Allocation of multiple processors
to lazy boolean function trees
— justification of the magic number 2/3

Alan Dix'

Computer Science Department
University of York, York, YO1 5DD, U.K.
alan@uk.ac.york.minster

First draft May 1991
Revised April 1992

In simulations of lazy evaluation of boolean formulae, Dunne, Gittings and Leng found that parallel
evaluation by two processors achieved a speed-up of 2/3 compared to single processor evaluation.
The reason that this factor was only 2/3 rather than a half was because the function nodes used for the
simulation were all ‘and’ type functions, and hence sometimes the evaluation by the second processor
proved unnecessary. This paper is intended to provide a justification for this ‘magic number’ of 2/3,
by proving that it is exactly the speed-up obtained for pure balanced trees. A similar speed-up figure
result is obtained for non-binary balanced trees and an equivalent speed-up figure for multiple
processors is also given. Unbalanced trees have worse behaviour and by way of example the speed-
up figure for an AVL tree is given (0.6952). Finally, numerical solutions are given for the case of
arbitrary random binary trees. Since this report was first written Dusin@l. have proved
analytically that the 2/3 figure does indeed hold for random trees generated by a reasonable
distribution.

1. Background

This report springs from work by Dunne, Gittings and Leng on the computer-aided design of VLSI logic
circuits1:2 They are in interested in efficient parallel evaluation strategies for simulation of Boolean
expression trees. Demand-driven lazy evaluation of such trees means that, for instance, at ‘and’ nodes, if
the first evaluated sub-tree yields ‘false’ the other need not be evaluated. In general, this will mean that
parallel evaluation will not achieve 100% process utilisation. At the Seventh British Colloquium on
Theoretical Computer Science in March 1991, Chris Gittings presented their simulation results which
suggested a speed-up figure of 2/3 for two processors on random trees with ‘and’ typé nodes.

This magic number 2/3 arose out of empirical studies of randomly generated trees. Is this speed-up factor
for two processors exact? If so is it a feature of the particular random trees chosen, or is it more general?
Further, what is the generalisation to three or more processors? The following report is an attempt to
analytically justify the figure of 2/3 and partially generalise the result. | say ‘justify’ as the report primarily
deals with deterministic rather than random trees. Since this report was originally written Biuainieave
produced a more complete analytic treatment of random trees both proving the speed-up of 2/3 can be
achieved, on average, for ‘and’ type trees and giving similar figures for formula trees which also include
‘xor’ type nodes?

T work funded by SERC Advanced Fellowship B/89/ITA/220

The following is a summary of the results in this report:

type of tree nos. of processors speed-up factor
balanced binary tree 2 2/3
balanced n-ary tree 2 2/3
balanced binary tree K2t m 32 -m
3n+1
5+ 17
AVL tree 2 —— = 0.6952
9+ yI7
random tree 2 tabulated for small tqus

The main sections which follow cover these results in turn. The remainder of this section describes various
assumptions about scheduling and similar issues.

Scheduling and costing assumptions

For the deterministic trees, the structure of the branches of a node are determined entirely by the number of
nodes they contain. In the case of random trees, it is assumed that processor allocation (whether to assign
both processors to one branch or to evaluate both in parallel) is based purely on the size of the sub-trees.

For the calculation of costs | have assumed that the costs are purely in terms of the terminal nodes
evaluated, the function nodes are ‘free’. Assuming the converse or assigning costs to both leaves and
internal nodes appears to make no difference to the assymptotic speed-up figures.

To simplify initial analyses | assume that the trees are not in fact randomly generated, but are perfectly
balanced. For this case, with the above scheduling assumptions, the figure of 2/3 is exactly correct for the 2
processor case, and also equivalent figures can be calculated for a geperedssor allocation regime.

There are a few additional scheduling issues that arise with multiple processors and with unbalanced trees.
If two branches are evaluated, what happens if one completes before the other, and evaluates to such a value
that the second becomes unnecessary? | assume that it is possible to abort the computation of the second
branch so that the processor(s) become available for further computation. Other options are to wait for
both, or to add the processors for the first branch to those of the second.

This is further complicated with non-binary branching factors. With three children, we may allocate
processors to two branches. If one finishes before the other, can we allocate its resources to the third
branch, or do we have to wait for both?

Random tree generation
Where random binary trees are used they are assumed to be generated by the following procedure:
1. The size of tree is chosen This is the number of terminal nodes in the tree.

