
Allocation of multiple processors
to lazy boolean function trees

– justification of the magic number 2/3

Alan Dix†

Computer Science Department
University of York, York, YO1 5DD, U.K.

alan@uk.ac.york.minster

First draft May 1991
Revised April 1992

In simulations of lazy evaluation of boolean formulae, Dunne, Gittings and Leng found that parallel
evaluation by two processors achieved a speed-up of 2/3 compared to single processor evaluation.
The reason that this factor was only 2/3 rather than a half was because the function nodes used for the
simulation were all ‘and’ type functions, and hence sometimes the evaluation by the second processor
proved unnecessary. This paper is intended to provide a justification for this ‘magic number’ of 2/3,
by proving that it is exactly the speed-up obtained for pure balanced trees. A similar speed-up figure
result is obtained for non-binary balanced trees and an equivalent speed-up figure for multiple
processors is also given. Unbalanced trees have worse behaviour and by way of example the speed-
up figure for an AVL tree is given (0.6952). Finally, numerical solutions are given for the case of
arbitrary random binary trees. Since this report was first written Dunneet al. have proved
analytically that the 2/3 figure does indeed hold for random trees generated by a reasonable
distribution.

1. Background
This report springs from work by Dunne, Gittings and Leng on the computer-aided design of VLSI logic

circuits.1, 2 They are in interested in efficient parallel evaluation strategies for simulation of Boolean

expression trees. Demand-driven lazy evaluation of such trees means that, for instance, at ‘and’ nodes, if

the first evaluated sub-tree yields ‘false’ the other need not be evaluated. In general, this will mean that

parallel evaluation will not achieve 100% process utilisation. At the Seventh British Colloquium on

Theoretical Computer Science in March 1991, Chris Gittings presented their simulation results which

suggested a speed-up figure of 2/3 for two processors on random trees with ‘and’ type nodes.3

This magic number 2/3 arose out of empirical studies of randomly generated trees. Is this speed-up factor

for two processors exact? If so is it a feature of the particular random trees chosen, or is it more general?

Further, what is the generalisation to three or more processors? The following report is an attempt to

analytically justify the figure of 2/3 and partially generalise the result. I say ‘justify’ as the report primarily

deals with deterministic rather than random trees. Since this report was originally written Dunneet al.have

produced a more complete analytic treatment of random trees both proving the speed-up of 2/3 can be

achieved, on average, for ‘and’ type trees and giving similar figures for formula trees which also include

‘xor’ type nodes.4

hhhhhhhhhhhhhhhhhh
† work funded by SERC Advanced Fellowship B/89/ITA/220

The following is a summary of the results in this report:
ii

type of tree nos. of processors speed-up factorii
balanced binary tree 2 2/3

balanced n-ary tree 2 2/3

balanced binary tree 2k + m
3n+1

3.2k − mhhhhhhhh

AVL tree 2
9 + √ddd17
5 + √ddd17hhhhhhh = 0.6952

random tree 2 tabulated for small treesiicc
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

The main sections which follow cover these results in turn. The remainder of this section describes various

assumptions about scheduling and similar issues.

Scheduling and costing assumptions

For the deterministic trees, the structure of the branches of a node are determined entirely by the number of

nodes they contain. In the case of random trees, it is assumed that processor allocation (whether to assign

both processors to one branch or to evaluate both in parallel) is based purely on the size of the sub-trees.

For the calculation of costs I have assumed that the costs are purely in terms of the terminal nodes

evaluated, the function nodes are ‘free’. Assuming the converse or assigning costs to both leaves and

internal nodes appears to make no difference to the assymptotic speed-up figures.

To simplify initial analyses I assume that the trees are not in fact randomly generated, but are perfectly

balanced. For this case, with the above scheduling assumptions, the figure of 2/3 is exactly correct for the 2

processor case, and also equivalent figures can be calculated for a generalp processor allocation regime.

There are a few additional scheduling issues that arise with multiple processors and with unbalanced trees.

