Integrating status and event phenomena in formal specifications

of interactive systems

Gregory D. Abowd
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0280
USA

Abstract

In this paper we investigate the appropriateness of formal
specification languages for the description of user interface
phenomena. Specifically, we are concerned with the distinc-
tion between continuously available information, which we
call status, and atomic, non-persistent information, which
we call events. We propose a hybrid model and notation
to address status and event phenomena symmetrically. We
demonstrate the effectiveness of this model for designing and
understanding mixed control interaction, an especially im-
portant topic in the design of multi-user systems.

Keywords: formal specification, interactive system de-
sign, multi-user systems, mixed control interaction

1 Introduction

Implementing and reasoning about the design of any interac-
tive system is a difficult and error-prone activity. A common
problem is that the behavior of the system under certain
circumstances is not correct from the user’s perspective and
this incorrect behavior ultimately destroys the user’s confi-
dence in the system. One part of the problem is that the
languages used to specify, design and implement the sys-
tem do not enable a perspective that matches that of the
users. To specify and reason about the properties of the
system, we need languages that more naturally express the
concepts of interest in that system. In particular, we are
interested in formal specification languages that provide ab-
stract descriptions of the system early on in development
when critical design decisions are made.

In this paper, we distinguish between status and event
phenomena that occur at the user interface. The dichotomy
between status and event phenomena has been pointed out
by the authors previously [9, 10]. Events are atomic, non-
persistent occurrences in the world, that is, we sense that
they happen at a particular point in time. Status refers
to things that persist and we observe in the world, that is,
they have a measurable value at any moment. A mouse
click, or a beep indicating the arrival of a mail message are
examples of events, while the position of the mouse cursor

To appear in the Proceedings of the ACM SIGSOFT’94
Symposium on Foundations of Software Engineering,
December, 1994, New Orleans, Louisiana.

Alan J. Dix

School of Computing and Mathematics

The University of Huddersfield

Queensgate, Huddersfield HD1 3DH

United Kingdom

on the display or the position of the flag on the mailbox
icon are examples of status information. There i1s a link
between events and status; for example, the beep signaling
the arrival of a mail message will often be associated to a
change in the status of the position of the mailbox flag. As
the mouse cursor moves across the boundary of a window,
that window can be activated as the focus for further user
input. As these examples show, events can trigger status
changes and changes in status can trigger events.

As we have demonstrated above, some interface phenom-
ena are more easily described in terms of events and some
more easily in terms of status. Opening a window by click-
ing on an icon is easily described by a selection event usually
linked to some mouse click, whereas movement of the mouse
cursor is easiest to think of as a time-varying status input.
Some behavior is a combination of both status and event.
For example, selection of an item in a pull-down menu in-
volves event input to reveal the menu, status input to wan-
der up and down the menu and possibly reveal submenus,
and event input to select an item from the menu.

While this status/event distinction may seem obvious,
we might ask why it is useful for describing interface be-
havior. Our operating assumption is that the distinction
between status and event is a natural one for understand-
ing interface behavior. It follows, therefore, that the lan-
guages we use to specify an interface should reflect how we
naturally think of them. That is not to say it is impossi-
ble to describe an interface without access to both status
and event. Omn the contrary, most modern window-based
interfaces are event-driven, which means that any and all
interface behavior must be described in terms of events. It
is our belief, however, that the bias of these programming
languages toward event-only description restricts them from
due consideration of status phenomena.

If a language restricts expressions to event only, then sta-
tus phenomena will be difficult, if not impossible, to express.
When the natural expression of some interface behavior goes
against the bias of the language, at least one of three things
will occur:

e it will be described incorrectly;

e it will be described correctly but in a way that is dif-
ficult for others to understand; or

e its description will be ignored.

All three of these options are unfavorable.



Overview

In Section 2, we will briefly overview the range of formal
notations that have been used to specify interactive sys-
tems, providing a classification based on how these notations
treat both status and event phenomena. This classification
demonstrates that there is not a specification notation that
treats status and event information symmetrically. This mo-
tivates our development in Section 3 of a prototype hybrid
model and notation that provides equal treatment to the
description of status and event. We will provide some small
examples to demonstrate how the notation can be used to
provide more natural specifications of interactive widgets in
single- and multi-user applications with mixed control di-
alogs. In Section 4, we will provide a more complicated
specification from the domain of groupware to demonstrate
how the status/event language forces consideration of rele-
vant design decisions, rather than leaving them for the user
to discover. In Section 5, we will relate our work on specifica-
tion languages to implementation mechanisms in interactive
system builders and programming languages.