2. Asplitis chosen for the children of the root node so that one child had sanel the other siza—-r .
The splitr is chosen uniformly in the range 1 ito-1.

3. Each child is split in the same fashion until trees of size 1, that is terminal nodes, are reached.

An alternative is to choose the tree randomly from all the possible treesrwithdes. The number of
binary trees wittn nodes is:

(2n -2)!

B(N) = (1)1

This would give the probability of an, n—r split of:

B(r)xB(n-r)
B(n)

However, as Dunnet al. point out, this yields unnaturally unbalanced trees. (In fact, asymptotically a half
of all such trees are completely degenerate with a 1;n-1 or n-1;1 split.)

Effect of laziness

An ‘xor’ operation or its negation always requires both its sub-formulae branches to be evaluated, however
‘and’ type operations including or, nand etc. may sometimes be evaluated using only one branch. All the
analyses in this report are based on a tree of purely ‘and’ type nodes and hence, without loss of generality,
we can assume that the nodes are all ANDs, and that the probability of any sub-tree being 1 or 0 is 50:50.
Thus after evaluating one child tree, there is only a 1/2 chance of requiring the other child tree. Thus we
can see at once why the speed-up is 2/3 rather than 1/2. If we calculate both branches in parallel half the
time the evaluation of the second branch will have been in vain — that is wasting 25% of the combined
processor effort. The next section makes this argument more rigorously.

2. Binary balanced trees — two processors

This is the simplest case. Call the expected time to calculate a node at Ineigft one processow;,, and
with two processorsf. We assume that there is a constasuch that:

W= kow,

We can generate a recurrence relationvigr With one processor we must evaluate one child first, with
costw;,_,. With probability 1/2 this is all the work that is needed and we can return an answer. If not then
we calculate the second child with additional cegt;. Hence the expected cost of the parent is:

- 1
Wh = Wh-g + 5 Whog
3
W, = = Wy
h 2 h-1
Of coursew;, is the cost of calculating a terminal node.
We can evaluate the above expression fully and obtain that:
h-1
Wh = % Wy

However, this is unnecessary, as we can just use the recurrence relation.

With two processors we have two choices, we can either allocate both to the first branch, then both to the
second (if necessary). This is a sequential allocation for the node. In this case we get the same recurrence
as for one processor:

W o= Wﬁ—l"’%wﬁ—l
W = 2w,

If we use the constant speed-up assumption this gives us:
kw, = 3k W,
2 -1

Which doesn't tell us much abokt For notational purposes we can call this allocation strategy 2;2.

The second possibility is to calculate both branches in parallel, allocating one processor each. We can call
this 1]|1. Each branch then takes time ;, but these are done in parallel, hence the times overlap and the
total time is:

W= W
This is more interesting as we then get:
KW, = Wy
and hence (using the recurrence for one processor) that:

_ 2
k=3

So, for balanced binary trees the magic figure 2/3 is exact.

Notice that it didn't in fact matter whether we did the 2;2 or the 1||1 split, both give the same speed-up. At
some stage we do have to make the decision however, and split the processors, otherwise we could get to a
leaf of the tree and still have two processors, of which one would would be ‘wasted’. It is quite reasonable
however to wait until we get to the last non-leaf node and do the split at this level.

Non-terminal node costs

Although there was no cost added for the evaluation of the non-terminal nodes, the same result would have
been obtained for large. This is seen most easily by solving the recurrence relation with added costs. If
the cost of the terminal nodew/) is a and the cost of evaluation a non-terminal nodb ,ishe recurrence
relation forw, is:

- 3
Wh = EWh—l"'b

w; = a

This has solution:

h-1
_ h a -1
w, = a'a + ——b
n a-1
wherea is 3/2.
So asymptotically
h-1
w, = aha + X _p
a-1
The formula forwf is similar to before:
W, = Whg + b

The termw;,_, clearly dominate® and hence asymptotically, = wy,_, and hence there is again a speed-
up ofa L that is 2/3.