If two branches are evaluated, what happens if one completes before the other, and evaluates to such a value

that the second becomes unnecessary? I assume that it is possible to abort the computation of the second

branch so that the processor(s) become available for further computation. Other options are to wait for

both, or to add the processors for the first branch to those of the second.

This is further complicated with non-binary branching factors. With three children, we may allocate

processors to two branches. If one finishes before the other, can we allocate its resources to the third

branch, or do we have to wait for both?

Random tree generation

Where random binary trees are used they are assumed to be generated by the following procedure:

1. The size of tree is chosenn . This is the number of terminal nodes in the tree.

2. A split is chosen for the children of the root node so that one child had sizer and the other sizen−r .

The splitr is chosen uniformly in the range 1 ton−1.

3. Each child is split in the same fashion until trees of size 1, that is terminal nodes, are reached.

An alternative is to choose the tree randomly from all the possible trees withn nodes. The number of

binary trees withn nodes is:

B (n) =
n ! × (n−1) !
(2n − 2) !hhhhhhhhhhhh

This would give the probability of anr ,n−r split of:

B (n)
B (r) × B (n−r)hhhhhhhhhhhhhhh

However, as Dunneet al.point out, this yields unnaturally unbalanced trees. (In fact, asymptotically a half

of all such trees are completely degenerate with a 1;n-1 or n-1;1 split.)

Effect of laziness

An ‘xor’ operation or its negation always requires both its sub-formulae branches to be evaluated, however

‘and’ type operations including or, nand etc. may sometimes be evaluated using only one branch. All the

analyses in this report are based on a tree of purely ‘and’ type nodes and hence, without loss of generality,

we can assume that the nodes are all ANDs, and that the probability of any sub-tree being 1 or 0 is 50:50.

Thus after evaluating one child tree, there is only a 1/2 chance of requiring the other child tree. Thus we

can see at once why the speed-up is 2/3 rather than 1/2. If we calculate both branches in parallel half the

time the evaluation of the second branch will have been in vain – that is wasting 25% of the combined

processor effort. The next section makes this argument more rigorously.

2. Binary balanced trees – two processors
This is the simplest case. Call the expected time to calculate a node at heighth with one processorwh , and

with two processorsw2

h . We assume that there is a constantk such that:

w2

h = k wh

We can generate a recurrence relation forwh . With one processor we must evaluate one child first, with

costwh−1. With probability 1/2 this is all the work that is needed and we can return an answer. If not then

we calculate the second child with additional costwh−1. Hence the expected cost of the parent is:

wh = wh−1 +
2
1hh wh−1

wh =
2
3hh wh−1

Of course,w1 is the cost of calculating a terminal node.

We can evaluate the above expression fully and obtain that:

wh =
2
3hhh−1

w1

However, this is unnecessary, as we can just use the recurrence relation.

With two processors we have two choices, we can either allocate both to the first branch, then both to the

second (if necessary). This is a sequential allocation for the node. In this case we get the same recurrence

as for one processor:

w2

h = w2

h−1 +
2
1hh w2

h−1

w2

h =
2
3hh w2

h−1

If we use the constant speed-up assumption this gives us:

k wh =
2
3hh k wh−1

Which doesn’t tell us much aboutk . For notational purposes we can call this allocation strategy 2;2.

The second possibility is to calculate both branches in parallel, allocating one processor each. We can call

this 1||1. Each branch then takes timewh−1, but these are done in parallel, hence the times overlap and the

total time is:

w2

h = wh−1

This is more interesting as we then get:

k wh = wh−1

and hence (using the recurrence for one processor) that:

k =
3
2hh

So, for balanced binary trees the magic figure 2/3 is exact.

Notice that it didn’t in fact matter whether we did the 2;2 or the 1||1 split, both give the same speed-up. At

some stage we do have to make the decision however, and split the processors, otherwise we could get to a

leaf of the tree and still have two processors, of which one would would be ‘wasted’. It is quite reasonable

however to wait until we get to the last non-leaf node and do the split at this level.