2 A classification of specification approaches for in-
teractive systems

A number of researchers have used formal specification no-
tations to describe and analyze interactive systems (for re-
views of this work, see [2, 3, 15]). In this section, we provide
a slightly different classification of those approaches in terms
of how they handle the description of both status and event
information. All of these approaches treat an interactive
system as reactive; the entities they describe receive input,
transform their internal state based on that input, and pro-
duce some output. The internal state! is either explicitly
described or remains implicit. For any given specification
approach, we determine whether status (continually varying
information) or events (atomic actions), or both are used to
describe the input and output behavior.

Figure 1 provides a graphical overview of our classifica-
tion scheme. All approaches assume that entities have an
internal state (implicit or explicit) that evolves by means
of state transitions. The state transition can be triggered
by an input event (such as a mouse click or keystroke) and
can result in a set of events being announced after the state
transition. Continuously available status information (such
as mouse position, or position of the handle in a scrollbar)
can be used as input to define a state transition or can be
altered as the result of a state transition and rendered as
output to the rest of the system.

Elsewhere, we have fully explored the space of formal
specification languages applied to interactive systems and
user interfaces with respect to the status/event distinction
[8]. We summarize the results of this classification in Ta-
ble 1. Where possible, we have included references to work
that specifically relate to the specification of interactive sys-
tems or user interfaces.

There are a couple of important points to make in ref-
erence to Table 1. We can ask about the compositionality
provided by any specification approach. For composition
to work, the approach must be symmetric with respect to
either status or events, or both. In other words, in order

Iwe distinguish between state and status. State refers to the in-
ternal information of an entity, whereas status refers to information
externally available. An entity might provide status as output that
reflects some of its internal state

out status

inevent

out events

Figure 1: The context for status and event

Notation Input Output
Event | Status | Event | Status

grammars [22, 23]
STN [17]

process algebras [2,
5, 24]

actors [4]

CNUCE interactors
21]

York interactors
[12]

statecharts [14]
PIE model [11, 10]
modified PTE [10]
Z/VDM
object-oriented Z

* NEW MODEL * VA

<

< N

ROV RN NN N N

v
v

Table 1: A classification of user interface specification nota-
tionss with respect to status and event.

<<
<

to build larger entities from smaller entities, the approach
must provide a way to compose input and output and this
means that if events are used for input then they must also
be used for output. Approaches that are not symmetric in
this way will not support composition; specifications using
these languages will not be very modular.

The inclusion of status information as input allows the
description of state transitions that depend on continuous
information (e.g., the mouse position). Status input and
output together allow the specification of continous rela-
tionships that are a frequent and important occurrence in
modern graphical user interfaces. For example, to describe
dragging in a direct manipulation interface, we require a con-
tinual relationship between the mouse cursor (input status)
and an icon or image (the output status). These status—
status relationships only hold between significant events at
the interface. For example, dragging holds between the se-
lection of an object and its eventual release. We call these
event-delimited, status—status relationships the interstitial®
behavior of the interface. Interstitial behavior is modeled
naturally by specification languages that provide for both

2We have chosen this term based on a rather archaic, but entirely
relevant, use of the term interstice from the Shorter Ozford English
Dictionary, defined as “An intervening space of time; an interval
between actions”



status input and output and event input.

The last entry in Table 1 refers to the new model of
specification that we will present in the next section. This
classification of previous approaches points quite clearly to
the absence of any one approach that treats both status and
event information symmetrically.

Before presenting such a model it is worth reiterating
why it is necessary to introduce the more complicated nota-
tion. Proponents of both event and status based approaches
can justifiably argue that they can encompass all types of
behavior. For example, it is possible to model a status value
in a process algebra, such as CSP:

StatusVar(v) = (set?s — StatusVar(z))
a

(getlv — StatusVar(v))

It is also possible to model an event, such as a keystroke,
as simply the change in a status. Polling devices behave
exactly like that. The important observation is that, al-
though both methods ‘work’ and may even be the way the
phenomena is implemented, they do not naturally represent
the phenomena. This leads to a specification that is con-
stantly trying to go against the grain of the notation and
thus almost certainly to one that is incomplete or wrong.

Take, for example, the behavior of a mouse dragging an
icon. When the mouse button is depressed and over an icon,
subsequent movement of the mouse also moves the icon until
the mouse button is released. We will first look at a CSP
description of the mouse alone that distinguishes between
dragging and non-dragging behavior.

