
Why, What, Where, When:
Architectures for Cooperative Work on the World Wide Web

Category: PAPER (final copy)

Authors: Devina Ramduny
School of Computing, Staffordshire University

PO Box 334, Beaconside,

Stafford, ST18 0DG

D.Ramduny@soc.staffs.ac.uk

Tel: 01785 353255

Alan Dix
School of Computing, Staffordshire University

PO Box 334, Beaconside,

Stafford, ST18 0DG

A.J.Dix@soc.staffs.ac.uk

Tel: 01785 353428

Contact: Devina Ramduny

Why, What, Where, When:
Architectures for Cooperative Work on the World Wide Web

Devina Ramduny and Alan Dix
School of Computing, Staffordshire University
PO Box 334, Beaconside, Stafford, ST18 0DG

D.Ramduny@soc.staffs.ac.uk
A.J.Dix@soc.staffs.ac.uk

http://www.soc.staffs.ac.uk/~cmtajd/topics/webarch/

Abstract
The software architecture of a cooperative user interface determines what component
is placed where. This paper examines some reasons determining why a particular
placement should be chosen. Temporal interface behaviour is a key issue: when users
receive feedback from their own actions and feedthrough about the actions of others.
In a distributed system, data and code may be moved to achieve the desired
behaviour — in particular, Java applets can be downloaded to give rapid local
semantic feedback. Thus we must choose not only the physical location for each
functional component but also when that component should reside in different
places.

Keywords: software architecture, CSCW, Internet, caching, replication, applets,
feedback, feedthrough, temporal problems, delays

1. Introduction
The world-wide web provides a ubiquitous infrastructure and platform independent
interface for developing remote collaborative applications. Although such systems
can be developed in an ad hoc fashion it is widely recognised that, for both single-
user and multi-user interfaces, an appropriate software architecture is required as an
aid for design, portability and maintenance [4,19,23]. In this paper we will
investigate some architectural decisions for distributed collaborative applications
focusing especially on collaboration over the web.

Software architecture is about dividing systems into components in order to perform
certain functionalities — what the system can do. But in order to work as a complete
system the components must be linked together in such a way that they can
communicate effectively with each other. While all the components are running as
part of the same program on the same machine these communications are easy.
However, as soon as the system is distributed over a network, as is the case with
many cooperative systems, components placed at different locations face higher
communication costs and delays than those at the same location. Hence the choice
of location — where the components are placed — has a significant effect on
performance.

One of the principle effects of location decisions is on the pace of interaction. For
many years temporal issues in interface design have been largely ignored with a few

exceptions [10,11,13,17]. However, recently the importance of time and delays has
become more widely recognised [18], due no doubt in part to experiences of Internet
use. This when question is only of importance to the user when it becomes apparent
to the user. Thus behavioural issues are the driving force that determine why one
architectural solution is better than another.

In many systems data is moved about in order to improve interactive performance.
Furthermore in the world-wide web Java applets allow code to move and execute on
user's own machines. Thus placement decisions for the web are not just about what
is placed where, but also about when the data and code is at a particular location.

In the next section we start by looking at mature architectures for single-user
interfaces which will later be used as a pattern for looking at collaborative
architectures. This is followed in section 3 by an analysis of important behavioural
issues for collaborative work. We will then return to architectures, looking at what
components are necessary in collaborative interfaces, modelled on those found in
single-user interfaces and the requirements established in section 3. In section 5, we
will look at different placement options, where to place different components in a
distributed architecture. Section 6, examines the issue of mobility of data and code
and we are able to plot different options in a when/where matrix for each. Finally,
in section 7 we look at the way these two matrices interact focusing on the options
available for world-wide web applications.

2. Background — single user architectures
Architectures for single-user interfaces such as Seeheim [23] and Arch/Slinky [29]
support the partitioning of the application semantics and the user interface
functionality. The dialogue component mediates the communication between them.
Separation enhances portability, reusability, customisation and adaptability of an
application [16]. However, a case against separability is the problem of rapid
semantic feedback — modern direct-manipulation interfaces require information to
be exchanged extensively between the user interface and the application.

USER

Lexical Syntactic Semantic

APPLICATION
Application

Interface
Model

Dialogue
Control

Presentation

Figure 1. Seeheim model

Figure 1 shows the logical components of the Seeheim model. The presentation
component is responsible for the external appearance of the user interface while the
application interface model holds the data and defines the semantics of the application.
The dialogue control component mediates the interaction between the user and the
application to provide semantic feedback. Whilst Seeheim has been developed in
various ways, most notably in the Arch/Slinky framework, most user interface

architectures preserve some notion of layering between the surface output and input
devices and the deep application semantics.

