
Optimising Partial Applications in TIM

David Wakeling and Alan Dix
University of York�

Technical Report Number 215 (November 1993)

1 Introduction

In [3] Fairbairn and Wray introduced TIM, a simple abstract machine for executing
supercombinators. Their abstract machine is an elegant design optimised for normal
order evaluation. However, the addition of a mechanism to implement lazy evaluation
considerably increases its complexity and imposes a signi�cant overhead.

We originally made this observation in March 1989, when a draft of this paper was
circulated privately. Since then, there have been a number of publications about TIM
(see, for example, [1, 10, 8]). Inevitably, some of the ideas presented here have been
invented independently, or have been improved upon in these subsequent publications.
However, we feel our central idea for optimising partial applications in TIM has still to
gain the attention that it deserves.

2 The TIM Architecture

A frustrating aspect of the TIM literature is that every author seems to adopt slightly
di�erent terminology and notation to describe the same abstract machine. For the
sake of de�niteness, we take Fairbairn and Wray's 1987 paper [3] as the source of our
terminology and notation, referring to the machine described there as the standard

TIM . However, in addition to that paper, the reader may also wish to consult the book
by Peyton Jones and Lester [8] for an excellent tutorial.

TIM represents all values as closures of the form < c; f >, where c is the code pointer

and f is the frame pointer. The frame pointer points to a frame containing the argu-
ments used by the code at c. The are just three kinds of instructions for manipulating
closures. The instruction

Enter < c; f >

�Authors' address: Department of Computer Science, University of York, Heslington, York Y01

5DD, United Kingdom. Electronic mail: dw@minster.york.ac.uk, alan@minster.york.ac.uk

1

computes the value of a closure by executing the code at c, and

Push < c; f >

pushes the closure < c; f > onto an argument stack. The instruction

Take n

takes n closures o� the argument stack into a new frame in the heap. During this
operation, special \markers" may be encountered amidst the closures on the stack,
indicating that an update must be performed in order to preserve laziness. A marker
speci�es the frame argument that must be overwritten with its normal form. A Take

instruction only occurs once at the beginning of the code for each combinator.

The state of the TIM itself is represented as a tuple <PC, CF, Stack, Heap>. The
two registers, PC and CF are the current code pointer and the current frame pointer

respectively. The stack holds the arguments to supercombinators as they are being
built up, and the heap holds the frames of combinators \in the midst" of reduction.
The operation of the machine is described using state transitions of the form:

<PC, CF, Stack, Heap>) <PC', CF', Stack', Heap'>

3 A TIM Implementation

We wrote a compiler to translate programs written in the Functional Language Inter-
mediate Code, FLIC [9] into TIM code. This compiler follows the scheme outlined by
Fairbairn and Wray [3] except in the compilation of structured types.

The treatment of structured types in FLIC is fundamentally di�erent from their treat-
ment in TIM. In FLIC they are represented as tagged-tuples and case-analysis and
untupling are performed by special instructions. In the original TIM design they are
represented as partial applications of higher-order \distributing functions", and case-
analysis and untupling are performed by the constructors of the type. Distributing
functions are elegant but rather ine�cient, and so our TIM uses a tagged-tuple rep-
resentation instead. A structured type is represented by a closure < Struct; f >
whose frame contains the structure's components together with a numerical tag which
identi�es the constructor that was used to build the structured type. To create this
representation we have the instruction Construct n t with the rule:

<[Construct n t; I], f1, (a1,: : : ,an,A), F>

) <I, f1, (< Struct; f >,A), F [f 7! (a1, : : : , an,t)]>

Two further instructions are required to implement pattern-matching against struc-
tured types. The �rst, Deconstruct, takes a tagged tuple apart on the stack

2

<[Deconstruct n; I], f1, (< Struct; f >,A), F [f 7! (a1, : : : , an,t)]>

) <I, f1, (a1, : : : , an, A), F>

while the second, Switch, is for performing case analysis on the value of a structure
tag

<[Switch (l1, l2, : : : , lm)], f1, (< Struct; f >,A), F [f 7! (a1, : : : , an,t)]>

) < lt, f1, A, F>

This representation of structured types has similarities with the one described in [8].

