as they affect many users simultaneously and may reduce confidence in what are
often already socially fragile systems [6, 4, Ch. 13].

One would obviously like some form of argument or proof that the central algorithms of
these systems behave as required. Unfortunately, such arguments tend to be very complex
also as one has to consider all possible combinations of events, including ‘race conditions’
and the possibility of deadlock. It is even difficult to state precisely what the requirements
are of a system involving several users distributed over several sites.

One would like to use formal arguments to verify correctness, but most popular
formalisms for describing and reasoning about software concentrate on single-threaded
systems. Even notations for handling concurrent processes, such as CSP [7], do not deal with
issues of distribution and operate at a very low-level.

In addition to these requirements on the computer software, the behaviour of the entire
groupware system (human and machine) depends on the participants. Designers make
explicit and implicit assumptions about their use of the software. For example, it may be
assumed that participants never simultaneously work on the same portion of a document. The
designer ought to be able to clearly state what assumptions are being made about these social
protocols and also investigate the consequences when these assumptions fail.

This paper presents a formalism designed especially for describing actions which happen
to people and things at different places. It draws on standard temporal logic, but allows one
to trace the subjective experience of each person or thing, rather than a single objective
history. The augmented temporal logic is itself built upon a semantic model of partially

318 Alan Dix

ordered events. The model and logic are presented at a semi-formal level as there is not room
for the full formal semantics and it seemed more valuable to explore a worked example.

In the next section we will consider some of the systems which we would like to describe
more formally. This is followed by two sections describing the underlying model and the
temporal logic based on it. The major bulk of the paper is an extended example: specifying
the Liveware database and giving a sketch proof of one form of observational consistency.
Finally, we will return to look at some of the wider issues this example raises about LADA

itself and specification in this complex domain.

19.2 Background — cooperating at a distance

If two users are cooperating over the same document (spreadsheet, etc.), but are not
working at the same site, they can obviously all have copies on their own local machine.
However, if several users simultaneously update copies of the same document, problems
arise. Systems for asynchronous group working must either prevent such conflicts by the use
of locking or include support to handle the multiple versions which arise.

One example is Liveware [11]. This is a database which is shared by the merging of
copies as colleagues meet one another. Changes to the database made by one user gradually
spread throughout the community of users as different copies of the database meet and merge
with one another. A more complex example of a similar principle is multiple source
control [1, 3]. This uses version control mechanisms to allow users to update different copies
of the same document at different sites. This causes several ‘streams’ of activity for the same
document which can be merged with automated help. In order to avoid sending whole copies
of the document, the communication between different sites uses deltas, that is differences
between versions of the document.

Among commercial systems similar issues arise. Laplink™, the popular PC file transfer
tool, allows two file systems to be synchronised based on the date of last update: if the same
file exists on both systems, the system overwrites the older version. Of course, if the file has
been updated on both file systems, the least recent of the two updates will be lost. Similarly,
Lotus Notes™ may have several servers with copies of the same database. If a note is
updated on two servers then one update may be lost. This problem is partially ameliorated by
the addition of a versioning feature whereby both copies of a note are retained. Although this
means that the information is not lost there are potential social conflicts. Imagine that Alison
and Brian have each updated the same note on two different servers, but that Alison’s update
preceded Brian’s. After the servers synchronise Alison will find that her updates have been
superseded by Brian’s. She may wrongfully conclude that Brian actually saw her updates and
then rudely ignored them.

This work is being carried out in the context of a project to investigate the use of version
support in CSCW systems, and the we believe that the use of appropriate versioning offers
the potential to detect such conflicts and offer the participants help in resolving them.
However, more complex support system could just mean that problems have simply been put
off and will reappear in more complex situations. This emphasises the need for methods to
verify that any new systems we propose both work as required and are robust when the social
protocols upon which they depend are broken.

Although the principal emphasis in this paper is on asynchronous groupware, the needs in
synchronous groupware can be equally pressing. Whenever a system has decentralised
control there will be potential for simultaneous conflicting actions. For example, in the
Grove synchronous editor, complex algorithms are necessary so that typing can be
immediately echoed, but also so that all participants eventually see the same text [5].

19. LADA — A logic for the analysis of distributed actions 319

19.3 The semantic model

Standard temporal logic and also mathematical time series are based on a linear model of
time. A history is modelled as a sequence of states of the world at different times.1

S0 → S1 → S2 → S3 → S4

Temporal logic operators can then be used to talk about such an history, for example,
‘ ◊ P ’ says ‘eventually P is true’ or in other words there is some time t for which P holds in
the state at that time (St). Given such a model we are forced to specify the order in which all
actions have happened. For a synchronous system this is reasonable, but for asynchronous
groupware this would hide the very issues we want to discuss, namely simultaneous actions in
different locations.