The linear nature of communication between the components in the Seeheim model
is often seen as a bottleneck for direct manipulation user interfaces. However the
fast-switch represented by the lower box in Figure 1, allows the application to
bypass the dialogue component when its state is not affected by output events. The
application can then communicate directly with the presentation component and
thus provide rapid feedback. But unlike the other functional components, the fast-
switch is less well defined and correspondingly more difficult to implement as an
architectural feature.

We can view the Seeheim model (and indeed other architectural models) in two
ways: either as a conceptual (or logical) architecture, helping us to think about user
interface development; or as a physical architecture demanding that there really are
components of the system with the named roles and communicating along the paths
specified in the architecture.

This is particularly obvious when all the components are placed on the same
machine. As we have seen, the decoupling of the user interface functionality from
the application functionality via the dialogue control is sometimes difficult to
achieve, especially when rapid semantic feedback is required. Consequently aspects
of the user interface may ‘leak’ into the application semantics component or vice
versa. This is possible as there are typically no constraints to stop, for example, the
application semantics from directly calling window toolkit functions. This fluidity of
boundaries is recognised in the Arch/Slinky model [29] which still maintains the
central role of layering and separability (in fact adding additional layers), but accepts
that the precise placement of these layers into coded modules may vary between
systems and even between parts of the same system.

When the software is no longer running on a single machine, as is the case in a
distributed environment, the application and the user interface components are
usually on different machines. One can no longer fudge the boundary and
communications between these as they are enshrined in the physical location and
network connectivity. As a result the issue of where the various components reside is
decisive in order to achieve rapid feedback.

In addition to architectures which divide the entire system into a small number of
large components, there are many agent-based or object-oriented user interface
architectures. However, these either identify individual agents as belonging to one
of the traditional layers or include a layering within each agent. For example, the
PAC architecture [6] regards each agent as possessing a presentation, abstraction
(roughly corresponding to application) and control component.

3. Why — behavioural issues
The reasons for determining why a particular placement should be chosen influence
the behaviour of an application. The behavioural aspect affect the way users view
the display on the screen (presentation). The behaviour of any application depends
on its architecture. The most significant behavioural implication enforced by the
architectural decisions is often the temporal impact. For instance, if one ignores the
temporal issues then from the behavioural viewpoint, the location of the data is not

important. However, for performance reasons, it is crucial that there is no perceived
lag between any updates to the data and the subsequent changes being reflected on
users' displays. Consequently, this may influence the selection of for example, a
centralised or a replicated architecture [20]. The rest of this section describes the
major behavioural issues which arise within web-based collaborative work.

Triggers and shared objects

A previous study [14,15] highlighted the importance and function of triggers, that is
events which initiate activities. An important class of triggers are environmental
cues [26], objects in the physical objects which by their presence remind users that
activities need to be performed and help maintain the status of ongoing processes.
Similarly, in an electronic cooperative setting, triggers can be associated with shared
objects, reminding users that some actions have been carried out by others and/or
some further actions need to be taken. Furthermore, the coordination of cooperative
work can be mediated via shared objects. Although this form of coordination is less
explicit than direct communication, it does play an important role. Indeed, in many
cooperative processes there may be little direct communication. Instead coordination
is mainly achieved by communicating implicitly through the artefact [8].

Feedback

Feedback manifests itself as a response from the display after a user’s actions. It is a
common feature of direct manipulation interfaces where objects change their
behaviour when they are manipulated by the user. For instance, a button is
highlighted when it is clicked onto by the mouse. Feedback may depend on the
underlying application semantics. Within the web environment, the feedback loop
involves transmission over a network. If the network traffic is high, the delays
associated with the feedback will be significant. Consequently, it may be difficult to
achieve rapid semantic feedback and acceptable response times.

Feedthrough

Collaborative participants not only interact individually with the system but also
with other group members via the shared objects. As a result, it is important to see
both the user's own updates (feedback) and the effects of other users' actions
(feedthrough). Feedthrough is the reflection of a user's actions on other users'
screens [9]. For example, gIBIS [5] allows participants to be aware of any updates
through a notification mechanism.

