

1

Designing APIs and Designing Value
for an Education Graph

Alan Dix

Talis and University of Birmingham

http://alandix.com/papers/apis-2012/

APIs (application programmer interfaces) are part of the fabric of Web interaction from ubiquitous
Google maps to Facebook 'Like'. They have fostered the growth of many major web applications,
enable niche mash-ups servicing the long-tail of web2.0 development, and enhance user
experience in many sites. This paper uses a case study of an educational application to explore
the area of API design. It finds that HCI issues, technical design and market considerations are not
siloed concerns, but interact closely in the design of rich APIs that provide value and ease of
development to developers and enhanced user experience for end-users.

API, Linked Open Data, designing value, web development

1. INTRODUCTION

Public APIs (application programmer interfaces)
are now part of the fabric of Web interaction. Some
are more behind the scenes, such as cloud data
management; some are embedding APIs more
apparent to the user, including the ubiquitous
Google Maps and Facebook OpenGraph 'Like'
buttons on websites. There are also an increasing
number of API marketplaces (such as Mashape1)
and API-only start-ups (e.g. RapLeaf2), which
simply provide a web service API for others to
apply to their own data, or mashup with yet more
data,

Designing APIs is partly a technical problem,
providing the right information in the right way.
However, it is also a rich socio-technical problem,
as the nature of APIs influences end-user
experience, and the various stakeholders each
need to realise appropriate value from their
deployment and use.

This paper explores the issue of API design based
on theoretical principles rooted in HCI, CSCW and
economics, and enacted in the design of an
experimental API for an 'education graph' of text
books, articles and module reading lists. We find
that HCI issues, technical architecture and
business value are all crucial interrelated elements.

1 http://www.mashape.com/
2 https://www.rapleaf.com/

The rest of this introductory section argues why API
design has an HCI as well as a technical dimension
and also looks at the Talis Aspire system which is
used as the case study for this paper. Section 2
explores some of the theoretical tools that inform
API design, in particular issues of mutual value
between stakeholders. This is then followed by
descriptions of a practical-focused use-based
approach where API use-cases are used to drive
API design informed by the preceding theory.
Finally we return to the broader canvas and discuss
some of the general lessons learnt.

1.1 Why API Design is an HCI Issue

While the technical nature of API design is clear,
the socio-technical aspects are maybe not so
immediately obvious. It might seem that the HCI
issues are all about the eventual applications that
use the API. Indeed, one approach to API design
would be to see the API as 'low-level details' and
focus HCI expertise on the applications, on the
principle that good usability or user experience
design can be built on any base.

There are several reasons for rejecting this
simplistic approach and addressing HCI concerns
early in the API design process.

First, designing APIs without regard to eventual use
is rather like the old (and now happily rare)
approach of building a system and then asking the
UI designer to "put an interface on it". The bits
always leak out and the information and system
architecture design of a system inevitably has an

Designing APIs and Designing Value for an Education Graph
Author names

2

impact on user experience and other aspects of
usability. A classic example of this in the CSCW
literature is Palen's account of the way calendar
naming conventions gave an element of privacy in
an otherwise open system at Sun (Palen, 1999).

As a more contemporary example, consider the
Dropbox API. This has two kinds of application: (i)
one kind has access to a single folder in Dropbox
private to that application, (ii) the other kind has
complete access (read and write) to the user's
entire Dropbox file system. For some applications
(i) is sufficient and is obviously a lot safer for the
user, but limits the extent to which the application
can share data with other applications, reducing
usability. If an application wants to share data it
must choose option (ii) with the attendant
responsibility of having unrestricted access and the
risk that knowledgeable users will refuse this.

The second reason is that some embedding APIs
include user interface elements. For example,
Google Maps is not only a tool for developers,
allowing them to create rich map-based
applications, but also provides many of the UI
elements in these applications, such as scroll and
zoom controls, and pop-ups for map pins.
Similarly, Facebook OpenGraph provides 'Like'
buttons to embed in external sites, and login
functionality for them.

Third, the developers are users of the API. The
ease of use of an API as a tool will have an impact
on a developer's choice to adopt it and experience
of using it. Furthermore, ease of use of the API as
a tool frees the designer/developer to focus on the
design of the application, making them more likely
to provide a good end-user experience.