We have therefore adopted a model based on a partially ordered set of events. Each event
is the occurrence of an action involving one or more entities, which may be human or
machine. Events are only ordered where there is some explicit dependency between them, for
example if some entity is involved in both events.

e3: mergeAlison

e5: updatee4: updateAlison Brian

e2: updatee1: updateAlison Brian

FIGURE 19.1. Event lattice

19.3.1. The lattice of events

In Figure 19.1, Alison and Brian are working on a document together. Initially Alison is
working at home updating the document on the mobile computer, whilst Brian is working on
the office computer. Event ‘e1’ represents Alison’s work and ‘e2’ represents Brian’s work.
Later Alison brings the portable into the office and merges the two versions (event ‘e3’). The
next day Alison continues to work in the office, but Brian takes the portable to work on the
train. Each update the documents during the day on the two machines (the events ‘e4’ and
‘e5’ respectively).

The diagram shows the partial order between the events so, for example, e1 happens before
e3 (e1 p e3) and e3 p e5, but we cannot say anything about the order of e1 and e2. This is not
just a matter of e1 and e2 happening at different places — the important point is that they are
unsynchronised. Indeed, one could imagine a similar scenario where the two machines are in

320 Alan Dix

the same office, but not connected to one another (although then one would expect some
events representing communication between Alison and Brian … unless they aren’t talking).
Furthermore, the communication between the two machines could be via a modem.

19.3.2. Actions and rôles

Let’s look more closely at the entities and actions in Figure 19.1. There are four entities:
Alison, Brian, the copy of the document on the portable computer and the one on the office
desktop computer. There are two types of actions ‘update’ and ‘merge’. The events are
instances of these actions and involve a set of participants, who fulfil rôles for the action. The
update action requires a person who performs the update and a document which is changed.
The merge action requires two documents to merge, and also a person who initiates and
controls the merge. There will typically also be some other information about the event, for
example, describing the nature of the update. This has been omitted in Figure 19.1, but is
also important. Figure 19.2 shows these relationships in a tabular fashion and includes a
description of the actual updates.

Action Rôle Entity Details
e1 update person Alison insert “in the town” after line 2

document portable
e2 update person Brian delete line 3

document desktop
e3 merge initiator Alison

doc 1 portable
doc 2 desktop

e4 update person Alison change line 2 to “had a shop”
document desktop

e5 update person Brian change line 3 to “in the country”
document portable

FIGURE 19.2. Events and their participants

19.3.3. Entity timelines

Finally, we need to add some meaning to the actions. For each action we need to say how
it changes the state of its participants. Also for each entity we need to keep track of its state
at any time. As the model is distributed we can not ask, for example, about the state of the
portable computer at event e2. However, it is important that the state of the portable is the
same at the start of e3 as it was at the end of e1. That is, for each entity there is an alternating
sequence of states and events which represent its own particular timeline. For example,
Figure 19.3 shows the states of the document on the two computers. Depending on our
application, we may not want to talk about all of the state of an entity, and for some entities
we may not record any state at all. For such entities, the timeline merely records the history
of activity of the entity. For example, we can represent the history of Alison and Brian as:

Anne0 → e1 → Anne1 → e3 → Anne2 → e4 → Anne3

Brian0 → e2 → Brian1 → e5 → Brian2

19. LADA — A logic for the analysis of distributed actions 321

The symbols Anne0 , Brian1 etc. are there to record the fact that people do have some state
(memory etc.) but that we are not going to expand upon it.

1. Old MacDonald
2. had a farm
3. Ee-ai Ee-ai Oh!

Portable0

1. Old MacDonald
2. had a farm
3. in the town
4. Ee-ai Ee-ai Oh!

Portable1

1. Old MacDonald
2. had a farm
3. in the town

Portable2

1. Old MacDonald
2. had a farm
3. in the country

Portable3

e1 e3 e5

1. Old MacDonald
2. had a farm
3. Ee-ai Ee-ai Oh!

Desktop0

1. Old MacDonald
2. had a farm

Desktop1

1. Old MacDonald
2. had a farm
3. in the town

Desktop2

1. Old MacDonald
2. had a shop
3. in the town

Desktop3

e2 e3 e4

FIGURE 19.3. Document timelines

We are modelling physical entities, such as people, computers and individual copies of a
document thus the timeline of any individual entity will be linear — an entity cannot be
unsynchronised with itself! This is in contrast to an information entity like the idea of the
document “LADA paper”. An information entity can have several different versions in
different places, and even have several versions on the same device. We of course want to
reason about information entities, such as the evolution of a shared document, but to achieve
this we need to talk first about the life histories of the individual versions and the way they
interact.