The requirements for feedthrough are not so stringent as for feedback [9].
Feedthrough depends on two major factors: the granularity of the updates and the
propagation of those updates. In tightly-coupled cooperative activities, such as
group drawing, the granularity of updates is small and rapid feedthrough is vital. In
other words, the updates have to be broadcast to all the users after each action. On
the other hand, in loosely-coupled applications, the update rates can be reduced
significantly. The user who initiated the action still requires rapid feedback but the
feedthrough to other users may be less frequent. Because some objects are more
significant for obtaining a sense of engagement, concepts of quality-of-service [24]
can be applied giving different levels of feedthrough on shared objects within a
groupware architecture.

The very nature of cooperative work introduces delays as users have to wait for
feedback from their own actions and feedthrough of the actions of others. In
addition, with the web, there are further delays and lags which are implicit in the
network. Thus the provision of rapid feedback and feedthrough becomes more
problematic. Current web-based collaborative applications often weakly support
feedthrough even though it is essential in maintaining fluid collaboration.

Awareness

Traditionally, distributed systems have applied different types of transparency to
hide information from the users. However, within the context of CSCW, users need
precisely that information for effective cooperation. Awareness of individual and
group activities is critical for establishing successful collaboration. Different kinds of
awareness have been identified in the research literature.

The three major forms that enhance group work are:

a) awareness of the presence of group members and their availability for
cooperative work,

b) awareness of the effects of group members actions (i.e. what changes have
occurred) and

c) awareness of how changes happen.

Nevertheless, in remote cooperative work, users are often faced with unpredictable
timing delays over the network due to remote site failures or network bottlenecks.
This may lead to a complete breakdown in work. We therefore require an additional
form of awareness:

d) awareness of the state of the communication channels.

An interesting observation which can be made is the fact that awareness of type (b)
is basically conveying the notion of feedthrough [12]. Also the pace of feedthrough is
directly proportional to the rate of providing awareness of type (c). In other words,
we can infer the reasons changes happen by noticing the intermediate steps and the
way changes happen. However, both awareness of type (b) and (c) will be negatively
affected by network delays and lags.

Awareness of type(c) is not easy to manage especially when the web is used as an
asynchronous environment. Some traditional groupware with shared workspaces
record who has made the updates and when. Such temporal information is however
hard to reconstruct at a distributed level. Even synchronous interaction will pose a
similar problem in the event of delays over the communication channel.

Control

Due to the common focus on work, collaborative participants have to access the
same data. Therefore some form of control is required to manage the shared data
and the shared objects. This will determine the nature of the cooperation dealing
with issues such as who can update what, where and when; who can see the changes
and whether the changes can be noticed in a reasonable amount of time.

One of the most common control mechanisms is locking including explicit floor
control policies [1,28] and implicit locking which is automatically applied when
users attempt to access an object. In some systems additional protocols are built on

top of the locking mechanisms, such as access rights or roles [21]. Users perform
certain tasks depending on the roles they are assigned. Unlike access rights which
normally impose a restriction on users functions, roles are more dynamic in nature.

Finally, certain applications do not provide any mechanism for locking, relying on
participants using a social protocol to negotiate simultaneous access in a free-for-all
situation. However such systems must usually include some form of mechanism to
detect conflicts in order to automatically restore consistency or at least alert users.

4. What — architectural components of cooperative systems
The support for collaborative work has seen the development of architectures which
present a number of interfaces for simultaneous interaction by multiple users. One of
the main functions of cooperative architectures is the presentation and manipulation
of shared information by a community of users. As we have discussed earlier in
section 2, the separation between the application semantics and the user interface is
acknowledged to be a desirable feature for a number of reasons.

Whereas in single-user applications, the logical separation is sometimes ignored to
reduce the complexity and speed of development, in collaborative applications,
logical separation is a necessity for supporting alternative views of the system for
different participants. It is necessary to identify which elements of collaborative
interfaces are shared between participants and which are different for each one. This
logical separation is also essential when deciding where elements are placed in a
networked environment. The web for instance, allows extensions or modifications at
the server-end, client-end and the communication protocol, an issue we return to in
section 6. Let us now consider how the Seeheim model can be mapped onto
cooperative systems.

Presentation

The presentation component of collaborative applications must support alternative
representations of the users’ display. Shared information can be presented as a single
view to all the participants (WYSIWIS systems) or it can be viewed differently by
different users (multiple views). For instance, a user may view the data in tabular
form while another may view it as a graph. Similarly, group members can have their
own private view or they can also share views of the display. Some systems allow
users to shift between a tightly coupled mode where they share the same
presentation and a loosely coupled mode where users can view and scroll
independently. In cases where the presentation or view is shared there must be
some component of the systems to manage the shared information.