Non-terminal node costs

Although there was no cost added for the evaluation of the non-terminal nodes, the same result would have

been obtained for largen . This is seen most easily by solving the recurrence relation with added costs. If

the cost of the terminal nodes (w1) is a and the cost of evaluation a non-terminal node isb , the recurrence

relation forwh is:

wh =
2
3hh wh−1 + b

w1 = a

This has solution:

wh = αh a +
α − 1

αh−1 −1hhhhhhh b

whereα is 3/2.

So asymptotically

wh = αh a +
α − 1
αh−1
hhhhh b

The formula forw2

h is similar to before:

w2

h = wh−1 + b

The termwh−1 clearly dominatesb and hence asymptoticallyw2

h = wh−1 and hence there is again a speed-

up of α−1 that is 2/3.

Balanced non-binary tree

In addition the 2/3 figure persists for non-binary trees. Take the case of a ternary tree, with fully lazy nodes.

That is all the nodes are ternary ANDs or ternary ORs. We first obtain a recurrence relation for one

processor:

th = th−1 +
2
1hh th−1 +

4
1hh th−1

We now look at two processors. Again we assume a constant speed-up factork ′

t2

h = k ′ th

The possible allocation strategies are:

Fully sequential: 2;2;2

Parallel then sequential: (1||1);2

Sequential the parallel: 2;(1||1)

As before the fully sequential case gives us no information about the speed-up factor. The (1||1);2 and

2;(1||1) cases give us:

t2

h = th−1 +
4
1hh k ′ th−1

t2

h = k ′ th−1 +
2
1hh th−1

respectively. In both cases we solve fork ′ and get 2/3. So again it doesn’t matter which allocation strategy

you use, and we retain the magic number 2/3.

3. Balanced binary tree with many processors
If we havep processors, we can do a similar analysis to the two processor case. We already have the

recurrence relation for 1 processor:

wh =
2
3hh wh−1

We call the time taken byp processorswh
p, and assume a constant speed up factor forp processorskp :

wh
p = kp wh

We now work out a recurrence relation forp processors. There are two major possibilities:

Fully sequential:p ; p .

That is just use allp for one branch and then if necessary use allp for the other.

Parallel:r ||p−r .

For somer we user processors to evaluate one branch and the remainingp−r processors to evaluate

the second branch in parallel.

As with the binary case, the sequential case gives us no information (but is an acceptable allocation decision

so long as it is not to close to the leaves), so we concentrate on the parallel cases.

Assume we have chosenr . The time for the whole node is:

wh
p =

2
1hh (wh−1

r + wh−1
n−r)

This is because half the time the first branch to finish is sufficient and the slower branch can be aborted, and

the other half of the time we must wait for the slower branch. Hence the expected time for the whole node

is the average of the times for each branch.

We can substitute for thewh
p using the constantskp :

kp wh =
2
1hh (kr wh−1 + kn−r wh−1)

and then divide by the recurrence relation forwh :

kp =
3
1hh (kr + kn−r)

Of course, we want the best choice ofr and hence we chooser to minimise the left hand side.

Hand calculations

This is now basically a dynamic programming problem.

kp =
3
1hh

1≤r <n
inf (kr + kn−r)

Each value ofkp can be calculated knowing all the values ofkr for r less thanp . I evaluated these by hand,

tabulating the values in a triangle.

p 1 2 3 4 5ii

kp 1 2/3 5/9 4/9 11/27ii

1 1 2/3 5/9 14/27 13/27

2 2/3 5/9 4/9 11/27

3 5/9 14/27 11/27

4 4/9 13/27

5 11/27cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

The tableau is labelled by pairs ofp values. The column next to the indices has the values ofkp . The

central value at the cell (i ,j) is (ki + kj)/3 calculated from the margin values ofki . Finally the diagonals

can be scanned to choose the value of the nextkp .