As well as this linearity constraint, we could also demand that events are only ordered if
some entity has participated in both event, or if there is some intervening sequence of events
with this property. To be a little more precise, we can say that an event e1 is just before
another event e2 if there is no intervening event. We will write this e1 → e2 , and define it
formally by:

 e1→e2 ⇔ e1 p e2() ∧ ¬∃ e st. e1 p e ∧ e p e2()
The completeness condition would then be:

e1→e2 ⇒ ∃ an entity x st. x participates in e1 ∧ x participates in e2()
Although the linearity condition is a necessary sanity condition for concrete entities, there

may be situations where completeness is not required. For example, the ordering of some
events may be determined by another observer who is not explicitly included in the model.
Thus the completeness condition is left as an optional part of the model which can be
imposed if required.

19.3.4. Alternative histories

The event lattice in Figure 19.1 shows one possible history of the world. There are lot of
other things which could have happened, Alison might have taken the portable home after
merging the machines, Brian might not have performed any updates and simply waited to see

322 Alan Dix

Alison’s version. The full formal model underlying LADA talks about the set of all possible
histories. Given a description of the behaviour of the computer systems and the people
involved, only some of these worlds can happen. To prove that some requirement holds we
need to show that all possible histories which can happen according to these behaviours also
satisfy the required property.

More formally: let w be a history of the world — that is, w is an event lattice like the one
in Figure 19.1, with associated states of entities etc.. We then denote the expected behaviours
of the computer systems and people by S(w) and P(w) respectively and the requirement on
the system as a whole by R(w). The requirement holds if:

∀ world histories w S(w) ∧ P(w) ⇒ R(w)()
The requirements and behaviour can be specified using formulae like that of the

completeness condition, but temporal operators act as ‘sugar’ so that one can avoid talking
about the event lattice directly.

19.4 Temporal operators

Standard temporal logic has two principle operators, the diamond operator – ‘eventually’,
that we have already seen and the box operator – ‘always’. We could express the old adage
that every cloud has a silver lining something like:

 ❏ times are bad ⇒ ◊ things get good

Which literally translated says “it is always true that if times are bad then it will eventually
be true that things get good”.

As eventually can be a long way off, various additional operators are also used. Two of
these are ‘until’ (U) and ‘before’ (B). The formula ‘p U q’ says that p will be true of all states
until there is a state where q is true. Similarly ‘p B q’ says that before the next state where q
is true there will be a state where p is true. The before operator can be defined in terms of
until, and visa versa:

 p B q ⇔ ¬ ¬ p() U q()
We cannot use these operators directly to distributed actions as there is no simple time

ordering. However, each entity has a time ordering, so these operators can be used along a
particular entity’s timeline. The entity concerned is added as a subscript. For example, we
might want to say that whenever a user types the ‘send’ command the computer will
eventually fax a document. This can be written:

❏

user
types(user,computer,"send") ⇒

computer◊ faxes(computer, the file)

Notice how this formula starts off by looking at the user’s timeline and then in a sense
branches off along the computers timeline. In fact, this is quite a complicated behaviour and
many properties can be represented with respect to a single timeline. For example, we may
want to say that if a user has been updating a document on one computer and then wants to
use a different computer, the user ought to ensure that the two computers have performed a
merge before starting work with the second. (Notice how difficult it is to express these
requirements — this is precisely why a formalism is needed.) We can express this
requirement as:

❏

u
update(u,comp1) ⇒ merge(u,comp1,comp2) Bu update(u,comp2)()

19. LADA — A logic for the analysis of distributed actions 323

This is an example of a social protocol which could be used together with the specification
of the system to reason about correctness.

19.5 Example — Liveware

We will now look at the Liveware system in detail and show how one can describe the
required properties and go about proving them.

A Liveware database is a collection of individual records which are the units used for
update and merging. Each record has a unique identifier generated using the time and user
who first created it. So, when two databases are merged the system is able to match records
and update the older one to be the same as the newer. The result is that as a group of users
meet one another and exchange databases (usually using copies on floppy disk) the data
becomes more ‘up to date’ and information entered by one user gradually permeates
throughout the user population. Liveware avoids the concurrent update problem by only
allowing a record to be updated by its creator.