Shared data

The key element in any collaborative system is the shared application data. In the
Seeheim model the application interface component manages the mapping between
application data and the rest of the user interface. This is important as it emphasises
the fact that the visualisation of information requires both the raw data and the
semantics of the data — in a computational setting embedded in code. In the web
setting this aspect is often embedded in CGI scripts which communicate with the
user interface component (the web browser) using web pages and forms (dialogue

level information). However, Java applets have opened up the possibility of
including far more of the application semantics at the user interface itself.

Control

In section 3 we discussed why control mechanisms were necessary to avoid conflicts
and maintain consistency. However, behavioural level control itself has be to driven
by some lower level control that has to be maintained by the architecture, the most
common mechanism for this being locking. In a single-user interface the dialogue
component is responsible for determining the allowable order of user actions. The
control component satisfies a similar role in that it controls the possible order of
actions by different participants.

Traditional distributed systems view control as dealing with the problems of
distribution and masking such problems from applications [25]. For instance, most
distributed systems allow users to know who can access which objects but they do
not allow users to know who is accessing a particular object at a particular moment.
The control decisions are thus embedded into the system and hidden from the users.
However, due to the dynamic requirements of CSCW applications, one of which is
awareness, transparency is the wrong approach.

Because data is shared in collaborative applications, there is a clear distinction
between the mechanisms for enabling distribution and sharing (e.g. ability to move
an object) and the policies for managing those mechanisms (decisions about when
and where the object should be moved to). Effective groupware systems therefore
need separate low level control mechanisms to support those higher level control
policies. Architectural level control may be either of a centralised or a peer-peer
nature and can be supported by a separate server or be part of the shared data’s
infrastructure.

Notification

In collaborative work users operate simultaneously on the shared data — some users
may view some part of the data while others may perform an update. MEAD [3] is
an example groupware application which allows detailed level sharing of the
scrollbars. Consequently, there is a need to maintain consistency between the users
views and the underlying data. Without such consistency feedthrough is lost and
users cease to have a common focus for collaborative activity.

In a single-user interface, similar issues arise whenever there are multiple views of
the same underlying object. However, because there is ultimately a single locus of
control (the user) this can be managed within the dialogue component. For example,
the PAC architecture [6] has a hierarchy of PAC agents within the dialogue
controller which manage consistency between views. In a distributed collaborative
setting it is fundamentally more complex to maintain this consistency because of the
multiple loci of control.

Notification mechanisms address this problem by informing the presentation
component of various updates so that the latter can replicate the changes on the
users’ display. A low level notification mechanism is therefore required to maintain
feedthrough by informing the application of changes to the data and by keeping
track of the activities of collaborative participants to support awareness.

5. Where — placement decisions
In the previous section we looked at some of the components of the Seeheim model
and how they parallel components required of cooperative systems. However, we
did not consider the fast-switch which allowed the application to communicate
directly with the presentation component. This is because the fast-switch is not
really part of the conceptual architecture (which is perhaps why it is so often omitted
in descriptions of Seeheim), but instead is there as an optimisation. In principle all
feedback could be routed through the dialogue component with more or less
translation and interpretation on the way. The problem with this is that the dialogue
component introduces a computational delay between application and presentation
thus reducing the pace of feedback.

Arguably this is not a great problem today for single-user single-machine systems as
it is often possible to perform several levels of processing and still achieve acceptable
interactive response. However, for collaborative systems it is likely that shared data
will be stored remotely from the user’s workstation — instead of a computational
delay we have a network delay. Whenever data is stored remotely from the interface
feedback delays are bound to occur.

Unfortunately, we cannot simply add an extra component similar to the fast-switch
as it too would have to sit remote from the data or remote from the interface. You
can bypass computational components, but not space! The location of data and code
(where) inevitably effects the pace of feedback (when).

One solution to this problem is to accept that semantic feedback will be delayed.
Instead one can adopt a paradigm of mediated interaction with instant local
feedback that the user’s action has been recognised followed by subsequent semantic
feedback when the effect has occurred remotely [7]. However, this will not be
acceptable where user’s demand direct manipulation interfaces similar to those for
local single-user applications, in which case alternative solutions must be found.

Replication and Caching

Most solutions which aim at providing rapid feedback and increasing the
availability of data involve some form of replication or caching (Figure 2). The
objective is to bring the shared data closer to users.