Finally, there is the big human picture of
interactions between major stakeholders: end user,
API provider, and the developer of applications or
web pages using the API. This is about
understanding the motivations and values of
multiple parties and is a part of what Shneiderman
(2011) has recently called 'macro-HCI'.

1.2 The Education Graph

Talis Aspire Campus Edition (Clarke, 2009) is a
commercial reading list management system used
by a significant proportion of UK Universities and
some elsewhere, often branded as part of
institutional VLEs (virtual learning environments).
As part of the Talis corporate commitment to open
linked data (Bizer, Heath, and Berners-Lee, 2009),
Universities are given a substantial discount if they
elect for non-personal data created in Aspire to be
publicly available as open data, and the majority

have chosen to do so.3 Data including reading lists
for modules, bibliographic information, etc., is
available as RDF.

This open data has been aggregated, including
extensive work to reconcile, different
representations of the same resource. This forms
the core of an educational graph (Heath et al.,
2012), which currently includes reading list
information for over 22,000 University courses.

The education graph is at the heart of a non-
institutional web application, Talis Aspire
Community Edition4. This allows users to browse
and search the education graph; for example, from
a textbook or article one can find on which courses
it is recommended, and other resources that are
often on the same reading lists. This is similar to
Amazon recommendations, except that rather than
being based on popular purchasing, this nascent
education graph is based on traceable provenance
and authoritative sources (to the extent that
University lecturers are authoritative!).

This aggregated data is already available in a raw
form as RDF5, and it is the design of an
experimental richer API for this aggregated dataset
that is the topic of the case-study facet of this
paper.

The reason for wanting to make the education
graph more openly available is partly driven by the
core Talis ethos, and partly by the desire to grow
this education graph in terms of volume of
resources and richness of content. This may
include linking to additional author materials for
textbooks, and intra- or cross-institutional social
interactions around resources. In particular,
enabling social learning is often regarded as a core
element of modern education and an opportunity
for social media (e.g., Twidale and Ruhleder, 2004;
Evans, Kairam and Pirolli, 2010)6.

This richer graph could be enabled entirely by
additional tools and mechanisms within Aspire
itself, and certainly various additional functions are
planned. However, experience of many web
applications, including Twitter and Facebook, is
that open APIs allow innovation and

3 e.g. http://readinglists.central-
lancashire.ac.uk/lists/1D53ADAB-FA02-4475-2E73-
43034A5343D2.rdf
4 http://community.talisaspire.com/
5 http://www.w3.org/RDF/
6 Although the story of social learning is far from clear.
For example, the authors of the last of these papers
conclude that the answer to "Do your friends make you
smarter?" is "yes" even though their evidence
unequivocally shows that non-social learning out-
performed social learning as measured by Bloom's
taxonomy (Bloom, et al., 1956).

Designing APIs and Designing Value for an Education Graph
Author names

3

experimentation, beyond any that would be
possible by a single team. Indeed the launch of
Facebook Platform in 2007 coincided with a
dramatic shift in its growth rate (Figure 1).

Adding a richer API for accessing and embedding
Aspire data in third party pages and applications
could have similar benefits, but also has to be
justifiable commercially.

Figure 1: Facebook Growth 2004–2010 – millions of
users (data from Facebook, 2012)

2. THEORY FOR API DESIGN

While we would not pretend to offer a complete
theory of API design, there are substantial
elements of existing theoretical and practical
expertise in the literature, which can be brought to
bear.

This theory is particularly important because APIs
are 'generative artefacts', things that make other
things, for which prior justification plays a stronger
role than post-hoc evaluation (Dix, 2008). While
one can, and we will, apply APIs to real projects,
the resulting applications will owe much of their
quality to the application or site designer using the
API.

This does not mean empirical work is not critical for
API design. Indeed, section 3 describes a very
practical exemplar-driven approach as part of API
design. It is just that exemplars are more to
'sample the space' of potential application
scenarios. The danger in API design (and indeed
the design of any generic tool/service) is that in
attempting to create something for everything, it
ends up being good for nothing.
Samples/exemplars spread over the potential
space of applications help one to design an API
that is more likely to be fit for as yet unthought-of
applications.