NoDrag = mouseDown — Drag
O

move — NoDrag

Drag = mouseUp — NoDrag
O

move — Drag

Mouse = NoDrag

This description just exhibits the toggling back and forth
between the dragging and non-dragging mode of the mouse.
Movement of the mouse is allowed in either mode. We did
not need to mention explicitly the position of the mouse, nor
did we have to be explicit about what constituted a move
in terms of an (z, y) displacement. This last abstraction is
good because we don’t want to make an arbitrary decision
about what constitutes a noticeable move at this level of
description.

Now we want to coordinate the dragging mode of the
mouse with the dragging of an icon. The icon is dragged
only when the position of the mouse is within the boundary
of the icon. We cannot express this condition without an
explicit representation of position for both the mouse and
the icon. There are two different conditions under which
a mouseDown event occurs — one in which the mouse is
over the icon and one in which it is not. Dragging only
occurs in the first context. In CSP, we would like to be able
to express such a condition, but without explicit state, we
must use events on and off.

NoDrag = mouseDown — on — Drag
O

mouseDown — off — NoDrag
O

move — NoDrag

Depressing the mouse while not on an icon might invoke
another mode of the mouse, but we have ignored that addi-
tionaly complexity in this example. This description is OK,
but it relies on a correct interpretation of the intent of on
and off and the understanding that this event is not actually
determined by the mouse or the icon.

We must also indicate that the movement of the mouse
is accompanied by an equivalent movement of the icon. In
the previous specifications, the mowve events referred only to
movement of the mouse. We must introduce another event
for the movement of the icon. Furthermore, we must guaran-
tee that the movements are equivalent and that will require
that we introduce parameters to the movement events.

NoDrag = mouseDown — on — Drag
O

mouseDown — off = NoDrag
O

(nyy move(z,y) — NoDrag)

Drag = mouseUp — NoDrag
O
(nyy move(z,y) — Imove(z,y)
— Drag)
Mouse = NoDrag

We are forced to represent the continuous relationship be-
tween mouse and icon position by the sequential ordering of
separate movements.

There are still some problems with this solution. For
example, if we were to describe the relationship between
three objects — a mouse and two icons — so that dragging
one icon over another caused the second icon to become
highlighted, we would have to introduce even more events
that needed correct interpretation to indicate when posi-
tions overlapped. Another problem with this description of
dragging is that by separating the movements of the mouse
and the icon we have introduced the possibility in this no-
tation that other events could intervene and decouple the
two movements. That decoupling is certainly not what we
intend for dragging, and it would not be discovered until
a more complete model of the system were analyzed. We
discuss this emergence of unintended behavior later on.

We could try out many variations on the event descrip-
tion of this dragging phenomenon, none of which is all that
difficult to write down. But none of the options is imme-
diately obvious as the right choice. This simple example
has shown how an event-oriented notation results in speci-
fications that are in the best case cumbersome and in the
worst case incorrect. We would have had similar problems
if we chose a notation that relied only on status phenom-
ena, for there it would have been difficult to indicate when
significant events, such as a mouse click, occur. Status-only
descriptions would have to use status as flags which are ju-
diciously set and unset to signal the occurrence of an event.
This kind of awkward specification can be seen frequently
in model-oriented notations to signal pre-conditions for an
operation.

In the next section, we introduce a hybrid status/event
language. Part of the example in that section describes the
dragging phenomenon as a means of comparison.



3 The hybrid model for status/event description

The derivation of the new specification notation is fairly sim-
ple. We will take parts of existing specification techniques
and combine them. Description of interstitial behavior will
be inherited from the modified PIE model. In addition, we
will need to add events as outputs, similar to the interactor
models or process algebras.

3.1 Concrete notation

In order to deal with examples we will need a concrete no-
tation for describing these interactive agents®. However, we
hold this notation lightly as we believe that it is the con-
cepts underlying it that are important, not the particular
notation. It will serve to illustrate the utility of our ap-
proach.

For each agent, we describe its internal state as a binding
from identifier names to types (similar to a model-oriented
specification approach). In addition, we list the input and
output events in which the entity can engage. Input and
output status are described as type bindings, similar to the
internal state. The following is a description of a mouse.

MOUSE — signature

state: none
in-events: none
in-status: none

out-events: mouse_up
mouse_down
mouse_click

out-status: mouse_x, mouse_y : N

3.2 Specification of a slider

The mouse example is a bit too trivial for demonstration
purposes, as it contains no internal state and, hence, no
state transitions of interest. The behavior of the mouse is
completely described by the continuous changes in its status
and event output. A more complex interactive agent involv-
ing internal state is a slider control used in most graphical
user interfaces. The appearance of the slider is shown in
Figure 2.