Caches are merely temporary repositories and hold an ephemeral copy of the data at
any instant. Each user’s workstation therefore uses local copies of the shared data
(Figure 2b). The actual shared data is held in a central repository. Because there is
centralised control over the data, consistency can be easily maintained as each cache
only needs to communicate with the central repository.

Replicas on the other hand, are equally valid full copies of the data which are stored
locally. Replicas are more persistent than caches as they are the real data. However,
it is more difficult to maintain data and interface consistency as replicas have to
communicate between each other on a peer-to-peer basis. Replicas are synchronised
by sending input from each workstation to each replica (Figure 2a). Consequently
the multiple points of updates may lead to race conditions and potential data
inconsistency. For example, if a user deletes a selected object in a WYSIWIS group
drawing program while another user is changing the selection to a different object,

inconsistent interfaces can result due to events arriving in a different order at each
workstation.

User 1

Application 1

Replica 1

Workstation 1

User N

Application N

Replica N

Workstation N

User N

Application N

Cache N

Workstation N

Shared data

User 1

Application 1

Cache 1

Workstation 1

Figure 2(a) Replication Figure 2(b) Caching

In distributed systems, the traditional approach to replication has been transparency.
The system avoids race condition by maintaining consistency among the different
copies of the data via some complex synchronisation algorithms. In the event of
inconsistencies, the solution is to rollback [27] the replica(s) and re-execute the events
in temporal order. However, this policy is unacceptable in collaborative interfaces as
display screens would already have been updated and alternatives based on
transforming updates to prevent rollback have been developed [4].

Control

When rapid feedback is not the major concern, concurrency control mechanisms,
such as locking or floor control can be applied to prevent race conditions altogether
or tolerate race condition only in situations where users obtain locks or other large
scale events [9]. However, real-time synchronous update may demand special-
purpose algorithms.

All such mechanisms require meta-data, for example recording who has the lock on
which object. This meta-data must itself be maintained and has similar issues as the
real data. It can be maintained in a replicated fashion using complex distributed
algorithms, or more commonly be maintained using a central server. When the data
is stored centrally the same server may deal with both data and meta-data as is
usually the case with traditional databases. However, it is also possible to use a
separate locking server. For example, the UNIX file system has no in-built locking
mechanism, instead applications request locks on remotely stored files from a special
process, the lock daemon. Obviously where no off-the-shelf locking is available, or
where the locking supplied is unsuitable, application developers are forced to use
their own ad hoc locking mechanisms. This is usually the case with web-based
cooperative applications.

Notification

Although feedback causes problems, feedthrough is even more difficult — no
amount of careful placement of components can change the fact that the user making
a change is a long way from other users who see the effects of the change. Happily,
we have seen that feedthrough can usually be of a lower pace than feedback, hence
ordinary network delays are usually acceptable. What is not acceptable is if changes
made by one user are never reflected on other users’ interfaces or only do so after a
long delay — hence the need for notification mechanisms as discussed in the
previous section.

Similar issues arise as for locking. If no notification service is provided then an ad
hoc mechanism will be necessary, for example, individual clients may poll one
another for changes. Alternatively, a notification service may be incorporated within
the data-management infrastructure, for example, Lotus NSP [22] offers a generic
data storage and notification server and ALV [19] supports distributed constraint
maintenance between shared data and user views. Finally, a stand-alone notification
server can be used.

Whichever notification alternative is used there will be meta-data concerning this:
what objects are being managed, who wants to know about which object. This meta-
data must again be stored in either a replicated or centralised fashion.

Different kinds of remoteness

In a single-user system, when accessing remote data using traditional client-server
techniques, it is clear what we mean by local and remote. In a cooperative
application we need to be more careful as for each user the definition is different as
their own machine is local, but data stored or updated on another user’s machine is
just as remote. So, if semantic feedback relies on data held at another user’s
machine, the feedback delays will be as great as for centrally held data, perhaps
greater as central servers may have better networks response.

This gets even more complicated when using the web as an infrastructure. Each
user may be accessing several web servers as well as other central servers such as
databases. To an extent the web makes the physical location of data unimportant,
except insofar as the location affects response time. However, the physical location
is very important when using Java applets. The security mechanisms of Java only
allow the applet to access Internet services lodged on the same machine as the web
server that supplied the applet.