API Stakeholders

Identifying stakeholders is a core part of all socio-
technical design approaches (e.g. Checkland,
1981). In API design this is in a way
straightforward: there is the API provider as

stakeholder, the developer/designer who is using
the API to create an application, and the actual
end-users (and other stakeholders) of the final
application. However, there are complications to
this. The data the API is providing may involve
other stakeholders; for example, Aspire data has
originally come from participating universities and
academics creating reading lists in those
universities. In addition, the stakeholders for the
final application will vary from application to
application. For the API provider they are at best a
fairly abstract category. In the case of Aspire data
it is likely that these end-users will include students
or tutors, but there may be others, librarians, or
people outside academia.

The concept of value design is crucial here (Dix et
al., 2004, pp.159–160). We need to create value
for each stakeholder in order for the API to
succeed. Arguably the value for the end-user is the
application developer's job, but the API developer
needs to consider this, especially if the API
includes the provision of embedded UI
components. By enhancing the user experience,
the API gives additional reasons for use by the
developer; that is increasing developer value in
addition to the intrinsic value of the functionality
offered by the API.

In the case of Aspire the end-users for API
developers are also likely to be direct users of
Aspire. This can increase the potential for virtuous
spirals of adoption where an existing user base
encourages third-party developers and third-party
applications encourage further user growth. This
'lattice of value' (Dix, 2001) is an example of a
'market ecology', mapping out the relationships
between potential classes of users of a product or
product family, and the patterns of mutual benefits
between them (Dix et al., 2011).

Figure 2: Lattice of Value (from Dix, 2001). Steps (i)
and (iv) require value for developers, steps (ii) and (iii)

require value for the end-user. At least one of paths (i)–
(iii) or (ii)–(iv) must exist for a product to experience self-

generated growth.

The Value of Networks

In principle there is 'value to spare' for the API
developer and API provider due to so-called

Designing APIs and Designing Value for an Education Graph
Author names

4

'network externalities' or 'network effects'
(Economides, 1996; Liebowitz and Margolis, 1998).
This refers to the way that certain kinds of items, in
particular digital ones, may vary in their value to
one individual dependent on another individual's
use. If one person is using a particular
spreadsheet, then the value of that spreadsheet
increases for the person's colleagues, as they may
want to share data.

This has been quantified in Metcalfe's Law "The
value of a network goes up as the square of the
number of users" (Shapiro and Varian, 1999,
p.184). The exact formula is a matter of debate
(Briscoe, Odlyzko and Tilly, 2006), but there is little
doubt that the value of social, communications and
data networks increases faster than the number of
people / nodes / data items7.

For the education graph, this means that if an API
user is in some way adding to the graph of
resources (perhaps by creating additional lists,
links between resources, new material such as
reviews), then the final value of the network is
greater than the sum of both the API provider's
data and that of the API user – there should be
spare value for both to be better off.

Asymmetric Benefits – Strong Gatekeepers

It is the potential for mutual benefit that is at the
heart of arguments for the business and social
benefits of networks (Benkler, 2006; Varnelis,
2008). However, while the total value may be
higher, this is no guarantee that the added value
will be spread evenly. This may fail in either
direction.

The API or service provider may have considerable
power as gatekeeper to users/customers or data.
This power imbalance may be used to extract
disproportionate amounts of the net value. For
example, the Apple iTunes App Store clearly
generates value for App developers and for Apple,
but some App developers feel aggrieved at the size
of Apple's cut8. This may lead to defection or non-
adoption of APIs and services, and certainly to
disaffection.

In the case of the App Store there is a very clear
value (the App price) and the App provider may feel
that this is being 'taken' by Apple. In more data-
focused APIs this is less of a problem as the
additional value generated by the API is often less
visible and not seen as 'taken away'. For example,

7 See Hendler and Golbeck (2008) for discussion of this
applied to Web 2.0 and semantic data.
8 Despite this, developers continue to produce iOS apps,
suggesting they are still getting more value than if they
developed elsewhere.

Google gain from having people click through to the
full Google Maps web site from Google maps
embedded in a web page. This value for Google in
no way subtracts from the value the web page
owner obtains from having the map. It could easily
be that the value Google obtains compared to the
web page owner is more than the 30% Apple cut
on the App Store, but as it is not seen as being
taken from the owner, the mutual benefit is more
clear.

Avoiding Free-Riders

On the other hand, the API provider risks the
application developer simply using the services of
the API, but not in any way giving back to the API
provider. For example, if a search engine provided
a free search API it would be possible for third
party sites to simply set up their own commercial
search pages with advertisements and never credit
or pass on profits to the original search engine.