4 Instruction Pro�les

We used our compiler to compile seven benchmark programs written in FLIC. These
benchmarks were:

n�b | the n�b 20 benchmark computed using a doubly-recursive function;
tak | the Takeushi function with arguments 18 12 6;
primes | the list of prime numbers up to 500 computed using Eratosthene's sieve;
sort | an insertion sort of 200 random numbers;
queens | produces all of the solutions to the 8-queens problem;
folds | accumulates the sum of the sums of all pre�xes of a list of 50 numbers
quad | maps the function quad quad succ over a list of 1000 numbers.

Although the n�b and tak programs are somewhat atypical, primes , sort and queens

are all examples of more realistic programs. The folds and quad programs make exten-
sive use of partial application, a style which is commonly advocated in textbooks on
functional programming [2].

For each of these programs, we obtained two instruction pro�les. These pro�les are
given in Appendix A and summarised in Figure 1 and Figure 2 below. The �rst pro�le,
in Figure 1, is for the abstract machine which executes each TIM instruction in unit
time, while the second pro�le, in Figure 2, is for a concrete machine which executes each
TIM instruction in the time required to to execute the assembly language instructions
that implement it.

Just three instructions: Enter arg', Self and Take account for nearly 70% of the
instructions executed by the concrete machine. The Enter arg' instruction is the
indirection which is pushed onto the stack instead of an argument in order to avoid du-
plicating a redex, and Self is the pseudo-combinator which is executed when evaluating
numbers and constructors in normal form.

The large number of Enter arg' and Self instructions can be reduced by performing
sharing, strictness and evaluation analyses at compile-time. These analyses are well
described in the original paper [3], and we shall not consider them further here. Instead,
we shall concentrate on improving the e�ciency of the most expensive instruction,
Take.

3

0 5 10 15 20 25 30 35 %

Take
Switch
Self
Push num
Push label
Push comb
Push arg
Partial
Operators
Enter num
Enter comb
Enter arg'
Enter arg
Deconstruct
Construct

Figure 1: Instruction pro�le (abstract machine)

0 5 10 15 20 25 30 35 %

Take
Switch
Self
Push num
Push label
Push comb
Push arg
Partial
Operators
Enter num
Enter comb
Enter arg'
Enter arg
Deconstruct
Construct

Figure 2: Instruction pro�le (concrete machine)

4

5 The Take Instruction

Recall that the Take n instruction takes n closures o� the argument stack into a new
frame in the heap, triggering an update mechanism when it encounters a \marker"
instead of a normal closure. A marker is pushed onto the stack whenever a shared
expression is to be reduced. It indicates the frame argument which should be updated
when the shared expression reaches normal form. This normal form is always a partial
application of a supercombinator.

In TIM, a partial application is represented as a closure whose code pointer is Partial
and whose frame contains the address of a supercombinator together with some argu-
ments. The code at Partial pushes indirections (to avoid duplicating a redex) to the
arguments in the frame onto the stack before entering the supercombinator.

For illustration, consider the stages in the execution of the instruction Take 3 shown in
Figure 3. When the Take instruction begins (Figure 3(a)) there are two arguments, a1
and a2 at the top of the argument stack followed by a marker and a third argument a3.
The �rst two arguments are transferred from the stack to the heap, (Figure 3(b) and
Figure 3(c)) before the marker is encountered. The argument indicated by the marker
is overwritten with its normal form, which is a partial application of the supercombi-
nator, C, currently being reduced to the arguments that were on the stack above the
marker (Figure 3(d)). After the marker has been updated, indirections to the partial
application's frame are pushed onto the stack and the Take 3 instruction is restarted
(Figure 3(e)).

The Take instruction is expensive for two reasons. The �rst reason is that it is essentially
interpretive: its actions are controlled by the data it encounters on the stack. Such
interpretive execution is, of course, much slower than the direct execution of machine
code. The second reason concerns the representation of partial applications. The
Take instruction must create an extra frame to represent each partial application of a
supercombinator. This leads to more heap storage allocation and garbage collection.

The following sections present two techniques for making Take instructions less expen-
sive by improving the representation of partial applications.

6 Child Frame Sharing

De�nition. If the supercombinator C2 is applied anywhere within the body of a
supercombinator C1, then we de�ne C1 to be the parent supercombinator and C2 to be
the child supercombinator.