In summary for the web we have four kinds of ‘remote’ application:

• another user’s client

• the web server for the current page

• a different server on the same machine as the current web server

• server on a different machine

Thus for the web placement decisions do not stop at local vs. remote, or even client
vs. server. The decision about where server software is placed is intimately related
to the techniques used to implement client software.

6. When — moving information and code
In a networked environment it is common for data to be dynamically moved or
copied in order to improve performance. Also some distributed infrastructures
support the migration of objects or code between machines. We will now discuss the
various mobility aspects of data and code individually in preparation for
considering their interaction in the next section.

Moving data

Consider caching — the ‘golden’ copy of the data is stored remotely, but a copy is
made locally to speed feedback. The fact that data can be copied over networks
means that in distributed collaborative applications, the place where shared data is
permanently stored is not necessarily the same place as it (or a copy of it) is used.
Using the simple local/remote distinction we can classify both the permanent
storage place and the place of use giving rise to the matrix in Figure 3.

Data Usage

Data
Storage

replicas

caching client-server

local remote

local

remote

Figure 3. Data Usage v/s Data Storage

This matrix clearly shows the distinction between caching, where the local copy of
the data is ephemeral and the ‘real’ data is central, compared with replication, where
the local data is more persistent. Where data is held and used remotely we have
traditional client-server interfaces. Only the information necessary to generate the
interface presentation of the data is transmitted to the user’s local machine. Notice
the empty location. In a groupware context, it is highly unlikely to have a scenario
where the data is held locally and yet is used or processed remotely. However, such
a situation does exist for non-groupware solutions, for example super computers.

Moving code

In a collaborative distributed interface we must also decide where the code for
different architectural components resides. In particular, for web-based systems
application specific code may run at the server-end (CGI scripts or independently
running servers) or at the client-end (applets and helpers or browser plug-ins [30]).

Notice again that in some cases (e.g. CGI scripts) the code is stored remotely, in
others (e.g. helpers) it is stored locally. In the case of both CGI scripts and helpers
the code executes in the same place as it is stored. However, in the case of Java
applets remotely stored code is executed locally. This is a form of migration as is
found in many object-based distributed systems.

Code execution and code storage are key architectural options. It is essential to
decide where the code gets executed for efficiency reasons in order to provide rapid
feedback. Similarly, the rate at which changes to the code occur and the ease of
distributing those changes (a form of feedthrough) are affected by where the code is
stored.

Using these two axes the matrix in Figure 4 classifies code options using a similar
matrix as that we had for data.

Code Execution

Code
Storage

helpers

Java applets CGI scripts

local remote

local

remote

Figure 4. Code Usage v/s Code Storage

As with the data matrix we find a gap in Figure 4. The web does not cater for locally
stored code to be executed at the server end and it seems an unlikely option for
groupware systems in general. However, in some client-server database
applications, quite complex SQL queries can be sent to the server and which may be
regarded as a form of locally stored code with SQL queries being executed remotely.

7. World Wide Web — narrowing down the options
We saw that shared data can be stored and used either locally or remotely (Figure
3). Similarly, code can be stored at the client-end (locally) or at the server-end
(remotely) and the same applies to code execution (Figure 4). So, for each
component of a collaborative application we need to decide where in the respective
matrices the code and data for that component resides.

At first this looks as though we have 16 different architectural options to consider for
every component as there are 4 possibilities for both code and data. In fact it is not
this bad! For general distributed collaborative applications and in particular for the
web we can narrow down the potential architectural options.

From the matrices in Figures 3 and 4, we noted that in each there was a gap which
appears an unreasonable option for any collaborative application. Thus there are
only 3 real possibilities for code and data and at most 3×3=9 combinations.

If we also look at the combinations of code and data the possibilities further reduce.
Although data and code can be stored in different places, the code must execute
where the data is used. The data and code matrix must ‘agree’ in the location of
execution and use (Figure 5). Therefore there is only one possibility for remote
execution/use and 4 possibilities (2x2) for local execution/use. We’ll look at the
former and latter in turn.

Remote execution and use

The only possibility for remote execution and use in a collaborative application is
where both code and data are stored, used and executed remotely (although each
could conceivably be stored at different remote sites only coming together for
execution/use). A component of this kind could be implemented in several ways.

Code Execution

local remote

Code
 Storage

Data
 Storage

local

local

remote

remote

local remote

helpers

Java applets CGI scripts

replicas

caching client-server

Figure 5. Linked matrices

It may be a traditional transaction-based client/server application using CGI scripts
for central processing of transactions. In fact, many web-based repositories are of
this form, for example BSCW [2]. Alternatively it may be achieved using a
specialised central server as is the case with most chat-based web applications [30].
Note that these two implementation options differ principally in the pace of
cooperative interaction they enable.