For this example, we will consider two ways of interacting
with the slider.

Dragging While the mouse is held down over the slider
background, the slider’s handle moves up and down
with the mouse. If the mouse is released within the
slider background, the handle moves to the relevant
position. If the mouse is released outside the scroll
area, the slider snaps back to its original position.

Jumping If the mouse is clicked over the scroll area, the
handle moves to that position.

We will consider the components of the slider specifi-
cation by first indicating the static description, or signa-
ture, followed by rules defining the behavior associated with
events and finally the interstitial behavior between events.

3We use the name agent to reflect the extension to Abowd’s agent
model and notation [1, 2].

dlider — hi
background T Y-

dider  ___IE]

handle

y lo

Figure 2: Slider control

3.3 Slider signature

First, we look at the internal state, inputs and outputs of the
slider. All of these inputs come from the mouse agent. The
state variable position indicates the location of the slider
handle when it is not being dragged. It will also indicate
the position of the handle prior to dragging in case the drag-
ging 1s aborted with no change. The background is a region
of point, denoted by P(IN x N), that indicates an active
area during dragging. The dragging variable records when
the user is engaged in dragging. This cannot be inferred
from the state of the mouse buttons and the position of the
mouse. One output status value is the same as the internal
state position value and the other indicates the position of
an outline handle during dragging. These output status val-
ues can be linked to application agents to determine offsets
within a buffer, for example.

SLIDER — signature
state: position : 0..1
background : P(N x N)
dragging : Boolean
in-events:  mouse_up, mouse_down, mouse_click
in-status:  mouse_zx, mouse_y : N
out-events: none
out-status: position, dragging_pos: 0..1

We don’t explicitly mention the mapping from status
values to screen display. The slider handle (shown in Fig-
ure 2) is always displayed and is centered at position. An
outline of the slider handle is displayed at dragging_pos only
when dragging = true. An alternative to the slider we have
specified above would have the actual handle moving during
dragging, not an outline of it. In this case, the slider would
be at dragging_pos while being dragged and at position oth-
erwise. These are just two options for the status—status
mapping between the abstract slider status and the display.

3.4 Slider state transitions

We next look at the behavior of the slider when events occur.
A mouse_down event initiates dragging, a mouse_up event



terminates dragging, and a mouse_click event performs a
jump scroll. The state transition associated with an event
is specified by indicating how internal state values change.
Dashed names (indicated with a ') represent internal state
values after the transition, and undashed names refer to val-
ues before the transition. For clarity, we have indicated some
predicates below (e.g., “on”) in English only.

SLIDER - state transitions

on mouse_down:

if (mouse_x, mouse_y) on background
then dragging’ = true
position’ = position

on mouse_up:
dragging’ = false

if dragging and

(mouse_x, mouse_y) on background
then position’ = calc_pos(mouse_y)
else position’ = position

on mouse_click:
dragging’ = false
if (mouse_x, mouse_y) on background
then position’ = calc_pos(mouse_y)
else position’ = position

The function calc_pos translates from screen position
(from y_lo to y_hi) to a slider position (from 0 to 1).

calc_pos : (y_lo..y_hi) = (0..1)

—y_l
calc_pos(y) = (y_yhz‘y—yjlo)

3.5 Interstitial behavior

With the inclusion of status information in this model, we
did not have to describe mouse movement in terms of events.
Contrast this with the description of movement in Section 2.
Instead we can describe the effect of mouse movement more
naturally using interstitial constraints. This aspect of the
slider 1s very important as it used to generate the constant
feedback that is necessary for the usability of the control.

SLIDER - interstitial behavior

if dragging and (mouse_z, mouse_y) on background
thendragging_pos = calc_pos(mouse_y)
else dragging_pos = position

Summary on slider example

The slider example was chosen carefully because even though
it is a fairly simple and ubiquitous interaction object, we
needed to have access to both status and event information
for a simple description. Any specification of such a slider
in a language that did not include status and event infor-
mation would have been more cumbersome or incomplete.
The state transitions depended on what input event had oc-
curred, the current state and the status input. The value of
the internal state variable dragging depends in a somewhat
complicated way on the history of user actions. The status

output was a function of both the state and the status input.
Furthermore, without the status output and the associated
interstitial behavior, we would not have been able to cap-
ture the user feedback continuously (recall the decoupling
problem in Section 2).