This potential for free-riders has been identified in
both CSCW and economics literature, although
frequently associated with the misnamed "Tragedy
of the Commons".9

As a data owner there are a number of options:

(i) Don't allow external access at all, but
simply build everything you want into your
own central site.

(ii) Charge for access and allow third-party
users to brand as they like.

(iii) Use terms and conditions (T&C) to force
third parties to use your data in ways that
return value to you.

(iv) Use technical means to encourage/enforce
preferred modes of use.

(v) Ensure that the value proposition for third
parties mean they want to use your data in
ways which give value back to you.

Going through these (i) sounds like a cop-out and
would lose the advantages of API-led growth
enabled by network effects, but it does not preclude
more limited forms of external plug-ins and widgets,
as was the case with early Facebook integration.

9 Misnamed because Hardin's original (1968) article uses
a fable of common land being eroded through
unrestrained self-interest. While this may be true for
many kinds of systems, in fact actual common lands
were (and where they still exist still are) well tended and
were actually destroyed by enclosures and often eviction
of life-long tenants. See Tierney (2009) and Dix (2011),
for recent commentary on this.

Designing APIs and Designing Value for an Education Graph
Author names

5

Option (ii) is more or less what the existing Aspire
Campus Edition does, a traditional charging model
where it may be so well integrated into the
institutional VLE that staff and students never
realise they are using Talis software. This model is
common in many 'freemium' based APIs, for
example embed.ly10, which allows site owners to
create rich embedded content to sites such as
Flickr and YouTube. It allows free use up to small
volumes, then charges. The end-user will typically
not be aware embed.ly is used on the site at all.

Option (iii) is also not uncommon, often combined
with (ii). For example FreeFoto.com, an online
photo bank, has paid-for options for certain kinds
and volumes of print and web use, but also allows
substantial free use of stock photographs so long
as the photos are clearly acknowledged.11 At an
API level, the Amazon Product Advertising API
(which, inter alia, allows access to book and other
product details and images) includes the following
clause in its T&C12:

(d) You will link each use of Product Advertising
Content to, and only to, the related Product
detail page of the Amazon Site, and you will not
link any Product Advertising Content to, or in
conjunction with any Product Advertising
Content direct traffic to, any page of a site other
than the Amazon Site ..."

Many user-content sites including Flickr and
YouTube adopt option (iv), having means to easily
embed content in third-party sites (e.g. see Figure
3). These mechanisms make it more likely that
web page authors and bloggers will use Flickr and
YouTube material, thus increasing traffic to the
main site. However, in addition they make it more
likely that they will stick to the T&C in terms of
correct attribution or 'game' the systems, for
instance, by including very small, or out of the way,
attribution.

Figure 3: Flickr embedding dialog)13

10 http:// embed.ly/
11 http://www.freefoto.com/browse/99-05-0/Free-Use-
Rules
12 https://affiliate-program.amazon.com/gp/advertising/
api/detail/agreement.html
13 http://www.flickr.com/photos/jup3nep/6553704375/

The extreme of this is when the method of
embedding is completely controlled by the
originating site, either using an iframe or black-box
JavaScript inclusions. For example, Snap Shots14
are embedded using a single JavaScript file
included in the target site's header, with a site-
specific key. It would undoubtedly be possible to
reverse engineer the JavaScript to obtain the raw
API being used, but few are likely to do this when it
is easier to use the API in its intended way.

Of course if the user of an API gets more value
from using it in the intended way than subverting it
(option (v)), then the need for complex T&C or
technical solutions is reduced. For example, when
a Flickr user is embedding their own Flickr photos
in a blog or web page, they will want to send
people back to the Flickr site to see their complete
collection.

This does not obviate T&C and technical means
entirely (for example, third parties using Flickr
images), but does transform the task of API design
from an adversarial to a collaborative endeavour.

3. IN PRACTICE

This section describes two use cases and
associated prototypes that were used to drive the
development of an experimental API. One is
simple embedding in course pages; the other,
BookNotes, a mini-app to demonstrate third-party
use.

One of the authors is an academic and the usage
cases were developed from his academic practice.
This is a form of 'single person study' or single
person design (Razak, 2008). Single person
design is particularly powerful for addressing the
'long tail' of niche products (Dix, 2010). Here the
intention is not to design these niche applications
per se, but more that the API needs to be able to
address such niche applications.