Local execution and use – applet restrictions

We had 4 storage options for code and data which is locally executed:

a) code local – data local

b) code local – data remote

c) code remote – data local

d) code remote – data remote

In both (a) and (b) we have a helper or stand-alone application using caching or
replication to handle shared data. Given the limited ability of most web servers to
allow uploading of documents, it is likely that (b) will use a non-web based data
base or bespoke server. In both cases the web may act as a way of locating shared
resources and initiating a specialised collaborative application, but is not intrinsic to
the running application.

For cases (c) and (d) we are principally considering code in the form of Java applets
(although other forms of downloaded scripts are available). The security limitations
of Java applets mean that they can not access files stored on the user’s local machine.
This means they cannot operate in mode (c) with permanently locally stored data.
Furthermore as they can only connect to a server on the same machine as the web
server they were downloaded from, they cannot enter into peer–peer
communication (except by using a central switchboard server). Thus they cannot
even operate using locally held replicas. All feedthrough must be through a central
server at the same site as the web server.

This effectively leaves only case (d) as a truly web-based option and even then only
when using a data repository situated at the same location as the applet is stored.

8. Summary
Architectures have been influential within single-user interface design for both
construction and conceptualisation. An examination of significant behavioural issues
for cooperative interfaces allowed us to identify key components which roughly
correspond to those in traditional single-user models. However, the placement of
these components within a distributed system leads to conflicts between feedback
and consistency. This is commonly dealt with by using caching or replication, both
of which bring the shared data ‘closer’ to the user.

It is now common for web applications to use Java applets to download code to
users’ own machines. That is code and data may each have a permanent location
where they are stored and an ephemeral location where they are executed or used.
The resulting storage/use matrix for data and storage/execution matrix for code can
be used to examine the placement of each part of a cooperative system.

At first there appear to be many possible combinations of data and code placement
within these matrices, but an examination of their interaction within distributed
environments in general and the web in particular narrows this down considerably
leaving only 2 ‘real’ web-based placement options.

The behavioural and component analysis brought out the importance of various
kinds of meta-data, for locking, consistency maintenance and feedthrough. Of
particular importance are the notification mechanisms which enable an appropriate
pace of feedthrough. The issues surrounding the design options for notification
services are too complex to deal with in this paper and are the focus of on-going
work.

References
1. Begeman, M., Cook, P., Ellis, C., Graf, M., Rein, G. and Smith, T. (1986) Project

Nick: meetings augmentation and analysis. In Proceedings of CSCW’86 (Austin,
Texas), ACM Press.

2. Bentley, R., Horstmann, T., Sikkel, K. and Trevor, J. (1996) The BSCW Shared
Workspace System. In ERCIM workshop on CSCW and the Web (Sankt
Augustin, Germany), GMD/FIT.

3. Bentley, R. (1994) Supporting Multi-User Interface Development for
Cooperative Systems. Ph.D. Thesis, University of Lancaster, UK.

4. Bentley, R., Rodden, T., Sawyer, P. and Sommerville, I. (1994) Architectural
support for cooperative multi-user interfaces. In IEEE COMPUTER special
issue on CSCW, 27(5), pp 37-46.

5. Conklin, J. and Bergman, L.M. (1989) gIBIS: A Tool for Exploratory Policy
Discussion. In Journal of American Society for Information Science (May), pp 200-
213.

6. Coutaz, J. (1987) PAC, An Object Oriented Model For Dialog Design. In
Human-Computer Interaction - INTERACT ‘87 , Eds. H.J. Bullinger and B.
Shackel, pp 431-436.

7. Dix, A.J. (1995) Cooperation without (reliable) Communication: Interfaces for
Mobile Applications. In Distributed Systems Engineering, 2(3), pp 171–181.

8. Dix, A.J. (1994) Computer-supported cooperative work — a framework. In
Design Issues in CSCW, Eds. D. Rosenburg and C. Hutchison, Springer-Verlag,
pp 9-26.

9. Dix, A.J., Finlay, J., Abowd, G., Beale, R. (1993) Human-Computer Interaction,
Prentice Hall.

10. Dix, A.J. (1992) Pace and interaction. In Proceedings of HCI’92: People and
Computers VII, (Sept. York) Cambridge University Press, pp 193-208.