19.5.1. Entity states

To describe the system we need to consider two kinds of entities, copies of the Liveware
database and users:

entities: Db, User

At any moment, the database state (Db) has a set of active record identifiers. For each
identifier, there is an associated value and also a timestamp of when it was last updated:

state: Db =
records: P Id
vals: records → ValD

stamp: records → Time

The identifiers are, as was mentioned, constructed using the creation time and the user who
created/owns the record. Also the value set will be assumed to include a special value ‘DEL’,
which will be used to record deleted records:

Id = Time × UserName

ValD = Val ∪ { DEL }

Given an element id from Id, we will refer to its components as id.t and id.u respectively.
Given any database, we can determine the last time it was updated:

lasttime = max id.t |id ∈ records{ } ∪ range stamp()
We would also expect that records cannot be updated before they are created:

∀ id ∈ records id.t ≤ stamp(id)

However, although this sounds like a sensible condition, it depends on the way timestamps
are generated, in a distributed environment we cannot necessarily assume a global clock. In
fact, we will assume a clock that for each action supplies the time as a parameter ‘time?’.
This will be assumed to satisfy the locally monotonic property:

time 1.

 ∀ e1,e2:Events e1 p e2 ⇒ e1. time? < e2. time?

324 Alan Dix

If this is true, then we can assume for any entity ‘ent’:

time 2.

❏ent t = time? ⇒ ❏ent t < time?

That is any entity will see the parameter ‘time?’ increase.
The ‘state’ of users will be considered to consist of their name only:

state: User =
name: Name

Unlike the database state, this will not change. In the following description, we will
require the user’s name for most actions. In reality this is likely to be obtained once per
session when the database is opened, but for simplicity we will ignore this additional system
behaviour.

19.5.2. Action descriptions

We will consider five actions:

create: add a new record
delete: destroy a record
change: change an existing record
look: examine an existing record
merge: merge two copies of the database

The effect of an action is a state transformation of the entities involved in the action. This
could be described using any suitable notation, for example, Z schemas with suitable
additional semantics. In the descriptions of the actions, some Z conventions will be used.
For each entity involved with an action, its state variables before the action will be available
in the action’s precondition and both these and primed versions available for its post
condition. In addition, extra parameters will be included for each action. These will be
decorated by either ‘?’ or ‘!’. The former represent parameters which are inputs to the action
and can be used in the actions precondition. The latter are regarded as outputs. In reality, the
inputs would often originate with one or other of the participants of an action (in this example
mainly the user), but the source of these additional parameters is deliberately left
underspecified. Of course, this leaves open the possibility of refining the specification to
determine some of the input parameters later during system design.

We now consider the effect of each action in turn, describing the entities involved in the
action, the additional parameters and the pre and post conditions of the action. First of all
record creation:

action: create roles : User, Db
params: time?: Time, val?: Val, id!: Id

pre: time?,name() ∉ records
post: id! = (time?, name)

records’ = records ∪ id!{ }
vals’ = vals ⊕ id! → val?{ }
stamp’ = stamp ⊕ id! → time?{ }

This action is only valid when the new record identifier which will be generated by the
action is not already in the database. However, if the database never contains anything that is
dated in the future the precondition will always be true. To be precise, the condition on the
database is:

19. LADA — A logic for the analysis of distributed actions 325

❏db lasttime < time?

In fact, we will see that for each action we define:

❏db action(db) ∧ lasttime < time? ⇒ lasttime' ≤ time?

This together with the local monotonicity assumption on time will mean that if the
database starts in a well timed conditions, it will remain so.

The change action is similar except here the record identifier is required as a parameter:

action: changeroles : User, Db
params: time?: Time, val?: Val, id?: Id

pre: id ∈ records ∧ id.u = name ∧ vals(id) ≠ DEL

post: records’ = records
vals’ = vals ⊕ id → val?{ }
stamp’ = stamp ⊕ id → time?{ }

Here the precondition is important, it demands that a valid identifier is given. To be valid,
it must both be an identifier that is known to the system but has not been deleted. Liveware
records that a record has been deleted by storing ‘DEL’ in its value. In addition, the record
must belong to the user.

The delete operation is identical to change except the value is set to ‘DEL’:

action: delete roles : User, Db
params: time?: Time, id?: Id

pre: id ∈ records ∧ id.u = name ∧ vals(id) ≠ DEL

post: records’ = records
vals’ = vals ⊕ id → DEL{ }
stamp’ = stamp ⊕ id → time?{ }

The look action is even simpler, it performs no state changes at all:

action: look roles : User, ≡Db
params: time?: Time, id?: Id, val!

pre: id ∈ records ∧ vals(id) ≠ DEL

post: val! = vals(id)

The notation ‘≡Db’ comes from Z and means ‘no change in Db’.
Notice also that the precondition is weaker: users can look at any record, not just their

own. Of course, a more sophisticated treatment could consider access control issues, but this
will be ignored here.