It is also instructive to note that explicit definition of the
interstitial behavior forces us to be clear about its depen-
dence on both status input (mouse position) and the current
state (dragging). We cannot simplify the formula to:

SLIDER - interstitial behavior

if (mouse_z, mouse_y) on background
thendragging_pos = calc_pos(mouse_y)
else dragging_pos = position

Consider what would happen if the user depressed the mouse
outside the slider (say over the screen background) and then
dragged the mouse over the slider. With the simpler for-
mula, the slider would begin to operate, whereas we only
want it to follow the mouse position when the mouse was
originally depressed over the slider handle. This dependence
on history is captured by the state variable dragging.

4 Addressing mixed control issues

The previous example is a little unrealistic because it as-
sumed that changes to the slider were only initiated by the
user. In text editing applications, the position of the slider
indicates a relative position of the window viewing the text
and we would expect changes in the text to automatically
affect the slider position.

4.1 A modification to the slider

In order to accommodate this sort of interaction between
the slider agent and some other application agent, we must
modify the slider specification of Section 3. There are two
ways we could modify the slider. The first method would
introduce new input events to update the slider position
that would be generated by the application attached to the
slider. The other method — which we will examine more
closely here — would be to provide the position information
as input status that is supplied by the application agent. In
this approach, we also have to provide a way for the slider to
announce that it has been moved by the user so that it’s new
position is reflected by a changed offset in the application.
The revised signature of the slider is given below.

SHARED_SLIDER — signature
state: background : P(N x N)
dragging : Boolean
mouse_up, mouse_down, mouse_click
mouse_x, mouse_y : N
position : 0..1
out-events: changed(v:0..1)
out-status: position, dragging_pos: 0..1

in-events:
in-status:

In the previous slider specification, all assignments to
position should be removed, as this information is now pro-
vided by a source outside of the slider agent. The changed(v)
events must be generated at the appropriate points, specif-
ically after a mouse_up or mouse_click event. The state
transitions are given below.



SHARED_SLIDER - state transitions

on mouse_down:
if (mouse_x, mouse_y) on slider
dragging’ = true

on mouse_up:
dragging’ = false

if dragging and (mouse_z, mouse_y) on background

raise changed(calc_pos(mouse_y)

on mouse_click:
dragging’ = false
if (mouse_x, mouse_y) on background
raise changed(calc_pos(mouse_y))

The interstitial behavior does not change for this example.

The changes to the slider specification reflect a different
conceptual model of the slider’s operation. Since the orig-
inal slider model could not address the situation in which
an external agent other than the user affected the position
of the slider handle, we were forced to think of other pos-
sible solutions and analyze them. For example, now that
we allow the slider position to be adjusted by a user and
another application agent, we can ask what would happen
if both tried to adjust the position at the same time. In the
modified shared slider above, the behavior is well-defined.
As the user is dragging the outline of the slider handle, the
input status position is allowed to change, meaning that the
actual handle can move while the user is dragging the out-
line handle. When dragging is complete, the changed event
will be raised and interpreted by the application.

If the slider had been described entirely in terms of events
(as would happen in a typical window manager), then the
above problem might not have surfaced. There would have
been an ad hoc solution that would have emerged from the
particular event orders, but there would have been no need
to explicitly design this behavior. A formalism ought to force
interface developers to face these critical design decisions.

4.2 Extending to multi-user systems

Ad hoc or emergent solutions to problems such as above
might suffice for single-user systems because they represent
unlikely occurrences. Users might not have any expectation
for the behavior in unusual situations, so we do not have
to worry so much about the system conflicting with user
predictions. But the example of simultaneous input to a
single agent is quite prevalent in a multi-user system. For
example, it would be common in a shared editor for one user
to be editing the text while another is scrolling using the
slider. This situation forces the issue of where control of the
slider resides and has serious ramifications on usability. The
modified slider specification that models the slider position
as status information, provides a sensible solution to the
shared activity.