For example at cell (2,3) we have the value 11/27 which is (2/3+5/9)/3. The values along this diagonal

(13/27, 11/27, 11/27 and 13/27), represent the different choices ofr for splitting 5 processors (1||4, 2||3,

3||2, 4||1). The smallest of these is 11/27 corresponding to a choice of 2 or 3 forr . This is the value filled

in for k5. We could then use this value to calculate the next diagonal etc.

This was getting a little tedious, and I was approaching the limit of my arithmetic accuracy. However, there

was a tendency for the best strategy to be the even or near even split of resources. The next stage is to

prove this hypothesis.

Proof that even splitting is optimal

I want to prove that the optimal strategy is: ifp = 2m, split m||m, or if p = 2m + 1 split m||m+1. In fact, a

sneak look at the next section gives a formula forkp given this assumption. We could calculate this, and

then by induction prove that even splitting is optimal forp processors given the formula is correct for allr

less thanp . In fact, we only need one property of the serieskp , that it is convex. This is sufficient to prove

that even splitting is optimal.

To show that even splitting is optimal, we need to show that:

∀ r < r̂ kr + kp−r ≥ kr̂ + kp−r̂

wherer̂ = J
Q 2

phh J
P , the even split ofp . This is clearly true ifkp is convex.

So we set up a double induction.

(i) Prove that even splitting is optimal forp processors, givenkr is convex forr < p .

(ii) Prove thatkp is convex givenkr is convex for r < p and that even splitting is optimal forp

processors and less.

The first part of the proof we have already declared obvious by examination of the above formulae. We are

thus left with part (ii). We could at this stage appeal directly to the formula in the next section, but we will

use a more abstract proof.

LEMMA: kr convex on [1,p−1] and even splitting correct on [1,p]

⇒ kr convex on [1,p]

PROOF:

To prove convexity we need to show that:

∀ r ∈ [2,p−1] kr +1 + kr −1 −2kr ≥ 0

We look at two sub cases:

CASE: r even: r = 2m

Using formula for even splitting we get:

kr +1 =
3
1hh (km+1 + km)

kr =
3
2hh km

kr −1 =
3
1hh (km + km−1)

We expand the convexity condition:

kr +1 + kr −1 − 2kr =
3
1hh (km+1 + km + km + km−1 − 2×2km)

=
3
1hh (km+1 − 2km + km−1)

≥ 0 – by inductive convexity hypothesis

CASE: r odd: r = 2m + 1

This proceeds in a similar fashion:

kr +1 =
3
2hh km+1

kr =
3
1hh (km+1 + km)

kr −1 =
3
2hh km

We expand the convexity condition:

kr +1 + kr −1 −2kr =
3
1hh I

L 2km+1 + 2km − 2 (km+1 + km) M
O

= 0

These are the only two cases, so the lemma is proved.

So we have proved the induction lemma, and as the convexity condition is vacuously true forr ∈ [1, 2],

we have also proved that even splitting is always optimal and thatkp is always convex.

Calculating times given even splitting

We now know that the optimal strategy is even splitting. That is,

kp =
3
1hh (kr̂ + kn−r̂)

wherer̂ = J
Q 2

phh J
P

We can easily calculate this series:

p 1 2 3 4 5 6 7 8 9 10 ...ii

kp 1 2/3 5/9 4/9 11/27 10/27 9/27 8/27 23/81 ...cc
c
c

We notice first that at the valuesp = 2, 4, 8, kp is successive powers of 2/3. Further, the series drops

linearly between these values. That is, for powers of two:

p = 2n kp =
I
J
L 3

2hh
M
J
O

n

and in the general case

p = 2n + m kp =
I
J
L 3

2hh
M
J
O

n

−
3n+1

mhhhh

=
3n+1

3 .2n − mhhhhhhhhh

The proof by induction of this formula is quite easy. We assume thatp is of the general form:

in which case, we calculater̂ :

r̂ = 2n−1 + m̂

p − r̂ = 2n−1 + m − m̂

wherem̂ = J
Q 2

mhhh J
P

We can then use the recurrence formula forkp :

kp =
3
1hh

3n

3×2n−1 − m̂ + 3×2n−1 − (m − m̂)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

=
3n+1

3 .2n − mhhhhhhhhh

Which is just what we were after. The base case withp = 1 is clearly correct withn = 0 andm = 0. So the

formulae is correct.

