
©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 (extract) Slide 1

CSC 221 – Introduction to Software Engineering

systems engineering
extract from Sommerville’s chapter 2 slides

Alan Dix

www.hcibook.com/alan/teaching/CSC221/

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 (extract) Slide 2

Systems Engineering

λ Designing, implementing,
deploying and operating systems
which include hardware, software
and people

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 (extract) Slide 3

What is a system?

λ A purposeful collection of inter-related components
working together towards some common objective.

λ A system may include software, mechanical,
electrical and electronic hardware and be operated
by people.

λ System components are dependent on other
system components

λ The properties and behaviour of system components
are inextricably inter-mingled

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 (extract) Slide 4

Problems of systems engineering

λ Large systems are usually designed to solve
'wicked' problems

λ Systems engineering requires a great deal of
co-ordination across disciplines
• Almost infinite possibilities for design trade-offs across

components

• Mutual distrust and lack of understanding across engineering
disciplines

λ Systems must be designed to last many years
in a changing environment

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 (extract) Slide 5

Software and systems engineering

λ The proportion of software in systems is increasing.
Software-driven general purpose electronics is
replacing special-purpose systems

λ Problems of systems engineering are similar to
problems of software engineering

λ Software is (unfortunately) seen as a problem
in systems engineering. Many large system projects
have been delayed because of software problems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 (extract) Slide 6

Emergent properties

λ Properties of the system as a whole rather than
properties that can be derived from the properties of
components of a system

λ Emergent properties are a consequence of the
relationships between system components

λ They can therefore only be assessed and measured
once the components have been integrated into a
system



©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 (extract) Slide 7

Examples of emergent properties

λ The overall weight of the system

• This is an example of an emergent property that can be computed
from individual component properties.

λ The reliability of the system
• This depends on the reliability of system components and the

relationships between the components.

λ The usability of a system 
• This is a complex property which is not simply dependent on the

system hardware and software but also depends on the system
operators and the environment where it is used.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 (extract) Slide 8

Types of emergent property

λ Functional properties

• These appear when all the parts of a system work together to
achieve some objective. For example, a bicycle has the functional
property of being a transportation device once it has been
assembled from its components.

λ Non-functional emergent properties
• Examples are reliability, performance, safety, and security. These

relate to the behaviour of the system in its operational
environment. They are often critical for computer-based systems
as failure to achieve some minimal defined level in these
properties may make the system unusable.

Types of (emergent) property

Non-functional (emergent) properties

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 (extract) Slide 9

The ‘shall-not’ properties

λ Properties such as performance and reliability can
be measured

λ However, some properties are properties that the
system should not exhibit
• Safety - the system should not behave in an unsafe way

• Security - the system should not permit unauthorised use

λ Measuring or assessing these properties is very hard

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 (extract) Slide 10

Systems and their environment

λ Systems are not independent but exist in an
environment

λ System’s function may be to change its environment

λ Environment affects the functioning of the system
e.g. system may require electrical supply from its
environment

λ The organizational as well as the physical
environment may be important

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 (extract) Slide 11

System hierarchies

Security
system

Heating
system

Lighting
system

Power
system

Waste
system

Water
system

Town

Street

Building

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 (extract) Slide 12

Human and organisational factors

λ Process changes

• Does the system require changes to the work processes in the
environment?

λ Job changes
• Does the system de-skill the users in an environment or cause them to

change the way they work?

λ Organisational changes
• Does the system change the political power structure in an

organisation?



©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 (extract) Slide 13

The system engineering process

λ Usually follows a ‘waterfall’ model because of the
need for parallel development of different parts of
the system
• Little scope for iteration between phases because hardware

changes are very expensive. Software may have to compensate for
hardware problems

λ Inevitably involves engineers from different
disciplines who must work together
• Much scope for misunderstanding here. Different disciplines use a

different vocabulary and much negotiation is required. Engineers
may have personal agendas to fulfil

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 (extract) Slide 14

The system engineering process

System
integration

Sub-system
development

System
design

Requirements
definition

System
installation

System
evolution

System
decommissioning what are the subsystems

 how do they fit together

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 (extract) Slide 15

The system design process

λ Partition requirements
• Organise requirements into related groups

λ Identify sub-systems
• Identify a set of sub-systems which collectively can meet the

system requirements

λ Assign requirements to sub-systems
• Causes particular problems when COTS are integrated

λ Specify sub-system functionality

λ Define sub-system interfaces
• Critical activity for parallel sub-system development

N.B. emergent properties

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 (extract) Slide 16

The system design process

Partition
requirements

Identify
sub-systems

Assign requirements
to sub-systems

Specify sub-system
functionality

Define sub-system
interfaces

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 (extract) Slide 17

System design problems

λ Requirements partitioning to hardware,
software and human components may involve a lot
of negotiation

λ Difficult design problems are often assumed to be
readily solved using software

λ Hardware platforms may be inappropriate for
software requirements so software must compensate
for this

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 (extract) Slide 18

System architecture modelling

λ An architectural model presents an abstract view of
the sub-systems making up a system

λ May include major information flows between sub-
systems

λ Usually presented as a block diagram

λ May identify different types of functional
component in the model



©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 (extract) Slide 19

Intruder alarm system

Alarm
controller

Voice
synthesizer

Movement
sensors

Siren

Door
sensors

Telephone
caller

External
control centre

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 (extract) Slide 20

Component types in alarm system

λ Sensor
• Movement sensor, door sensor

λ Actuator
• Siren

λ Communication
• Telephone caller

λ Co-ordination
• Alarm controller

λ Interface
• Voice synthesizer

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 (extract) Slide 21

Functional system components

λ Sensor components

λ Actuator components

λ Computation components

λ Communication components

λ Co-ordination components

λ Interface components

+ memory

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 (extract) Slide 22

System components

λ Sensor components
• Collect information from the system’s environment e.g. radars in

an air traffic control system

λ Actuator components
• Cause some change in the system’s environment e.g. valves in a

process control system which increase or decrease material flow in
a pipe

λ Computation components
• Carry out some computations on an input to produce an output e.g.

a floating point processor in a computer system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 (extract) Slide 23

System components

λ Communication components
• Allow system components to communicate with each other e.g.

network linking distributed computers

λ Co-ordination components
• Co-ordinate the interactions of other system components e.g.

scheduler in a real-time system

λ Interface components
• Facilitate the interactions of other system components e.g.

operator interface

λ All components are now usually software controlled

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 (extract) Slide 24

λ software is part of a larger system
• hardware, software, people, environment

λ emergent properties
• the whole more than the sum of the parts

λ system development
• design subsystems and interrelations
• hardware, software, people, environment

summary