Figure 3 presents a plausible architectural view of the
shared editor. In this diagram, event connections between
agents are indicated by jagged arrows and status connections
are indicated by straight arrows. Figure 4 presents a simple
scenario of shared use of a slider in the multi-user context.
In that figure, we see the viewport of a single user, Alison,
consisting of the text contained inside the round-edged box,
the scrollbar and the mouse pointer. The rest of the text

screen T

viewport

screen T

viewport

value value

changed changed

changed insert, delete,etc
contents

Figure 3: Architecture of shared text editor

is part of the document. Above Alison’s viewport, we can
see the insertion point for another user, Brian. We see three
snapshots of Alison interacting with the slider while Brian
types in text. Initially (a), Alison selects the slider handle
and drags its outline upwards. While she is dragging the
slider (b), Brian types text in the part of the document that
is above Alison’s view, causing the position of the slider
handle to move down. Finally (c), when Alison releases the
mouse, her slider announces a changed event that results
in the slider position and viewport being adjusted. In this
scenario, Alison and Brian’s interactions do not interfere
with each, though they do affect the information displayed
in each other’s view.

users who are

strange things coauthoring a

happen when two long report |\ype
userzi type into a into a shared

shared document. document.
ome of the te ome 0

may move about may move about
in unpredictable in unpredictable d?,
waysunless great L

waysunless great
care is taken. |
Scroll bars may

Scroll bars may
also exhibit odd
behaviour and
great care should

care is taken. |
also exhibit odd

behaviour and
great care should

be taken with the be taken with the
design of such design of such
interfaces. interfaces.

(a) Alison grabs & drags handle (b) Brian types above window

interesting things
which can be
described using
status and events.
For example,
strange things
happen when two
users who are
coauthoring a

long report | type
into a shared
document.

Some of the text

may move abou
in unpredictable
waysunless great
care is taken. |

(c) Alison releases mouse button

Figure 4: Scenario of shared use of a slider

This slider example in a multi-user context is an instance
of the more general problem of shared values with mixed



control. The appropriate use of status—status mappings
simplifies the specification of the system and in so doing
allows a designer to focus on the necessarily complex issues
of shared update. It is not the mere use of a status/event
language that provided a clear solution to the problems of
mixed control. Rather, the appropriate use of status/event
descriptions has allowed us to focus on the central issues and
has exposed the nature of the problem. Contrast this again
with a purely event-based description. In this case, the be-
havior would depend on the order in which various events
arrived. Even if the designer never considered the problem
of mixed control a solution would emerge in the actual use of
the system. However, this solution would have never been
designed — it may be good, or it may be awful. With a
status/event description the designer must face these issues.
The behavior of the resulting system is engineered and not
simply emergent.

5 Related work and other issues

The status/event language presented in this paper is very
much motivated by an approach to specification that bor-
rows the good parts of existing specification languages. The
justification for this is that while most specification lan-
guages provide enough power to describe all possible behav-
iors, they all have a bias that makes the description of some
behaviors easier than others. Developing specification lan-
guages that are a mix of existing languages is not novel. For
example, several researchers have recognized the advantage
of mixing event-based process algebras with model-oriented
notations [1, 5, 18, 20, 24]. Our work is similar in spirit,
except that we have concentrated on the phenomena of sta-
tus rather than internal state, as status is a concept of great
importance in describing interactive systems naturally from
the perspective of the user.

More recently, Zave and Jackson have coined the term
multiparadigm specification for this activity of specification
through a mixture of languages with different semantic do-
mains [25]. In that work, the concern is the development
of a common semantic domain in which to embed all oth-
ers. Our emphasis here is on establishing the importance
of status and event in interactive system development. The
syntax and semantics we present is only of importance as far
as it can enlighten the difficult problems of interface design,
such as mixed control of shared objects.

It is always an important question to ask how concepts in
formal specification relate to any possible implementations.
An important concept used in this paper is the status—status
mapping that can be used to express interstitial behavior.
There are at least two popular implementation mechanisms
for realizing these mappings. The first mechanism is the
constraint, as used in the Garnet [19], Rendezvous [16] and
other systems. Constraints are used for high-level descrip-
tions of user interfaces and they are very similar to status—
status mappings. Constraint managers typically use events
to mediate the resolution of conflicts, that is, when some
user or application behavior breaks a constraint an event
signals that the constraints must be reestablished. It is im-
portant to understand how the mediation proceeds to know
exactly how the constraint will be resolved. But constraint
managers do not allow the programmer to see or control the
mediation and resolution process. This lack of control is
precisely how subsequent problems emerge unintentionally.

For example, suppose we have a system with four status

values a, z, y and z. The first, a, is obtained from out-
side the system and the remainder are connected by status—
status mappings to a. The mappings or constraints the sys-
tem seeks to maintain are:

r = 2Xa
y = 3Xxa
z = y—x

Note that one can infer that if a is always positive then z

will also always be positive (in fact equal to a).
Imagine that the system starts off in the consistent state:

= 3
= 6
= 9

= 3

nNow@ 8 Q

The external status, a, is updated to become 7. The system
has to repair the mappings in some way. Depending on the
way the system works this might happen in a variety of ways.
If the updates happen in the order + - y = z or y - v —
z, the different variables are temporarily inconsistent with
one another, but at any moment each is consistent with the
current or previous value of @, and the value of z remains
positive. However, if the system were to update in the order
T — z = y — z, then the intermediate value of z would
be -5 — a negative value. If some other part of the system
relied on z remaining positive, this intermediate value could
cause trouble.