Conclusions: balanced tree – general processors

We have shown that for any number of processorsp , there is a constant speed-up factorkp given by

kp =
3n+1

3 .2n − mhhhhhhhhh

wherep = 2n + m.

This speed-up is achieved by near equal splitting of the processors between the two child branches at any

node.

4. Unbalanced trees – the AVL tree and random trees
The magic figure of 2/3 for two processors does not hold for unbalanced trees. This is because without

dynamic reallocation of processors to evaluating branches, we will often end up with processors idle

waiting for others to finish.

Degenerate binary tree

An extreme example of this is the degenerate binary tree.

If this is of heighth the time taken with one processor ish+1 and with two processors ish . That is there is

NO asymptotic speed-up. This is because when we decide to do parallel computation, one processor

evaluates a single node and then is left idle whilst the other evaluates the whole right hand branch.

Obviously it is here that dynamic reallocation of processors would be helpful. In this case, the degenerate

binary-tree of heighth is exactly equivalent to ah+1-ary tree of height 1 and the speed-up factor is indeed

2/3.

AVL tree

A less unbalanced tree to look at is the maximally unbalanced AVL tree. The tree of heighth has two

branches, one of heighth−1 and one of heighth−2. The number of terminal nodes in the tree of heighth is

fib (h), which is asymptotically proportional toγh , whereγ is the golden ratio:

γ =
2

1 + √dd5hhhhhh

If we have one processor, then it is clearly better to evaluate the shorter branch first and then the longer,

hence the time for one processor is given by:

wh = wh−2 +
2
1hh wh−1

Thuswh is asymptotically proportional toβh whereβ is the solution of the characteristic polynomial:

β2 = 1 +
2
1hh β

that is

β =
4

1 + √ddd17hhhhhhh

With two processors we again find that sequential 2;2 splitting tells us nothing about the speed-up factor, so

we look at parallel 1||1 splitting. In this case, one branch finishes first, and half the time is sufficient. hence

the average time is:

w2

h =
2
1hh (wh−2 + wh−1)

Now taking the asymptotic form ofwh we have:

wh = wh−2 +
2
1hh wh−1

= (1 +
2
1hh β) wh−2

and

w2

h =
2
1hh (wh−2 + wh−1)

=
2
1hh (1 + β) wh−2

Hence the speed-up ratio is:

1 +
2
1hh β

2
1hh (1 + β)

hhhhhhhhhh =
9 + √ddd17
5 + √ddd17hhhhhhh = 0.6952

which is less than but not too different from the magic 2/3.

Speed-ups for greater numbers of processors can be calculated using dynamic programming as for the

balanced binary tree. My guess is that the optimal split forp = fib (n) processors is to allocatefib (n−2) to

the smaller andfib (n−1) to the larger branch, but that is just a guess.

General unbalanced trees

In general we can see that we expect a figure of somewhat more than 2/3 for unbalanced trees, however not

necessarily very much more, as the AVL tree has its terminal nodes split in the ratioγ:1, which is fairly

unbalanced, but still has a speed-up not much less than 2/3. In fact, in some ways the AVL tree could be

seen as particularly bad, as every node including all the ‘nearly’ leaves are unbalanced. In a random tree

there will be some places where the nodes are ‘almost’ balanced, and at these points you can choose to

schedule one processor per branch and thus almost acheive a 2/3 speed-up. By looking ahead down the tree

you can choose to split if the balanced-ness of the node in question is the best you are going to get. Thus

2/3 is an upper† bound for the speed-up, but it is not unreasonable to assume that the actual speed-up is

much short of it.