In the standard TIM, the child combinator always begins with a Take instruction
which creates a new frame and updates any markers that it may encounter by creating
extra frames to represent partial applications of the child. An alternative, which avoids
creating these extra frames, is for each partial application of the child to share the frame
of its �rst full application. We can always be sure that there are enough arguments for
the full application, there may just be some markers in between.

5

a1

a2

marker

a3

(a)
StackHeap

a2

marker

a3

a1

(b)
StackHeap

marker

a3

a1
a2

(c)

a3
a1
a2

C

Partial

@@R

(d)

I

I

a3
a1
a2

C

Partial

@@R

�
�

(e)

Figure 3: Take instruction example

6

When the Take instruction encounters a marker in, say, the i-th argument position,
it updates the shared expression with an object whose code pointer is Partial-i and
whose frame pointer is the new frame under construction. The Take instruction then
continues. The code at Partial-i pushes indirections to the �rst i arguments in the
current frame back onto the stack and then enters the address of the supercombinator
as before.

6.1 Discussion

Child frame sharing is particularly advantageous when the markers are kept on a sepa-
rate stack of their own (i.e. a \dump"), rather than being interleaved among the normal
arguments. In this situation, the test for a marker and the transfer of arguments from
the stack to the heap are completely independent operations. Thus, the marker test
can be moved out of the inner-loop of Take instruction, allowing the argument transfer
to be performed using whatever e�cient block memory move instruction the computer
provides.

However, when using this method, it is no longer possible to use the local sharing
analysis described in the original paper. This is because the arguments in the child's
frame are now shared by partial applications of the child.

Table 1 below shows how our TIM with child frame sharing performs relative to our
standard TIM. In all other respects, the two machines are identical. For each of the
benchmark programs we measured both the decrease in execution time and the decrease
in the amount of heap memory allocated.

Time Allocations
decrease decrease

% %

n�b 0 0
tak 0 0
primes 10 8
sort 0 0
queens 2 2
folds 0 0
quad 26 37

Table 1: Improvements due to Child Frame Sharing

For two of the programs which make explicit use of partial application, primes and
quad , there is a decrease in execution time which can be attributed to the decrease
in the amount of memory that they allocate. For the remaining programs there is no
signi�cant decrease in either execution time or memory allocated.

Child frame sharing eliminates the extra frame required to represent a partial appli-
cation of the child combinator, which is why the performance of the programs which
make extensive use of partial applications is signi�cantly improved. It is an optimi-
sation that has been suggested by several researchers, including Wray and Fairbairn

7

themselves [10]. However, without the introduction of a separate stack for markers,
child frame sharing does nothing to reduce the interpretive overhead of the Take in-
struction, which is why the performance of the remaining programs is unchanged.

An observation about supercombinators, however, tells us that this interpretive over-
head can be reduced without a separate stack for markers.

7 Supercombinators

The TIM assumes that all programs have been converted either into supercombina-

tors [5] or lambda-lifted combinators [6]. Let us assume conversion to supercombina-
tors as described in [5]. Starting with the leftmost, innermost lambda abstraction of
the program, every lambda abstraction �v.E is converted into an application of a new
supercombinator C to the maximal free expressions e1: : : en of E. The new supercom-
binator C itself is then de�ned as

C i1: : : in v = E[i1/e1, i2/e2 : : : in/en]

where the formal parameter names i1: : : in are not used in E, and the expression E[x=y]
denotes the result of substituting x for all occurrences of y in E. Any redundant super-
combinator parameters are eliminated by �-reduction and then any redundant combi-
nators are also eliminated.

Consider the conversion of the lambda expression

�x �y. + y (sqrt x)

into supercombinators. The only maximal free expression of the �y abstraction is
(sqrt x) and so we can replace the whole lambda expression with

�x. C2 (sqrt x)

and then generate the new supercombinator C2, de�ned as

C2 i1 y = + y i1

Now the �x abstraction has no free expressions and so the whole lambda expression
can be replaced by C1. We then generate a second new combinator

C1 x = C2 (sqrt x)

Calling C1 the parent and C2 the child again, we can see that in this case the parent
always supplies the child with one argument, (sqrt x), and so the child need only test
for a marker in the second argument position. More generally, if �-reduction has not

8

been performed, the parent will always supply the child with all but its last \user-
level" argument, and so the child need only test for the presence of a marker in the
last argument position. Actually, this is an understatement of the case: sometimes the
parent will supply the child with all of its arguments, in which case there is no need
for the child to perform a test at all.