This individual-focused design does not obviate
more traditional methods, and standard user-
centred-design methods (e.g. user interviews,
participatory groups, etc.) are being applied
alongside.

3.1 Experimental Architecture

In order to create these prototypes, an
experimental harness was required so as to
experiment with an alternative API without
interfering with the real running application. To do
this a form of proxy API server was deployed that
uses the live data currently available from Talis

14 http://www.previewshots.com/

Designing APIs and Designing Value for an Education Graph
Author names

6

Aspire Community Edition. (The data behind most
user viewable pages is available in JSON format
through content negotiation (Fielding, et al., 1999)).

The academic's own web page and the BookNotes
application then communicate with the proxy API.
This middleware layer relays the original data, but
with augmented functionality, for example,
delivering content even when the resource is not
listed in Aspire.

Figure 4 shows these main elements. Note that
both academic and students will also interact
directly with Aspire itself, but these interactions
have been omitted to show the API mediated
interactions more clearly. This is not unlike the
architecture of a production environment, except
that the proxy functionality would simply become
part of the main system.

Figure 4: Experimental architecture

3.1 Embedding in Academic Web Pages

The first use case is when the academic edits his
own web pages. Two example web pages giving
resource lists for pages drove this.

The first (figure 5) started with a CSCW course
page created with a pre-release version of a course
page creation system hosted within Aspire. The
author had used this for a previous version of a
course, but it had limitations, as it was an early
prototype. So, for a re-run of the course, the page
was saved as pure HTML and then hand-edited to
make it closer to how he would ideally like it. This
was partly intended to feedback into future Aspire
hosted resource pages, and partly to investigate
author embedding of resources.

The second example was a completely bespoke
page developed for a short tutorial on visualisation
(figure 6).

The first example was trying to be as close as
possible to the automatically created resource
page, but in a number of places the academic
modified book details and even cover images. This
was partly because the data in Aspire was only as

accurate as the reading list data in the Universities
from whence it came, and partly because of
preferences (e.g. shorter/longer versions of titles).
In general, from both the academic's practice and
other interviews, it is clear that academics like to be
in control!

The second example highlighted several issues.
This was a visually rich list, but the images were
not always book covers; in particular, articles were
often illustrated using a screenshot or other figure
from the content of the article (rather like
Facebook's option to choose an image for a web
link). In addition nearly every resource link had
some accompanying note or comment.

Figure 5: Hand-edited modification of existing prototype
resource page. 15

Figure 6: Completely bespoke resource page16.

15 http://alandix.com/academic/teaching/USI-
Eindhoven/gen-2011/
16 http://alandix.com/academic/teaching/USI-
Eindhoven/gen-2011/

Designing APIs and Designing Value for an Education Graph
Author names

7

Based on this a JavaScript embedding API was
created. A small script is included on the web page
that scans for links to Aspire resources or <div>
tags that have been marked for expansion with a
special class. These may simply be a link (Figure
8), but can also include elements marked with
classed entities (see link with class aspire-title
in Figure 9), similar to microformats17 and an
tag. The span classes include 'title', 'author', etc.
which are used to override the information derived
from the Aspire data, or to include resources not in
Aspire. The simple link is often sufficient, but the
option to override it is essential to give the page
author a feeling that it is ultimately their content.

<a
href='http://community.talisaspire.com/
resources/OarshcnC-_J3ip3WOlXJGw' >HCI
Models

Figure 8: Simple link for expansion

Based on the observations from the second
example. The image tag if present overrides the
Aspire cover image, allowing alternative images of
a book cover or other images to be used.
Furthermore, the elements can include a ''note'
class that allows annotation (see last paragraph tag
in Figure 9 and appearance in Figure 10).

<div class="acorn-infobox">
 <h2><a
href="http://community.talisaspire.com/
resources/gCR27a9hLAXcmtTsVrREkg "
class="aspire-title">
 Human-Computer Interaction Handbook
</h2>
 <p class="aspire-notes">See Chapter
16, Network-Based Interaction, pp. 331-
357.</p>
</div>

Figure 9: More complex expansion with additional notes

Figure 10: Infobox on web page generated by the API
form the HTML in Figure 9

3.2 Third-Party Application

The second use case is where the academic does
not edit pages directly but uses a third-party
application to create content. For this a mini-
application, BookNotes,18 was developed, which

17 http://www.microformats.org
18 anonymised url

accessed the experimental API, but was otherwise
disconnected from the Aspire infrastructure. While
developed alongside the development of the
experimental API, it deliberately uses only access
methods that would be expected to be available to
a third-party developer.