11. Dix, A.J. (1987) The Myth of the Infinitely Fast Machine. In Proceedings of the
Third Conference of the BCS HCI SIG: People and Computers III, Cambridge
University Press, pp 215-228.

12. Dix, A. (1996) Challenges and Perspectives for Cooperative Work on the Web.
In ERCIM workshop on CSCW and the Web (Sankt Augustin, Germany),
GMD/FIT.

13. Dix, A. (1994) Que sera sera — The problem of the future perfect in open and
cooperative systems. In Proceedings of HCI’94: People and Computers IX,
(Glasgow) Cambridge University Press, pp 397-408.

14. Dix, A., Ramduny, D., & Wilkinson, J. (1996) Long-Term Interaction: Learning
the 4Rs. In CHI'96 Conference Companion Proceedings: Human Factors In
computing Systems (Apr. Vancouver, British Columbia), ACM Press, pp 169-
170.

15. Dix, A., Ramduny, D., & Wilkinson, J. (1995) Interruptions, Deadlines and
Reminders: Investigations into the Flow of Cooperative Work. RR9509,
University of Huddersfield, available as: <http://www.hud.ac.uk/schools/
comp+maths/research/reports/RR9509.html>.

16. Gram, C. and Cockton, G. editors (1996) Design Principles for Interactive
Software, Chapman & Hall, UK.

17. Gray, P., England, D. and McGowan, S. (1994) XUAN: Enhancing UAN to
Capture Temporal Relationships among Actions. In Proceedings of HCI'94:
People and Computers IX, (Glasgow) Cambridge University Press, pp 301-312.

18. Johnson, C. and Gray, P. editors (1995) Workshop on Temporal Aspects of
Usability. In SIGCHI Bulletin, 28(2).

19. Hill, R.D., Brinck, T., Rohall, S.L., Patterson, J.F. and Wilner, W. (1994) The
Rendezvous architecture and language for constructing multi-user
applications. In ACM Transactions on Computer-Human Interaction, 1(2), pp 81-
125.

20. Lauwers, J.C. and Lantz, K.A. (1990) Collaboration Awareness in support of
Collaboration Transparency: Requirements for the next generation of shared
window systems. In CHI'90 Conference Proceedings: Human Factors In
computing Systems (Apr. Seattle, Washington), ACM Press, pp 303-311.

21. Leland, M.D.P., Fish, R.S. and Kraut, R.E. (1988) Collaborative document
production using quilt. In Proceedings of CSCW’88 (Sept. Portland, Oregon),
ACM Press, New York, pp 206-215.

22. Patterson, J.F. Day, M. and Kucan, J. (1996) Notification Servers for
Synchronous Groupware. In Proceedings of CSCW’96 (Nov. Boston,
Massachusetts), ACM Press, pp 122-129.

23. Pfaff, G. and Hagen P.J.W., editors (1985) Seeheim Workshop on User
Interface Management Systems, Springer-Verlag, Berlin.

24. Rada, R. (1995) Interactive Media, Springer-Verlag, New York.

25. Rodden, T. and Blair, B. (1991) CSCW and Distributed Systems: The problem
of Control. In Proceedings of the second European Conference on CSCW, (Bannon,
L. Robinson, M. and Schmidt, K. eds).

26. Rouncefield, M., Hughes, J.A., Rodden, T., & Viller S. (1994) Working with
“Constant Interruption” CSCW and the Small Office. In Proceedings of
CSCW’94 (Oct. Chapel Hill, North Carolina), ACM Press, pp 275-287.

27. Satyanarayanan, M., Kistler, J.J., Kumar, P., Okasaki, M.E., Siegel, E.H. and
Steere, D.C. (1990) Coda: a highly available file system for a distributed
workstation environment. In IEEE Transactions Computers, 39(4), pp 447-459.

28. Stefik, M., Bobrow, D.G., Foster, G., Lanning S. and Tatar, D. (1987) WYSIWIS
revisited” early experiences with multiuser interfaces. In ACM Transactions on
Office Information Systems, 5(2), pp 147-167.

29. UIMS (1992) The UIMS tool developers workshop: A metamodel for the
runtime architecture of an interactive system. In SIGCHI Bulletin, 24(1), pp 32-
37.

30. Welie, V.M. and Eliëns, A. (1996) Chatting on the Web. In ERCIM workshop
on CSCW and the Web (Sankt Augustin, Germany), GMD/FIT.