Finally, we consider the merge operation. This involves two databases, they start possibly
different and end up the same. Each record in the final state is the most up to date from the
two sources:

action: merge roles : P User, Db1, Db2

post: records1’ = records2’ = records1 ∪ records2
∀ id ∈ records1’ st. stamp1(id) < stamp2(id)

vals1’(id) = vals2’(id) = vals2’(id)
stamp1’(id) = stamp2’(id) = stamp2’(id)

∀ id ∈ records1’ st. stamp1(id) ≥ stamp2(id)
vals1’(id) = vals2’(id) = vals1’(id)
stamp1’(id) = stamp2’(id) = stamp1’(id)

326 Alan Dix

Notice that there are no preconditions on merge, neither does it actually need any
information from the users. A set of users is given as more than one user may be present (and
often will be) when databases are merged. However, not all owners of records need be
present; the records from all users are synchronised. This does not mean that a user is
actually updating another user’s records since whichever value is in the final databases will
have been set by that user anyhow.

19.5.3. Generic Actions

In order to simplify the requirements on a system, it is useful to classify the actions into
groups of generic actions, giving a class structure to them. Three classes will be used:

update(user,db,id)≡ create or change or delete

sees(user,db,id) ≡ update or look

interact(user,db) ≡ sees or merge
The last class is intended to capture when the user interacts with a database in any way.

As a merge involves two databases and possibly several users, it may be part of the generic
action in several ways.

19.5.4. Observational consistency

Now we can capture some of the Liveware properties described in [10]. They note that the
collection of Liveware databases at any time are not necessarily consistent with one another.
However, even though they are not globally consistent, they are observationally consistent
for any particular user. That is although there may be inconsistencies, no one will ever
notice!

This statement has several ramifications and one can address it at various levels. However,
we will just look at one: if a user sees the same record take on different values, it must always
get more up to date.

obs. 1.

❏user sees(user,db1, id) ∧ stamp1' (id) = t ⇒
 ❏user sees(user,db2, id) ⇒ stamp2' (id) ≥ t()

With no social protocol this property cannot be guaranteed. Consider for example the
following event history for the user, where db1 and db2 are separate copies of the database:

update(user,db1, id,val1) → update(user,db2, id,val2) → look(user,db1, id)

Clearly, the final timestamp of id will be older than the timestamp in the previous event,
violating the required condition. We therefore need a social protocol to make the system
work. We use similar conditions to the example formula earlier:

social 1.

❏user merge(user,db1,db2) ⇒
sees(user,db3) ⇒ (db1 = db3 ∨ db1 = db3)

Uuser merge(user,db1,db4) ∨ merge(user,db2,db4)

19. LADA — A logic for the analysis of distributed actions 327

social 2.

❏user sees(user,db1) ⇒
sees(user,db3) ⇒ db1 = db3() Uuser merge(user,db1,db2)()

The first condition says that between merges the user only interacts with one of the
databases which were merged. the second says that when the user has chosen to interact with
a database that is the only one which is used until the next merge.

19.5.5. Sketch proof of observational consistency

The proof is in three main steps. First one proves the equivalent property for a single
database following its timeline. That is:

proof. 1.

❏

db
id ∈ records' ∧ stamp' (id) = t ⇒ ❏

db
id ∈ records' ∧ stamp' (id) ≥ t()

This is proved by induction and case analysis over the actions which a database can be
involved in. Indeed, it is trivial to see that no action may reduce a records timestamp.

The second stage is to transfer this result to a user looking at a single database. That is we
seek to prove:

proof. 2.

❏user sees(user,db, id) ∧ stamp' (id) = t ⇒

❏user sees(user,db, id) ⇒ stamp' (id) ≥ t()

Although this involves only the user and one database, it s no longer a linear temporal
logic proof. Both the user and the database may have interactions which do not involve one
another. In other words, we need to prove temporal properties of entities which take different
time paths.2 For the first time, we really need the additional expressive power of a non-linear
logic and can use a general proof rule. Let a and b be any two entities, and e and f two action
types which involve them both:

infer 1.

from

❏a P ⇒ ❏a Q

infer

❏b e(a,b) ∧ P ⇒ ❏b f(a,b) ⇒ Q

We simply set P to be id ∈ records' ∧ stamp' (id) = t() and Q to be

id ∈ records' ∧ stamp' (id) ≥ t() . The first part of our proof (proof 1.) has therefore fulfilled
the condition of the proof rule. Examining each specific action which comprises the generic
action ‘sees(user,db.id)’, we find that all imply that id is in records’. Hence letting both events
e and f be ‘sees(user,db.id)’ we obtain equation proof 2.