Unfortunately, the above update order could easily arise
in certain types of constraint maintenance systems. The
update to a causes the first two constraints to become in-
validated. The system chooses the former to deal with, re-
sulting in the update to #. This then invalidates the third
constraint. If the system is working in a depth-first order,
the third constraint will be repaired next, updating z. Only
then would the second constraint be addressed updating y
that would again invalidate the last constraint and so finally
z would be updated a second time.

A more complex system might be able to detect such
sequences, but if the user interface updates were delayed
until a consistent state were reached then the latency could
become excessive. The point of this example is to demon-
strate that status—status mappings require event mediation.
In languages that do not have events, such as constraint
systems, this mediation is hidden from the designer and can
result in undesirable delays or unanticipated inconsistencies.

A second implementation mechanism, used for example
in the Suite system [6, 7], is the active variable. Active
variables automatically generate appropriate change events
in order to sustain status—status mappings. But Suite im-
plements a particular policy for dealing with the issue of
mixed control and the designer must decide whether these
policies are appropriate or alter various parameters to tune
the policies for a given circumstance.

In the programming language arena, the status/event
distinction could be compared to the distinction between the
imperative and declarative programming paradigms. The
combination of these two paradigms has been called con-
straint imperative programming [13]. Though our motiva-
tion for arriving at the status/event distinction is very dif-
ferent, these constraint imperative programming languages



might provide a suitable implementation language for our
specification notation.

As we saw in the case of the shared slider, event based im-
plementations of status—status mappings depend on broad-
casting change events to other interested agents so that they
can repair the mappings. We have recently been experiment-
ing with an implementation paradigm that directly supports
this type of event (triggers) allowing interested agents to reg-
ister callbacks for triggers generated by other agents. This
is in addition to more standard message type events. Like
Suite, this relieves the groupware developer of low-level net-
work and distributed system coding.

6 Conclusions

The status/event description is necessary for the natural
and effective description of user interfaces. Different inter-
face specification techniques can be classified depending on
how they deal with status and events, but none deals with
both status and event uniformly for input and output. We
have shown that it is possible to define a model that embod-
ies both status and events and have looked at examples of
the use of such an approach. We are not committed to the
particular concrete syntax used in this paper and would be
happy to see other styles of notation extended in a similar
fashion. The two crucial features that would be in any such
notation are definitions of both event induced state transi-
tions and interstitial behavior. Indeed, it is the interstitial
behavior, the fluid change between actions, that is largely
responsible for the sense of responsiveness in the interface.
The use of status/event descriptions exposes several issues
that need to be addressed in many interfaces, especially in
the design of groupware, as we demonstrated with the ex-
amination of mixed control interaction with a scrollbar.

7 Acknowledgments

We would like to thank the anonymous referees for their
detailed and constructive remarks that were useful for im-
provements to an earlier version of this work.

References

[1] ABowD, G. D. Agents: Communicating interac-
tive processes. In Human-Computer Interaction—
INTERACT’90 (1990), D. Diaper, D. Gilmore,
G. Cockton, and B. Shackel, Eds., Elsevier Science Pub-
lishers, pp. 143-148.

[2] ABowD, G. D. Formal aspects of human-computer in-
teraction. Technical Monograph PRG-97, Oxford Uni-
versity, Programming Research Group, 1991. D.Phil.
thesis.

[3] ABowD, G. D., BoweN, J., Dix, A., HARRISON, M.,
AND Took, R. User interface languages: A survey of
existing methods. Technical Report PRG-TR-5-89, Ox-
ford University Computing Laboratory Programming
Research Group, October 1989. Also published as in-
ternal report 2487-TN-PRG-1008 Issue 1.0 for ESPRIT
project 2487 (REDO).

[4] AgHA, G. A. Actors: a Model of Concurrent Compu-
tation in Distributed Systems. MIT Press, 1986.

[5] ALEXANDER, H. Executable specifications as an aid to
dialogue design. In Human-Computer Interaction —
INTERACT’87 (1987), H. J. Bullinger and B. Shackel,
Eds., North Holland, pp. 739-744.