Balanced non-binary tree

In addition the 2/3 figure persists for non-binary trees. Take the case of a ternary tree, with fully lazy nodes.
That is all the nodes are ternary ANDs or ternary ORs. We first obtain a recurrence relation for one
processor:

_ 1 1
th = that Sthat ytha

We now look at two processors. Again we assume a constant speed-ugkfactor
=K'ty
The possible allocation strategies are:
Fully sequential: 2;2;2
Parallel then sequential: (1]|1);2

Sequential the parallel: 2;(1]|1)

As before the fully sequential case gives us no information about the speed-up factor. The (1]|1);2 and
2;(1|]1) cases give us:

i

1
tha + 7Kty

=3y
|

= Kty + St

respectively. In both cases we solve kbrand get 2/3. So again it doesn’'t matter which allocation strategy
you use, and we retain the magic number 2/3.

3. Balanced binary tree with many processors
If we havep processors, we can do a similar analysis to the two processor case. We already have the

recurrence relation for 1 processor:

_ 3
Wh = 5 Whg

We call the time taken by processors?, and assume a constant speed up factop fprocessorg;:
wh = ko wy

We now work out a recurrence relation fomprocessors. There are two major possibilities:

Fully sequentialp;p.
That is just use alb for one branch and then if necessary usg@dir the other.

Parallelr [|p-r.
For some we user processors to evaluate one branch and the remajingorocessors to evaluate
the second branch in parallel.

As with the binary case, the sequential case gives us no information (but is an acceptable allocation decision
so long as it is not to close to the leaves), so we concentrate on the parallel cases.

Assume we have chosen The time for the whole node is:
p — 1 r + wn T
Wy = E(Wh—l Wh-1

This is because half the time the first branch to finish is sufficient and the slower branch can be aborted, and

the other half of the time we must wait for the slower branch. Hence the expected time for the whole node
is the average of the times for each branch.

We can substitute for thef using the constants, :
-1
ko Wy = E(kr Who1 + Ky Whop)
and then divide by the recurrence relationgy:

ko = 3 (k + k)

Of course, we want the best choiceroAnd hence we chooseto minimise the left hand side.

Hand calculations

This is now basically a dynamic programming problem.

ko = 5 inf (K + ko)

3 1<r<n

Each value ok, can be calculated knowing all the valueskpffor r less tharp. | evaluated these by hand,
tabulating the values in a triangle.

p 1 2 3 4 5
K 1 2/3 5/9 419 1127
1 1 2/3 519 14/27 13/27
2 2/3 5/9 4/9 11/27
3 5/9 14/27 11/27
4 4/9 13/27
5 | 11/27

The tableau is labelled by pairs pf values. The column next to the indices has the valuel, ofThe
central value at the celi {j) is (k +k;)/3 calculated from the margin values kgf Finally the diagonals
can be scanned to choose the value of the kext

For example at cell (2,3) we have the value 11/27 which is (2/3+5/9)/3. The values along this diagonal
(13/27, 11/27, 11/27 and 13/27), represent the different choicesfof splitting 5 processors (1|4, 2||3,
3||2, 4]|1). The smallest of these is 11/27 corresponding to a choice of 2 or 3 Tdnis is the value filled

in for ks. We could then use this value to calculate the next diagonal etc.

This was getting a little tedious, and | was approaching the limit of my arithmetic accuracy. However, there
was a tendency for the best strategy to be the even or near even split of resources. The next stage is to
prove this hypothesis.

Proof that even splitting is optimal

| want to prove that the optimal strategy ispif=2m, splitm|m, or if p =2m + 1 splitm|jm+1. In fact, a
sneak look at the next section gives a formulaKgrgiven this assumption. We could calculate this, and
then by induction prove that even splitting is optimal foprocessors given the formula is correct forrall
less tharp. In fact, we only need one property of the seigsthat it is convex. This is sufficient to prove
that even splitting is optimal.

To show that even splitting is optimal, we need to show that:

Or<r k +ko 2 k +k_;
wheref = L%J , the even splitop. This is clearly true ik, is convex.

So we set up a double induction.
(i) Prove that even splitting is optimal f@r processors, givek is convex forr <p .

(i) Prove thatk, is convex givenk; is convex forr <p and that even splitting is optimal fqo
processors and less.

The first part of the proof we have already declared obvious by examination of the above formulae. We are
thus left with part (ii). We could at this stage appeal directly to the formula in the next section, but we will
use a more abstract proof.