So far we are still only considering a user’s interactions with one database. To prove the
full observational consistency property, we need to use the social protocol. This is now a
linear temporal logic step and just involves induction and case analysis. The important fact is
that the social protocol ensures that the user’s interactions are always of the form:

sees(user,db1) › ... › sees(user,db1) › merge(user,db1,db2) › sees(user,db2)
 › ... › sees(user,db2) › merge(user,db2,db3) › sees(user,db3) › ...

The single database version effectively proves the property between merges, but the fact
that databases are identical after merges then allows an inductive proof of obs. 1.

328 Alan Dix

19.5.6. Other forms of observational consistency

The proof of simple observational consistency only depended on the system behaviour and
the social protocol of the particular user involved. That is, so long as a user obeys the
required social protocol any individual record will always get more up to date.

More complex observational properties should look at groups of records. For example, we
might like it to be true that two users could agree about their observed history of records.
That is, given two records (with ids i and j), and two users (say Alison and Brian), if Alison
sees record i updated before record j, we might like Brian to see the same relative ordering.
We can define this ordering precisely. We say that Alison sees record i at time t before she
sees record j at time 2 (denoted i@t <A j@s) when the following holds:

i@t <A j@s ≡ ◊A sees(A,db) ∧ stamp' (i) ≥ t ∧ (j ∉ records' ∨ stamp' (j) < s)

This is rather strong as it says that the updates cannot even be first seen at the same time.
The weaker equivalent allows this:

i@t ≤A j@s ≡ ¬ j@s <A i@t()
Note that although these are written as partial orders, they will only be guaranteed to be so

if Alison obeys her social protocol.
The joint consistency property can then be stated:

obs. 2. – false

i@t <A j@s ⇒ i@t ≤B j@s

Unfortunately, this consistency condition (which is what one would expect of a
synchronous database) does not hold of Liveware. For example, imagine that record i
belonged to Alison and j to Brian. They start with identical copies of the database, then in
different locations Alison updates record i and Brian updates j. Clearly Alison will see the
update to i before j and visa versa for Brian.

Although this stronger form of the consistency property does not hold for any pair of
records, it does hold if the records belong to single user. That is:

obs. 3.

i.u = j.u ∧ i@t <A j@s ⇒ i@t ≤B j@s

Proving this requires that all three parties (Alison, Brian and the user to whom the records
belong) all obey the social protocol. These three need not be distinct leading to two special
cases.
• If Alison and Brian both maintain the social protocol, then each will see the other’s

records in a consistent manner.
• If a single user (say Alison) maintains the protocol, then she will always see her own

records as consistent with one another.
Note that in both these cases, we put no stipulations on the other users. This is very important
as in a large informal group, we cannot guarantee that everyone else will always fulfil their
commitments.

19.6 Lessons about the Logic

Having seen a partially worked through example, we can look again at the underlying
formalism and see what can and cannot be done within the logical formulae.

19. LADA — A logic for the analysis of distributed actions 329

19.6.1. Additional temporal operators

Several of the steps in the proof of simple observational consistency involved reasoning
about a single entity’s timeline. The expresion of properties and proofs are then pretty much
standard linear temporal logic.

Inductive proofs of ‘always’ properties is made easier by using the temporal logic ‘next
state’ operator (❍). As with the other operators, this is decorated with the name of the entity
which is being traced. For example, the social protocol can be re-expressed as:

social 1a.

❏user merge(user,db1,db2) ⇒
❍user interact(user,db1) ∨ interact(user,db2)()

social 2a.

❏

user
sees(user,db1) ⇒ ❍

user
interact(user,db1)()

However, this formulation is only correct so long as the user only engages in interactions
with databases. We might have an additional action for users ‘drink_cup_of_tea’. If the user,
say Brian, were to follow the above formulation of the social protocol it would imply that
once an interaction with a Liveware database had taken place, Brian would have to spend the
rest of his life with Liveware and never drink another cup of tea!

What we really want to say is “in the next state where there is database interaction...”.
That is, we want to have temporal operators which only look at actions of a particular type.
We can denote this by putting the relevant action condition after the entity name in the
temporal operator’s decoration. For example:

social 2b.