[6] DEWAN, P. A tour of the Suite user interface software.
In UIST’90: Proceedings of the ACM Symposium on
User Interface Software and Technology (1990), ACM,
pp. 57-65.

[7] DEwaN, P., aND CHOUDHARY, R. A high-level ,and
flexible framework for implementing mulituser inter-

faces. ACM Transaction on Information Systems 10,
4 (October 1992), 345-380.

[8] Dix, A., AND ABOWD, G. Integrating status and event
in formal models for interactive systems. In Formal
Methods in Human—Computer Interaction, M. Harri-
son and C. Johnson, Eds. Cambridge University Press.
Draft chapter in preparation.

[9] Dix, A., FiNLAY, J., ABowD, G., AND BEALE, R.
Human—-Computer Interaction. Prentice Hall Interna-
tional, 1993.

[10] Dix, A. J. Formal Methods for Interactive Systems.
Academic Press, 1991.

[11] Dix, A. J., AND RuNciMaN, C. Abstract models of
interactive systems. In People and Computers: Design-
ing the interface (1985), P. Johnson and S. Cook, Eds.,
Cambridge University Press, pp. 13-22.

[12] DUKE, D. J., AND HARRISON, M. D. Abstract inter-
actin objects. Computer Graphics Forum 12, 3 (1993),
25-36.

[13] FREEMAN-BENsON, B.-N., AND BORNING, A. The
design and implementation of Kaleidoscope’90 — a
constraint imperative language. In Proceedings of the
1992 International Conference on Computer Languages
(1992), IEEE Computer Society Press, pp. 174-180.

[14] HAREL, D. Statecharts: a visual formalism for complex
systems. Science of Computer Programming 8, 3 (June
1987), 231-274.

[15] HARRISON, M. D., AND DUKE, D. J. A review of for-
malisms for describing interactive behaviour. In ICSE-
16 Workshop on Software Engineering and Human-
Computer Interactino: Joint Research Issues (1994),
R. N. Taylor and J. Coutaz, Eds.

[16] HiLL, R. The Rendezvous constraint management sys-
tem. In UIST’93: Proceedings of the ACM Symposium
on User Interface Software and Technology (1993),
ACM, pp. 225-234.

[17] JacoB, R. J. K. Using formal specifications in the de-
sign of a human-computer interface. Communications
of the ACM 26, 4 (1983), 259-264.

[18] MaARrsHALL, L. S. A Formal Description Method for
User Interfaces. PhD thesis, University of Manchester,
United Kingdom, 1986. Also published as technical re-
port UMCS-87-1-2.



[19]

[20

=

[21]

[22

4

[23

=

[24]

[25]

MyEers, B. A., Giuse, D. A., DANNENBERG, R. B.,
ZANDEN, B. V., KosBig, D. S., PeErvIN, E., MICK-
I1sH, A., AND MARcCHAL, P. Garnet: Comprehensive
support for graphical, highly interactive user interfaces.
IEEE Computer 23, 11 (November 1990), 71-85.

NieLseEN, M., HAvELUND, K., WAGNER, K. R., AND
GEORGE, C. The RAISE language, method and tools.
Formal Aspects of Computing 1, 1 (1989), 85-114.

PATERNO, F., AND FaconNTI, G. On the use of LO-
TOS to describe graphical interaction. In People and
Computers VII, HCI’'92 Conference (1992), A. Monk,
D. Diaper, and M. Harrison, Eds., Cambridge Univer-
sity Press, pp. 155-174.

REISNER, P. Formal grammar and human factors de-
sign of an interactive graphics system. IFEFE Transac-
tions on Software Engineering SE-7, 2 (1981), 229-240.

ScHIELE, F., AND GREEN, T. HCI formalisms and cog-
nitive psychology: the case of task-action grammars.
In Formal methods in Human-Computer Interaction,
M. D. Harrison and H. W. Thimbleby, Eds., Cam-
bridge Series on Human-Computer Interaction. Cam-
bridge University Press, 1990, ch. 2.

SUFRrIN, B., aAnD HE, J. Specification, refinement
and analysis of interactive processes. In Formal meth-
ods in Human-Computer Interaction, M. D. Harrison
and H. W. Thimbleby, Eds., Cambridge Series on
Human-Computer Interaction. Cambridge University
Press, 1990, ch. 6.

ZAVE, P., AND JAacKsoN, M. Conjunction as composi-

tion. ACM Transactions on Software Engineering and
Methodology 2, 4 (1993), 379-411.