LEMMA: k. convex on [1p-1] and even splitting correct on [f]
0 k convexon [1p]

PROOF:

To prove convexity we need to show that:
Or O [2,p-1] ks + kg 2k 20
We look at two sub cases:
CASE:r even:r =2m
Using formula for even splitting we get:

ko = 3 (Koo * Kn)

k= 2ky

kg = 5 (kn + kno1)

We expand the convexity condition:
Ko+ kg =2k = 5 (kg + K+ Ky Ky = 2X2Ky)
= 2 (Knex = 2ky + Kpg)

0 — by inductive convexity hypothesis

\Y)

CASE:r odd: r =2m +1

This proceeds in a similar fashion:

K = %km+l
k= 2 (Kneo * Kn)
ko = Zky

We expand the convexity condition:

s * Ko 2k = 2 [2K ¥ 2Ky = 20k + k) |
= 0

These are the only two cases, so the lemma is proved.

So we have proved the induction lemma, and as the convexity condition is vacuously truelfgr, 2],
we have also proved that even splitting is always optimal andghatalways convex.

Calculating times given even splitting

We now know that the optimal strategy is even splitting. That is,

_ 1
o = 5k + k)
F=1|P
wheref = LZJ
We can easily calculate this series:
p } 1 2 3 4 5 6 7 8 9 10
ko ? 1 2/3 5/9 4/9 11/27 10/27 9/27 8/27 23/81

We notice first that at the valugs= 2, 4, 8,k, is successive powers of 2/3. Further, the series drops
linearly between these values. That is, for powers of two:

3

n
2 m
{5} 3n+1
_3.2"-m
- 3n+l

p=2 K

and in the general case

p=2"+m

o
I

The proof by induction of this formula is quite easy. We assumegthatf the general form:
in which case, we calculafe

fFo= 2"+ m
p-f = 2"+ m-nm
whererh = L%J

We can then use the recurrence formula@r

1 3x2 -rh + 3x2" - (m-1h)
kp 3 3n

_ 3.2"-m

- 3n+1

Which is just what we were after. The base case withl is clearly correct witmh =0 andm =0. So the
formulae is correct.

Conclusions: balanced tree — general processors

We have shown that for any number of procesgarthere is a constant speed-up fadipgiven by

_3.2"-m
kp - 3n+1
wherep = 2" +m.

This speed-up is achieved by near equal splitting of the processors between the two child branches at any
node.

4. Unbalanced trees — the AVL tree and random trees

The magic figure of 2/3 for two processors does not hold for unbalanced trees. This is because without
dynamic reallocation of processors to evaluating branches, we will often end up with processors idle
waiting for others to finish.

Degenerate binary tree

An extreme example of this is the degenerate binary tree.

If this is of heighth the time taken with one processotis1 and with two processors is. That is there is

NO asymptotic speed-up. This is because when we decide to do parallel computation, one processor
evaluates a single node and then is left idle whilst the other evaluates the whole right hand branch.

Obviously it is here that dynamic reallocation of processors would be helpful. In this case, the degenerate
binary-tree of heighh is exactly equivalent to a+1-ary tree of height 1 and the speed-up factor is indeed

2/3.

AVL tree

A less unbalanced tree to look at is the maximally unbalanced AVL tree. The tree of hetud two
branches, one of height-1 and one of height—2. The number of terminal nodes in the tree of helgld
fib(h), which is asymptotically proportional 8, wherey is the golden ratio:

_ 1+
2
If we have one processor, then it is clearly better to evaluate the shorter branch first and then the longer,

hence the time for one processor is given by:

_ 1
Wh = Whop + 5 Whog

Thusw, is asymptotically proportional 8" wherep is the solution of the characteristic polynomial:

2 _ 1
B —1"'5[5
that is
_ 1+ 17
B = 4

With two processors we again find that sequential 2;2 splitting tells us nothing about the speed-up factor, so
we look at parallel 1]|1 splitting. In this case, one branch finishes first, and half the time is sufficient. hence
the average time is:

_ 1
W o= E(Wh—2+Wh—1)

Now taking the asymptotic form afj, we have:

_ 1
Wh = Whp + 5 Whg

= (1+3B)who
and
W = %(Wh—2+wh—1)

= 2(1+B)Wh,
Hence the speed-up ratio is:

1
2B s

— = = 0.6952
1+EB 9+ 17

which is less than but not too different from the magic 2/3.

Speed-ups for greater numbers of processors can be calculated using dynamic programming as for the
balanced binary tree. My guess is that the optimal splipfor fib(n) processors is to allocafié (n—2) to
the smaller andib (n—1) to the larger branch, but that is just a guess.