A lower bound for random trees can be calculated by using more extensive dynamic programming. If we

ignore the structure of the branches of a node, we can simply choose whether to do 2;2 or 1||1 splitting on

the basis of the average time to completion for branches with the appropriate number of sub-nodes.

Let an be the average time taken for nodes of sizen (i.e. with n leaves) with one processor anda2

n be the

equivalent figure for 2 processors.

We look first at the 2 processor case at a node of sizen . If the two children are of sizer andn−r , we

decide to split 1||1 if:

2
1hh (ar + an−r) < a2

r +
2
1hh a2

n−r

(assumingr ≤ n − r).

N.B. This decision is dependent on the number of nodes in each branch but ignores the structure of these

sub-trees.

We call the minimal value of these twoa2

r ,n−r which represents the average time taken for a node of sizen

given it has children of sizer andn−r . (If r > n − r we simply leta2

r ,n−r = a2

n−r ,r .)
hhhhhhhhhhhhhhhhhh
† in the context of a speed-up fraction a small number is good and a large number bad. So when I say upper bound I mean
that the actual speed-up fraction will be greater than 2/3!

Finally we can calculatea2

n as the average of these.

a2

n =
n−1

1hhhhh
r =1
Σ

n −1

a2

r ,n−r

To get the speed-up we do the similar calculation ofan

an =
n−1

1hhhhh
r =1
Σ

n −1

ar ,n−r

where

ar ,n−r = ar +
2
1hh an−r

if r ≤ n − r andar ,n−r = an−r ,r otherwise.

The asymptotic speed-up factor is then lima2

n /an

The first 20 terms in these series are tabulated below together with the values at 40, 60, 80 and 100. The

speed-up figure is just over 0.7 for most of the range up to 20, and is still above 0.69 atn =100, but is still

dropping albeit slowly. It is this ratio which Dunneet al. have since proved to be assymptotically 2/3.

Incidentally, the point at which parallel evaluation (1||1) rather than sequential (2;2) is chosen appears to be

at aboutr > n /3.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Speed-up figures for random trees

n = number of leavesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

n an a2

n speed-upiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 1.0000 1.0000 1.0000

2 1.5000 1.0000 0.6667

3 1.7500 1.2500 0.7143

4 2.0000 1.4167 0.7083

5 2.1875 1.5625 0.7143

6 2.3625 1.6708 0.7072

7 2.5083 1.7792 0.7093

8 2.6512 1.8738 0.7068

9 2.7762 1.9663 0.7083

10 2.8977 2.0509 0.7078iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

n an a2

n speed-upiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

11 3.0071 2.1296 0.7082

12 3.1145 2.2031 0.7074

13 3.2129 2.2734 0.7076

14 3.3094 2.3397 0.7070

15 3.3990 2.4023 0.7068

16 3.4873 2.4626 0.7062

17 3.5702 2.5198 0.7058

18 3.6519 2.5749 0.7051

19 3.7290 2.6271 0.7045

20 3.8052 2.6781 0.7038

40 4.9803 3.4738 0.6975

60 5.8245 4.0510 0.6955

80 6.5073 4.5171 0.6942

100 7.0909 4.9146 0.6931iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

References
1. Paul E. Dunne, Chris J. Gittings and Paul H. Leng, ‘‘Parallel demand-driven evaluation of logic

networks’’, inProc. 28th annual Allerton Conf. on Communication, Control and Computing(1990).

2. Chris J. Gittings, ‘‘Parallel Demand-Driven Simulation of Logic Networks’’, Ph.D. Dissertation,
Department of Computer Science, University of Liverpool (1991).

3. Paul E. Dunne, Chris J. Gittings and Paul H. Leng,Parallel algorithms for logic simulation, The
Seventh British Colloquium on Theoretical Computer Science (March 26th-28th 1991).

4. Paul E. Dunne, Chris J. Gittings and Paul H. Leng, ‘‘An Analysis of Speed-up ratios in Demand-
Driven Multiprocessor Simulation Algorithms’’, CS/91/22, Department of Computer Science,
University of Liverpool (August 1991).