Figure 11: Handwritten book notes

BookNotes was inspired by the handwritten notes
that the academic kept as bookmarks in his
personal library. Inside each book is a folded sheet
of A4 paper on which are written page-by-page
notes. Figure 11 shows a scan of the notes taken
from Alexander's "Notes on the Synthesis of Form"
(Alexander, 1964). These are typically of the form
'page number - note", with occasional additional
embellishments (e.g. "(facing)" on the first entry.

These hand-written notes are useful when one
returns to the book, but cannot easily be searched
(except by opening each book to look at the notes),
nor shared with students. BookNotes was
designed to enable the academic to either quickly
transcribe these notes, or to enter them directly into
a mobile device whilst reading (a paper copy of the
book!)

To use BookNotes, the academic user simply types
notes into a plain text file in a Dropbox folder using
a minimal formatting (page number -- note). The
user tells BookNotes where to find the file in
Dropbox and then BookNotes reads and formats
the file for the web. Figure 12 shows the raw file
format. Because this is simply a Dropbox text file,
it can be created using any Dropbox enabled text

Designing APIs and Designing Value for an Education Graph
Author names

8

editor, notably those available on iPhone, Android
or iPad.

Notes on the Synthesis of Form
Christopher Alexander
url: http://community.talisaspire.com/r
esources/pqKNVk3qRn-gIGyLmtWMnQ

p.1 (facing) -- lovely [Phaedrus] quote

p.2 -- reminds me of design rationale

p.4 -- the designer standing alone in
history

p.6 -- "how to represent a design
problem"

Figure 12: BookNotes entered by user

Note how this is designed to mimic as closely as
possible the original hand-written notes. Clearly to
make this a useful application for other users,
modification would be necessary as it is closely
tuned to the original academic's style. However,
this process of generalisation is not discussed
further here as the critical point of this mini-
application is to act as a sample point for the API.

Figures 13 and 14 show the formatted book notes.
In particular, note the infobox populated with
bibliographic data and links to reading lists in
Aspire that include this book.

 Figure 13: BookNotes application

Figure 14: Close-up of infobox from Figure 10

This infobox is generated from the same kind of
HTML mark-up and JavaScript API as used in the
academic’s own hand-edited HTML pages. Figure
15 shows the code in the HTML page that the
application generates directly from the three header
lines in Figure 12.

<div class="acorn-infobox"
 aspire-citeType="about"
 aspire-options="title-inline;">
 <h2><a
href="http://community.talisaspire.com/
resources/pqKNVk3qRn-gIGyLmtWMnQ"
class="acorn-title">
 Notes on the Synthesis of Form
</h2>
 <p class="aspire-authors">
 Christopher Alexander
 </p>
</div>

Figure 15: HTML for bibliograohic

In addition the link to Plato's "Phaedrus" on page 1
has become a live link with pop-up bibliographic
details. Figure 16 shows the pop-up and Figure 17,
the corresponding mark-up that the application
needed to generate.

Figure 16: Pop-up bibliographic information

<p>
lovely <a
href="http://community.talisaspire.com/
resources/v0YUd2bd-hUhuLc-cX17fg"
title="Phaedrus (Plato)"
class="bn_link">Phaedrus quote
</p>

Figure 17: Mark-up for pop-up in Figure 16

Both infobox and popup are provided by the same
JavaScript API as used in the author's hand edited
pages, except that the BookNotes application also
includes some meta information. Some of this is
on per-entry basis. In particular, note the 'aspire-
citeType' in Figure 15. This tells the API that
"Notes on the Synthesis of Form " is the main
reference for this page as opposed to "Phaedrus",
which is merely a citation. In addition, global meta-
data in the page header identifies the application
itself and, if known, the Aspire id of the author of

Designing APIs and Designing Value for an Education Graph
Author names

9

the notes (Figure 18). The latter allows Aspire to
create links back to the BookNotes application from
the owner's home page in Aspire.