General unbalanced trees

In general we can see that we expect a figure of somewhat more than 2/3 for unbalanced trees, however not
necessarily very much more, as the AVL tree has its terminal nodes split in theytiwhich is fairly
unbalanced, but still has a speed-up not much less than 2/3. In fact, in some ways the AVL tree could be
seen as particularly bad, as every node including all the ‘nearly’ leaves are unbalanced. In a random tree
there will be some places where the nodes are ‘almost’ balanced, and at these points you can choose to
schedule one processor per branch and thus almost acheive a 2/3 speed-up. By looking ahead down the tree
you can choose to split if the balanced-ness of the node in question is the best you are going to get. Thus
2/3 is an uppérbound for the speed-up, but it is not unreasonable to assume that the actual speed-up is
much short of it.

A lower bound for random trees can be calculated by using more extensive dynamic programming. If we
ignore the structure of the branches of a node, we can simply choose whether to do 2;2 or 1||1 splitting on
the basis of the average time to completion for branches with the appropriate number of sub-nodes.

Let a, be the average time taken for nodes of sizéi.e. with n leaves) with one processor aafl be the
equivalent figure for 2 processors.

We look first at the 2 processor case at a node of sizéf the two children are of size andn-r, we

decide to split 1|1 if:

2

2(a+ a) < &+ Sa,

(assuming <n-r).

N.B. This decision is dependent on the number of nodes in each branch but ignores the structure of these
sub-trees.

We call the minimal value of these &3 ,_, which represents the average time taken for a node ofrsize
givenit has children of size andn-r. (If r >n —r we simply leta’ ,_, =a7_,,.)

T in the context of a speed-up fraction a small number is good and a large number bad. So when | say upper bound | mean
that the actual speed-up fraction will be greater than 2/3!

Finally we can calculatg’ as the average of these.

n-1

2
& n-r

r=1

1
2 —_
S

To get the speed-up we do the similar calculatioa,pf

1 n-1
8 = —- 8 n-
n-1 = n-r
where
B = &t A

if r <n-r anda ,_, =a,, otherwise.
The asymptotic speed-up factor is then &fvia,,

The first 20 terms in these series are tabulated below together with the values at 40, 60, 80 and 100. The
speed-up figure is just over 0.7 for most of the range up to 20, and is still above M69180, but is still
dropping albeit slowly. It is this ratio which Dunnet al. have since proved to be assymptotically 2/3.
Incidentally, the point at which parallel evaluation (1||1) rather than sequential (2;2) is chosen appears to be
at aboutr >n/3.

n a, a speed-up
Speed-up figures for random trees 11 3.0071 21296 0.7083
n = number of leaves 12 | 31145 | 22031 0.7074
n a, & speed-up 13 | 3.2129 | 2.2734 0.7076
1 1.0000 1.0000 1.0000 14 3.3094 2.3397 0.707¢Q
2 1.5000 1.0000 0.6667 15 3.3990 2.4023 0.7068
3 1.7500 1.2500 0.7143 16 3.4873 2.4626 0.7062
4 2 0000 1.4167 0.7083 17 3.5702 2.5198 0.7058
5 21875 1.5625 0.7143 18 3.6519 2.5749 0.7051
6 2 3625 1.6708 0.7072 19 3.7290 2.6271 0.7045
7 25083 1.7792 0.7093 20 3.8052 2.6781 0.7038
8 2 6512 1.8738 0.7068 40 4.9803 3.4738 0.6975
9 27762 1.9663 0.7083 60 5.8245 4.0510 0.6955
10 28977 2 0509 0.707 80 6.5073 45171 0.6942
100 7.0909 4.9146 0.6931

References

1. Paul E. Dunne, Chris J. Gittings and Paul H. Leng, “Parallel demand-driven evaluation of logic
networks”, inProc. 28th annual Allerton Conf. on Communication, Control and Comp({tiag0).

2. Chris J. Gittings, “Parallel Demand-Driven Simulation of Logic Networks”, Ph.D. Dissertation,
Department of Computer Science, University of Liverpool (1991).

3. Paul E. Dunne, Chris J. Gittings and Paul H. LeRgrallel algorithms for logic simulationThe
Seventh British Colloquium on Theoretical Computer Science (March 26th-28th 1991).

4. Paul E. Dunne, Chris J. Gittings and Paul H. Leng, “An Analysis of Speed-up ratios in Demand-
Driven Multiprocessor Simulation Algorithms”, CS/91/22, Department of Computer Science,
University of Liverpool (August 1991).