❏user sees(user,db1) ⇒ ❍user:interact interact(user,db1)()

Similar annotations can be used with the ‘always’ and ‘eventually’ operators, but are
redundant as the same effect can be achieved in the predicate part:

❏

ent:action
P ≡ ❏

ent
action ⇒ P

The following two proof rules then allow easy inductive proofs:

infer 2.

from

 ❏ent:actionP

infer

 ❏

ent
❍

ent:action
P

infer 3.

from initially P and

❏

ent:action
(P ⇒ ❍

ent:action
P)

infer

❏

ent:action
P

The first of these is a weakening rule. The second, infer 3., requires information about the
initial states of entities, which was mentioned once or twice loosely during the previous
proofs, The second part the condition (the inductive part) will usually be discovered by
recourse to case analysis on the different types of possible action.

330 Alan Dix

19.6.2. Resynchronisation

Not every property or proof step can use purely linear temporal reasoning. If they could
there would be no need for a new formalism! In the proof of simple observational
consistency (obs. 1.), we only needed one proof step involving the intertwining of timelines
which we could achieve using the inference rule infer 1. However, the more complicated
observational consistency property (obs. 3.) talks about properties of two timelines (in fact
three including the record’s owner). Furthermore, the Multiple Source Control system [1]
uses asynchronous message transfer as well as direct merging and will thus have even more
non-linear features.

The logic formulae we have seen so far make it easy to branch onto different entities
timelines. Take for example:

❏

C
act1(C,A,B) ⇒ (P(A) UA act2 (A,B)) ∧ (Q(B) UB act2 (A,B))

This says that it is always true along C’s timeline that if C engages in the action act1 then
along A’s timeline P will hold until A engages in the action act2 with B and similarly along
B’s timeline Q would hold until B engages in act2 with A. We could instantiate this with the
following entities an actions:

A – Alison
B – Brian
C – Cupid
act1(C,A,B) – Cupid fires his arrows of passion at Alison and Brian
P(A) – Alison is unhappy
Q(B) – Brian is sorrowful
act2(A,B) – Alison and Brian marry

The formula would then read:
“Whenever Cupid fires his arrows of passion upon Alison and Brian, Alison
will be forever unhappy until she marries Brian and likewise Brian will be in
perpetual sorrow until he marries Alison.”

However, the formula does not specify whether the two marriages spoken of are the same
event. We could imagine a scenario whereby Alison and Brian are both unhappy and then
they marry. Brian is now delighted, but Alison stays unhappy and sadly they divorce
(presumably casting Brian once more into the depths of sorrow). Only then does Alison
realise the depth of her love for Brian and she remains unhappy until years later they meet
again, refresh their romance and remarry.

It makes a good story, but was not what the original formula was meant to express. It
allowed one to talk about the diverging timelines of Alison and Brian from one event (the
shooting of the arrows), but did not demand that the timelines resynchronise on a single event
(marriage). In this example, we could force the required interpretation by adding the
requirement to P and Q that no marriage takes place. However, this is both inelegant and will
not cope with slightly more complex situations. To allow more general resynchronisation we
can label the events:

❏C act1(C,A,B) ⇒
∃ e:Event st. (P(A) UA e:act2(A,B)) ∧ (Q(B) UB e:act2(A,B))

This form of labelling makes the expressive power of the temporal formulae more
symmetric (although not completely) at the expense of more complex logic.

Happily, most properties seem to concern relatively little resynchronisation and it is likely
that most proofs can be split into mainly linear parts with only occasional non-linear parts.
This was certainly the case with the observational consistency proof.

19. LADA — A logic for the analysis of distributed actions 331

19.6.3. When logic fails

Although the temporal formulae make it easier to define and reason about properties, they
are not complete with respect to the underlying semantic model. Occasionally, properties
may need to be stated using the model itself (as was the case with the first time property time
1.). Even where the required properties can be stated using the temporal formulae, proofs
may have to drop into the semantic domain. This is not a fundamentally difficult process as
the formulae can be easily translated into their semantic equivalents to carry out proofs there.

If some constructs seem to recur they may become candidates for later inclusion in the
logical level of LADA (as is the case with labelled events), but I am not convinced of the
utility of aiming at completeness at the logical level when the semantic level is not unduly
complex.

If such a dual level approach seems inelegant to the purist it should be noted that temporal
formulae are simply predicates about event lattices. If required they can thus be embedded
into properties at the semantic level, giving rise to a ‘wide spectrum’ notation. For example,
we could say:

❏

a
act1(a) ⇒ ∃ e:Event st. (◊a e:act2 (a)) ∧ (∀ f f e P(f))

Some care has to be taken over the precise semantics of embedded quantifiers over events.