<script>
Aspire.setOptions({"appId":"booknotes",
"canonicalURL":"http://anonymised.url/"
,"pageOwner":"anon@anon.ac.uk"});
</script>

Figure 18: BookNotes meta-information for Aspire API

If desired, the application can access a JSON API
directly to obtain the HTML for the infobox when
the page is created. However, for the initial
implementation this was left to be filled in
dynamically by the JavaScript API. This simplified
the implementation, allowing the creation of a
complete, but highly functional mini-app in a couple
of days, which is already being used by the
academic.

4. DISCUSSION

In both of the above examples the academic is
benefiting from richly formatted bibliographic details
with minimal effort, including pop-ups where
desired. Where full-text is available for an article or
book (for example through Google Books), the
page author/application can also choose to have a
preview button included, which opens a light-box-
style viewer without leaving the page. Furthermore,
if the viewer is an Aspire user, they can be offered
the option of bookmarking within Aspire.

However, the main benefits for Aspire and the
additional benefits for the API user are happening
behind the scenes. Simply by servicing the
JavaScript API requests Aspire learns that a
particular page is citing a learning resource. If the
page owner is registered as an academic with
Aspire then it also knows that it is an authoritative
resource. Similarly, the meta-information that
BookNotes includes allows Aspire to know that this
is not just a page citing "Notes on the Synthesis of
Form", but a page where this is the primary topic.

This information is essentially growing the
education graph. The academic's hand-edited
page acts very like a course reading list created
within Aspire Campus Edition, and the BookNotes
page becomes both a place where resources (such
as Phaedrus) have been cited and also a page that
is known to be 'about' the main book.

This information can then be reflected back in the
main Aspire Community Edition web interface. We
have already noted how the meta-information
passed by the BookNotes application to the API
can include the id of the page owner, allowing
Aspire to include links back to the BookNotes from

the owner's Aspire home page. In addition this
adds provenance and, if the owner is a verified
academic, or maybe the author of a resource, it can
be used as a measure of the authority of the
information. Similarly, for the hand-edited pages,
the page owner can link these to their Aspire
account, so that it becomes regarded as part of
their authenticated resources.

Issues of reputation, authority and provenance are
of course central in an academic setting. This is
not to underestimate the potential of student-
generated and other content, which offer
complementary perspectives. For example, we
may trust student-generated content more as an
assessment of the readability and clarity of a text
book, but academic content more for an
assessment of accuracy, reliability and analytic
depth.

This provenance information could therefore also
allow future versions of Aspire to place these third-
party resources alongside those obtained from
institutional reading lists. Figure 19 shows a mock-
up page generated from the API proxy (Figure 4).
The page is identical to the normal Aspire Campus
Edition page for the book19, including a preview,
and a list of courses using the book. However, in
addition to the course that includes the book, it also
lists the BookNotes referring to it.

Figure 19: Feeding back into the education graph
(mock-up)

In summary, the Aspire education graph grows
through API use, giving value to the API provider,
and the application and page authors gain value
through being highlighted whenever students view
the resources they cite, or for which they create
additional information.

19
http://community.talisaspire.com/resources/pqKNVk3qRn
-gIGyLmtWMnQ

Designing APIs and Designing Value for an Education Graph
Author names

10

5. CONCLUSIONS

This paper has looked at issues around the design
of one facet of the API for the Talis Aspire family of
education services. This has involved theoretical
understanding of mutual value between the
stakeholders, and also a practice-focused
approach to developing use-driven API services.
While the paper considers a particular case study,
we hope the theoretical and methodological
approaches are of more general applicability.
Furthermore, the paper highlights the way HCI
issues, technical design and market considerations
are not siloed concerns, but interact closely in the
design of rich APIs that provide value and ease of
development to developers and enhanced user
experience for end-users.