So, as the parent knows where a marker can occur, it would seem more reasonable to
transfer the responsibility for updating markers from the child to the parent, leaving
the child to simply pull the arguments o� the stack into a new frame. This is the basis
of the second technique, parent frame sharing.

8 Parent Frame Sharing

Whenever the code generator encounters a supercombinator applied to too few argu-
ments, it inserts a new Share label instruction before the code which pushes the
arguments onto the stack. For example, here is the code for an application of a super-
combinator C of arity n to only n� 1 arguments

L: Share label L
Push an�1

...
Push a1
Enter comb C

C: Take unshared n

Code for body of C

The Share label instruction updates any markers at the very top of the stack with
the label and the current frame:

<[Share Label l; I], f1, (�f,m�,A), F [f 7! (: : : , am, : : :)]>

) <[Share Label l; I], f1, A, F [f 7! (: : : , <l ,f1>, : : :)]>

<[Share Label l; I], f, A, F>) <I, f, A, F>

while The Take unshared instruction just pulls arguments o� the stack into a new
frame in the heap, with no checking for markers:

<[Take unshared n; I], f0, (a1, : : : , an,A), F>) <I, f, A, F [f 7! (a1,: : : ,an)]>

8.1 Discussion

Parent frame sharing separates the updating of shared expressions, which is done by
the Share Label instruction, from the creation of argument frames, which is done by

9

the Take unshared instruction. This allows each of these operations to be made more
e�cient.

The parent combinator only performs a test for a marker when there is a possibility that
there will be one on the stack, and the child combinator can again simply transfer argu-
ments from the stack to the heap using the computer's block memory move instruction
because there are certain to be no markers interleaved among the arguments.

Table 2 shows how our TIM with parent frame sharing performs relative to our standard
TIM. Once again, for each of the benchmark programs we measured both the decrease
in execution time and the decrease in the amount of heap memory allocated. A negative
number implies an increase.

Time Allocations
decrease decrease

% %

n�b 12 0
tak -7 -20
primes 18 10
sort 12 -12
queens -3 -10
folds 20 0
quad 33 37

Table 2: Improvements due to Parent Frame Sharing

These results show a clear decrease in the execution times of the programs which make
use of partial application, primes , folds and quad . For the remaining programs the
decrease is smaller and for two, tak and queens , there is even a small increase in
execution time. This increase is due to the loss of �-reduction: to apply a function f

to m arguments always requires m+1 supercombinator applications because we must
(conservatively) assume that every partial application of f is shared, and so there could
be a marker on the stack in each argument position. Each supercombinator application
creates a new frame to represent a possibly shared partial application of f. Of course,
if a partial application of f is unshared then the corresponding supercombinator is
redundant. A sophisticated sharing analysis, such as [4], could be used to eliminate
these redundant supercombinators.

As with child frame sharing, parent frame sharing eliminates the extra frame required to
represent a partial application of the child combinator. In this case though, the partial
application of the child shares the parent's frame rather than the child's frame. For pro-
grams which make extensive use of partial application, parent frame sharing produces
an even larger performance increase than child frame sharing. For the remaining pro-
grams, parent frame sharing sometimes produces a small performance decrease, which
could be overcome by using a sharing analysis. Parent frame sharing also enables a
number of other optimisations to be performed, which we shall now describe.

10

9 Optimisations

9.1 Preserving Laziness

This optimisation should be regarded as essential, since without it laziness may be lost.

The proverbial `observant reader' will have already noticed that parent frame sharing
risks losing laziness whenever one of the arguments to the partial application of a
supercombinator is itself an application. For example, consider the following partial
application of a supercombinator C, of arity 4, in which the second argument is an
application:

C 1 (sqrt 64) 3

Using parent frame sharing, the TIM code for this partial application is

L: Share label L
Push num 3
Push label sqrt64
Push num 1
Enter comb C

The loss of laziness occurs because every time the partial application is applied to a
further argument by entering the code at L, the label `sqrt64' is taken into a di�erent
frame, thus duplicating a redex. The standard TIM does not have this problem because
a partial application always pushes indirections onto the stack to preserve laziness. To
overcome this problem, we must introduce these indirections in another way.