19.6.4. Not just atomic events

Whereas most specification notations for interfaces are targeted at continually
synchronised systems, LADA is explicitly aimed at the opposite extreme. The entities meet
and synchronise at discrete and atomic events. However, there are situations between these
two extremes. For example, we may want to describe systems where participants both work
separately, but also have protracted periods of synchronised work. During these periods it is
reasonable that participants will join and leave the synchronous group. This is not allowed in
the current formalism as this would lead to violations of the partial order between events.

Another way in which the atomic nature of events is insufficient to describe interface
phenomena is when there are periods of continuous interaction between events. This
interstitial (that is between actions) behaviour become important when studying more
detailed interaction. Although it can be ignored then for the highly distributed systems which
are the main target of LADA it suggests that appropriate extensions would be valuable for
certain target domains. This would bring together the work described in this paper with a
longer running study of status/event analysis (e.g., [2] and [4, Ch. 9]).

19.7 Discussion

It is difficult enough to specify and reason about single user interaction – the movement
into groupware with the attendant problems of distribution is daunting. We have seen how
LADA is designed to address such systems. It has two major features:
• a partially ordered event lattice to express issues of distribution.
• extended temporal logic formulae following individual timelines.

The first of these is not uncommon, although it is important to remember that the use here
is to represent events which are totally unsynchronised, rather than simply things which may
happen concurrently. The emphasis here is on distribution not concurrency.

The use of temporal formulae is I believe novel and adds considerably to the ease of use
and expressiveness of the resulting formalism. This was evident in the worked example

332 Alan Dix

where comparatively complex properties of multiple agents and objects were expressed
succinctly and proofs of properties nicely factored into linear and non-linear parts.

Acknowledgements

This work was funded by a SERC Advanced Fellowship B/89/ITA/220 and by SERC
Grant GR/J08560, “Version Management and Access Control Models for Cooperative
Systems”.

References

[1] A. J. Dix and V. C. Miles, Version Control for Asynchronous Group Work, YCS 181,
University of York, 1992.

[2] A. J. Dix, “Beyond the interface”, pp. 171-190 in Engineering for Human–Computer
Interaction: Proceedings of IFIP TC2/G2.7 Working Conference, Ellivouri, Finland,
J. Laron and C. Unger editors, North-Holland, 1992.

[3] A. J. Dix & R. Beale, Information Requirements of Distributed Workers, University
of York, 1992.

[4] A. Dix, A., J. Finlay, G. Abowd and R. Beale, Human-Computer Interaction, Prentice
Hall, 1993.

[5] C. A. Ellis and S. J. Gibbs, “Concurrency control in groupware systems”, SIGMOD
Record, 18(2), pp.399-407, Proceedings of the ACM SIGMOD International
Conference on Management of Data, June 1989.

[6] J. Grudin, “Why CSCW applications fail: problems in the design and evaluation of
organisational interfaces”, pp. 85-89 in CSCW’88 Proceedings of the Conference on
Computer-Supported Cooperative Work, ACM SIGCHI & SIGOIS, 1988.

[7] C. A. R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.
[8] J. J. Kistler and M. Satyanarayanan, “Disconnected operation in the Coda file system”,

ACM Transactions on Computer Systems, 10(1), pp. 3-25, February 1992
[9] J. Mariani and T. Rodden, “The impact of CSCW on database technology”, in

Proceedings of the IFIP Workishop on CSCW, Berlin, April 1991.
[10] H. W. Thimbleby and David Pullinger, “Observations on practically perfect CSCW”,

in CSCW Issues for Mobile and Remote Workers, IEE Colloquium, March 1993.
[11] I. H. Witten, H. W. Thimbleby, G. F. Coulouris & S. Greenberg, “A New Approach to

Sharing Data in Social Networks”, in Computer–Supported Cooperative Work and
Groupware, S. Greenberg editor, Academic Press, ISBN 0-12-299220-2, 1991.

1Branching time interpretations of temporal logic do not use a linear model. However, the branches in the

tree represent ‘possible’ worlds and any particular history is still linear (a path through the tree). The major

difference between linear and branching time temporal logics is not in the underlying notion of time, but in the

interpretation of the temporal operators. In particular, whether the diamond operator ‘eventually’ is taken to

mean “there is some possible future state where…” or “in any possible future history there will be a state

where…”.
2 I’ll take the high road and you take the low road, and I’ll be in Scotland before you,