6. REFERENCES

Alexander, C. (1964). Notes on the Synthesis of
Form. Harvard University Press
Benkler, Y. (2006) The Wealth of Networks: How
Social Production Transforms Markets and
Freedom. Yale University Press.
Bizer, C., Heath, T. and Berners-Lee, T. (2009).
Linked data – the story so far. Int. J. Semantic Web
Inf. Syst., 5(3):1–22, 2009.
Bloom, B., Englehart, M. Furst, E., Hill, W., &
Krathwohl, D. (1956). Taxonomy of educational
objectives: The classification of educational goals.
Handbook I: Cognitive domain. Longmans, Green.
Briscoe, B., Odlyzko, A., and Tilly, B. (2006)
Metcalfe's Law is Wrong. IEEE Spectrum, July
2006.
Checkland. P. (1981) Systems Thinking, Systems
Practice. John Wiley, Chichester,
Clarke, C. (2009). A resource list management tool
for undergraduate students based on linked open
data principles. Proc. of the 6th European Semantic
Web Conference, Heraklion, Greece, 2009.
Dix, A (2001). The Lattice of Value – Designing
Products for Self-Growth. eBulletin. Nov. 2001.
http://www.hiraeth.com/alan/ebulletin/lattice-of-
value/
Dix, A., Finlay, J., Abowd, G., and Beale, R. (2004)
Human Computer Interaction, Prentice Hall. (see
also http://www.hcibook.com/e3/casestudy/search/)
Dix, A. (2008). Theoretical analysis and theory
creation, Chapter 9 in Research Methods for
Human-Computer Interaction, P. Cairns and A. Cox
(eds). Cambridge University Press, pp.175–195.
Dix, A. (2010) Human-Computer Interaction: a
stable discipline, a nascent science, and the growth
of the long tail. Interacting with Comp., 22(1):13-27.
Dix, A. (2011). The Real Tragedy of the Commons.
6th March 2011. http://alandix.com/blog/
2011/03/06/the-real-tragedy-of-the-commons/

Dix, A., Beale, R., Shabir, N. and Leavesley, J.
(2011). Anatomy of an Early Social Networking
Site. Proc. of HCI 2011, BCS eWics.
Economides, N. (1996). The economics of
networks. International Journal of Industrial
Organization. 14(6):673–699
Evans, B., Kairam, S., and Pirolli. P. (2010). Do
your friends make you smarter?: An analysis of
social strategies in online information seeking. Inf.
Process. Manage. 46, 6 (November 2010), 679-
692. DOI=10.1016/j.ipm.2009.12.001
Facebook (2012). Company Timeline
http://newsroom.fb.com/content/default.aspx?News
AreaId=20 (retrieved 28/3/2012)
Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., and Berners-Lee,
T.(1999). Section 12 Content Negotiation.
Hypertext Transfer Protocol -- HTTP/1.1. RFC
2616, W3C http://www.w3.org/Protocols/rfc2616/
rfc2616-sec12.html#sec12
Hardin, G. (1968). The Tragedy of the Commons,
Science, 162(1968):1243-1248.
Heath, T., Singer, R., Shabir, N., Clarke, C. and
Leavesley, J. (2012) “Assembling and Applying an
Education Graph based on Learning Resources in
Universities”. Proc. 2nd Intnl Workshop on
Learning and Education with the Web of Data
(LiLe2012), WWW2012, Lyon, France.
Hendler, J. and Golbeck, J. (2008). Metcalfe's law,
Web 2.0, and the Semantic Web. Web Semant.
6(1):14-20. DOI=10.1016/j.websem.2007.11.008
Liebowitz, S. and Margolis, S. (1998) Network
Externalities (Effects). Entry in The New Palgraves
Dictionary of Economics and the Law, MacMillan.
Palen, L. (1999). Social, individual and
technological issues for groupware calendar
systems. Proc. CHI '99. ACM, 17-24.
DOI=10.1145/302979.302982
Razak, F. (2008). Single Person Study:
Methodological Issues. PhD Thesis. Lancaster
University, UK. February 2008.
Shapiro, C. and Varian H. (1999). Information rules:
a strategic guide to the network economy. Harvard
Business Press,
Tierney, J. (2009) The Non-Tragedy of the
Commons. New York Times, October 15, 2009,
Twidale, M.B. and Ruhleder, K. (2004). Over-the-
Shoulder Learning in a Distance Education
Environment. In C. Haythornthwaite & M.M.
Kazmer (Eds.) Learning, Culture and Community in
Online Education: Research and Practice. NY:
Peter Lang. 177-194.
Shneiderman, B. (2011). Claiming Success,
Charting the Future: Micro-HCI and Macro-HCI.
Interactions, September + October 2011, 10–11.
Varnelis, K. (ed.) (2008). Networked Publics. MIT
Press.