Our solution is to introduce a local de�nition for each argument for which the TIM code
generator would push a label. So the partial application of C given above is replaced
by

let

x = sqrt 64
in

C 1 x 3

In our implementation, local de�nitions are implemented using a technique reminiscent
of that used by the G-machine [7]. For each local de�nition we:

� allocate an extra argument (called a \hole") in the current frame;

� generate code for the right-hand-side, treating all references to the locally-bound
name as references to the corresponding hole;

� push a label to the code for the right-hand-side into the hole.

11

The value of a local de�nition is accessed in the same way as a supercombinator ar-
gument. In particular, when it is pushed onto the stack, an indirection is used and so
laziness is preserved.

9.2 Take Hoisting

We have already seen that transferring the responsibility for updating markers from
the child combinator to the parent combinator provides substantial bene�ts. However,
we can do even better if we transfer the responsibility for creating the frame from the
child to the parent as well.

The optimisation is to simply \hoist" the Take unshared instruction from the begin-
ning of the code for each combinator C to all of the places where C is entered. Thus,
instead of the code

Share if necessary
push arguments to combinator C.
Enter comb C;

C: Take unshared n;
code for body of C.

we have

Share if necessary
push arguments to combinator C.
Take unshared n;
Enter comb C;

C: code for body of C.

Now the Take unshared instruction, which pulls arguments o� the stack, comes im-
mediately after the code which pushed them, and so it becomes easy for a peephole
optimiser to replace many redundant stack accesses with code which pushes the argu-
ments directly into the frame.

9.3 Local Sharing Analysis

A drawback of child frame sharing is that it is no longer possible to use the local sharing
analysis described in the original paper. Parent frame sharing, however, does not su�er
from this drawback.

When a child combinator of arity n is applied, its �rst n�1 arguments (at least) are
always supplied by its parent combinator. When the parent pushed these arguments
onto the stack it used indirections to its own frame in order to ensure sharing. These

12

indirections can be freely manipulated by the child: there is no need for it to push extra
markers onto the stack when entering them or additional indirections when pushing
them. In the terminology of the original paper, the child combinator can treat its �rst
n�1 arguments as Unshared (although this is now something of a misnomer).

10 Conclusions

We have presented two alternative ways of implementing partial applications in TIM,
based on the new techniques of child frame sharing and parent frame sharing. Both
techniques reduce the interpretive overhead of the Take instruction by separating the
creation of argument frames from the updating of shared expressions. They also elimi-
nate the extra frames required to represent partial applications by using existing frames
to represent them.

For programs which make use of partial application, our machine with child frame shar-
ing can produce a large performance gain over the standard machine. However, without
the addition of a separate marker stack, it does not enable any further optimisations.
Indeed, the local sharing analysis described in the original paper has actually been lost.

Parent frame sharing shows that a separate marker stack is unnecessary. For programs
which make use of partial application, our machine with parent frame sharing produces
larger performance gains over the standard machine than our machine with child frame
sharing does. At the same time, it also enables several additional optimisations. The
real advantage of parent frame sharing, however, is that it allows the results of a sharing
analysis, such as [4], to be usefully applied in further improving performance.

Our preference, therefore, lies with parent frame sharing.

A Instruction Pro�les

This appendix gives two instruction pro�les for each of the benchmark programs de-
scribed in section 4. The �rst pro�le, table 3, is for the abstract machine, which executes
each TIM instruction in unit time, while the second pro�le, table 4, is for a concrete
machine which executes each TIM instruction in the time required to to execute the
assembly language instructions that implement it. All �gures are percentages, and a
\|" indicates that the compiler did not generate the given instruction.

B Compilation Rules

This appendix gives the rules for compiling a subset of FLIC into code for our TIM
with parent frame sharing. The rules assume that the FLIC program has already been
converted into supercombinators. The type of each object appearing in the compilation
rules can be deduced from the letter representing it as follows:

13

n�b tak primes sort queens folds quad average

Construct | | 1.4 1.7 0.6 1.0 0.1 0.7
Deconstruct | | 1.3 1.6 1.4 1.8 0.0 0.9
Enter arg 8.0 11.7 9.8 10.0 10.3 7.9 14.9 10.4
Enter arg' 0.0 10.0 20.2 19.7 15.5 21.6 15.0 14.6
Enter comb 20.0 15.0 10.0 10.1 11.7 11.5 5.2 11.9
Enter num 2.0 | | | 0.0 | | 1.0
Operators 12.0 6.1 2.9 1.9 4.7 0.9 5.0 4.8
Partial 0.0 1.7 4.1 1.7 2.1 2.6 9.8 3.1
Push arg | 10.0 12.2 14.6 10.4 16.5 5.2 9.8
Push comb 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0
Push label 22.0 22.8 14.1 16.7 17.4 10.7 10.1 16.3
Push num 10.0 1.7 1.4 0.2 0.5 0.1 5.0 2.7
Self 18.0 10.6 8.5 6.6 11.8 5.4 5.1 9.4
Switch 4.0 2.2 2.8 3.2 1.7 1.8 0.1 2.3
Take 4.0 8.3 11.1 10.0 11.3 18.2 24.7 12.5

Table 3: Instruction pro�le (abstract machine)

n�b tak primes sort queens folds quad average

Construct | | 0.9 1.1 0.4 0.8 0.0 0.5
Deconstruct | | 0.9 1.0 0.8 0.7 0.0 0.5
Enter arg 13.3 8.9 6.3 6.3 6.3 6.6 9.2 8.1
Enter arg' 0.0 14.0 23.9 22.9 17.3 31.8 17.0 18.1
Enter comb 5.5 1.9 1.1 1.1 1.2 1.5 0.5 1.8
Enter num 1.1 | | | 0.0 | | 0.2
Operators 11.0 5.0 2.3 1.9 5.6 0.9 3.6 4.3
Partial 0.0 0.0 0.8 0.0 0.2 0.5 3.0 0.6
Push arg | 1.4 6.6 7.0 5.4 11.0 2.7 4.9
Push comb | | 0.0 0.0 0.1 | | 0.0
Push label 18.2 8.6 4.5 5.3 5.3 4.5 3.1 7.1
Push num 11.0 0.8 0.6 0.1 0.2 0.0 2.1 2.1
Self 19.9 23.4 17.4 27.0 24.6 10.6 9.5 18.9
Switch 7.7 2.0 2.3 2.6 1.4 2.0 0.0 2.6
Take 12.2 34.0 32.4 23.1 31.2 27.4 49.1 29.9

Table 4: Instruction pro�le (conventional machine)

14

c is a combinator
e is an arbitrary expression
l is a unique new label
m is � 0
n is number constant
x is a variable

The \environment" r indicates where locally-bound names reside in the current frame.

The F Scheme (Function De�nition)

The F scheme generates code for an entire combinator de�nition

F [[c x1: : : xm = e]] = C [[e]] [x1 = 1,: : : xm = m]

The C Scheme (Compile Expression)

The C [[e]] r scheme generates code for an expression e.

C [[n]] r = Push num n; Enter top

C [[c e1: : : em]] r = Label l0; Share label l0; C [[c e1: : :em]] r
(if arity c = m+1)

C [[c e1: : : em]] r = L [[em]] r;: : :L [[e1]] r; T [[c]]; Enter comb c

C [[x e1: : : em]] r = L [[em]] r;: : :L [[e1]] r; Enter arg r(x)
C [[INT+ e1 e2]] r = E [[e2]] r; E [[e1]] r; Enter comb Plus
C [[PACK-a-t e1: : :em]] r = L [[em]] r;: : :L [[e1]] r; Construct a t; Enter top

C [[UNPACK-n c e]] r = E [[e]] r; Deconstruct n; C [[c]] r
C [[CASE-m c1: : : cm x]] r = E [[x]] r; Switch (l1: : : lm)

(and Label li; C [[ci]] r)
C [[LET v e]] r = V [[v]] r; C [[e]] r0

(where r0 = X [[v]] r)
C [[LETREC v e]] r = V [[v]] r0; C [[e]] r0

(where r0 = X [[v]] r)

The E Scheme (Evaluate)

E [[e]] r generates code which evaluates the expression e.

E [[n]] r = Push num n

E [[e]] r = Push label l1; C [[e]] r; Label l1

15

The L Scheme (Label)

L [[e]] r generates code for an expression e, and leaves a label for this code at the top
of the stack.

L [[n]] r = Push num n

L [[c]] r = Push comb c

L [[x]] r = Push arg r(x)
L [[e]] r = Push label l1;

(and Label l1; C [[e]] r)

The X and V Schemes (Local De�nitions)

These two schemes are used to handle the local de�nitions in a LET(REC) expression.

X [[(v1: : : vm) (e1: : :em)]] r = r[v1 = n+1: : :vm = n+m]
(where n = length r)

V [[(v1: : : vm) (e1: : :em)]] r = Push into arg (n+1) l1;: : :Push into arg (n+m) lm
(and Label l1; C [[e1]] r;: : :Label lm; C [[em]] r
and n = length r)

The T Scheme (Take)

T [[c]] = Take unshared n

where n is the arity of c.

C State Transition Rules

The formal description of our TIM with parent frame sharing appears below:

<[Construct n t; I], f1, (a1, : : : , an, A), F>

) <I, f1, (< Struct; f >,A), F [f 7! (a1, : : : , an,t)]>

<[Deconstruct n; I], f1, (<Struct,f>,A), F [f 7! (a1, : : : , an,t)]>

) <I, f1, (a1, : : : , an, A), F>

16

<[Enter comb c], f, A, F>) <c, f, A, F>
<[Enter arg n], f, A, F [f 7! (: : : , <cn,fn>, : : :)]>) <cn, fn, (�f,n�,A), F>
<[Enter top], f , (<c1,f1>,A), F>) <c1, f1, A, F>
<[Enter label l], f, A, F>) <l, f, A, F>
<[Num], f, (<c1,f1>,A), F>) <c1, f1, (<Num,f>,A), F>
<[Push arg n; I], f, F, A>) <I, f, (<[Enter arg' n], f>,A), F>
<[Push num n; I], f, A, F>) <I, f, (<Num,f>,A), F>
<[Push label l ; I], f, A, F>) <I, f, (<l,f>,A), F>
<[Push comb, c; I], f, A, F>) <I, f, (<c,0>,A), F>
<[Share label l; I], f1, (�f,m�,A), F [f 7! (: : : , am, : : :)]>

) <[Share label l; I], f1, A, F [f 7! (: : : , <l ,f1>, : : :)]>

<[Share label l; I], f, A, F>) <I, f, A, F>
<[Switch (l1,l2, : : : , lm)], f1, (<Struct,f>,A), F [f 7! (a1, : : : , an,t)]>

) <lt, f1, A, F>

<[Take unshared n; I], f0, (a1, : : : , an,A), F>) <I, f, A, F [f 7! (a1, : : : , an)]>

References

[1] G. Argo. Improving the Three Instruction Machine. In Proceedings of the 1989

Conference on Functional Programming Languages and Computer Architecture,
pages 100{115. ACM Press, September 1989.

[2] R. Bird and P. Wadler. Introduction to Functional Programming. Prentice-Hall,
1988.

[3] J. Fairbairn and S. Wray. TIM: A Simple, Lazy Abstract Machine to Execute
Supercombinators. In Proceedings of the 1987 Conference on Functional Pro-

gramming Languages and Computer Architecture, pages 34{45. Springer-Verlag,
September 1987. LNCS 274.

[4] B. Goldberg. Detecting sharing of partial applications in functional programs. In
Proceedings of the 1987 Conference on Functional Programming Languages and

Computer Architecture, pages 408{425. Springer-Verlag, September 1987. LNCS
274.

[5] R. J. M. Hughes. Super-combinators: A New Implementation Method for Applica-
tive Languages. In 1982 ACM Symposium on LISP and Functional Programming,
pages 1{10, August 1982.

[6] T. Johnsson. Lambda lifting: Transforming programs to recursive equations. In
Proceedings of the 1985 Conference on Functional Programming Languages and

Computer Architecture, pages 190{203. Springer-Verlag, September 1985. LNCS
201.

[7] T. Johnsson. Compiling Lazy Functional Languages. PhD thesis, Chalmers Uni-
versity of Technology, S-412 96 G�oteborg, February 1987.

17

[8] S. L. Peyton Jones and D. Lester. Iplementing Functional Languages: A Tutorial.
Prentice-Hall, 1992.

[9] S. L. Peyton Jones. FLIC { a functional language intermediate code. ACM SIG-

PLAN Notices, 23(8):30{48, August 1988.

[10] S. Wray and J. Fairbairn. Non-strict Languages | Programming and Implemen-
tation. Computer Journal, 32(2):142{151, April 1989.

18

