
HCI252 Implementation support - extra notes
Alan Dix, 16/4/2010

The slides for this part of the course were taken largely from chapter 8 of the
Human–Computer Interaction textbook, but with a few extra bits and
sometimes in a slightly different order. These notes fill in any gaps and point
to the relevant parts of chapter 8.

Introduction
(see also section 8.1)

The core question dealt with here is: how does HCI affect of the
programmer? Obviously HCI affects the design and therefore what is
produced; however, the nature of user interfaces can make certain aspects of
programming the application more difficult. That is, HCI also impacts how
the design is put together.

One example is the separation between applications in a typical desktop
environment. From a software engineering point of view it is important to
keep them separate so that if the word processor crashes it does not bring
down the web browser and vice versa. However, when the user looks at the
screen it is all apparently available – just as in real life you may use your
mug to hold open the page of a book, you don't think "mugs are functionally
different from pages" you just do it. However, on the desktop even cut-and-
paste or drag-and-drop between applications is effectively breaking the
functional separation. Within a single application the same issue arises and
users expect to be able to freely move between aspects of the user interface
even if they belong to different modules of the underlying application.

One issue is that the user-interface developer does not normally want to
think about the details of the electronics of the trackpad on a laptop
computer or the optical sensors on a mouse. That is there is a need for
levels of abstraction that lift the programming from the specific details of
hardware to interaction techniques.

This greater level of abstraction is provided by a development tools and
techniques:

windowing systems – to provide basic independence from low-level devices
and manage inter-application conflicts and

interaction toolkits – to make it easier to use higher-level widgets such as
menues and buttons

architecture styles and frameworks – which help to structure the way one
thinks about and constructs complex user interfaces

HCI252 – Implementation support - extra notes 2

windowing systems

device independence
A computer may use many different kinds of pointing device (see also
chapter 2): mouse, trackpad, joystick; it may even have a touchscreen such
as an iPhone or iPad. Similarly there are various different kinds of keyboards
from traditional QUERTY keyboards, to multi-tap phone keypads, and
software-keyboards on touchscreens. Even 'standard' keyboards come in
slightly different layouts in different countries and have more or less special
keys such as cursor arrows, or function keys. Furthermore screens come in
different resolutions from a few hundred pixels across on a phone to many
thousands in a desktop 'cinema' display.

As an application developer you often want to ignore these details as much
as is sensible for the nature of the interaction. This abstraction is provided
by a number of layers of software. These differ slightly in different
platforms, but the typical layers are:

operating system – This provides the basic hardware interface, and low-level
device drivers.

windowing system – This has a number of functions, but one is to provide
abstractions such as an abstract idea of a pointer/mouse and an
abstract screen/display model. The display model is often based on
pixels, but there are alternatives such as the use of Postscript or
vector graphics (see box page 291).

toolkit (e.g. Java AWT/Swing) – These provide higher level abstractions such
as components for menus, tabbed displays. Sometimes toolkits
themselves come in several levels each adding more abstraction over
the layer below.

The application will deal most with the highest level of toolkit, but typically
can access the raw window manager or operating system when the toolkit
does not provide everything that is needed. For example, the cut-and-paste

HCI252 – Implementation support - extra notes 3

support in Java AWT is limited, so for specialised applications you need to
create small modules of native code to access the underlying window system
clipboard. However, the more applications access underlying windowing
systems or operating systems, the more code needs to be re-written when
porting between platforms.

Fig 1. the event-paint cycle

resource sharing
Often you have many applications on a computer, but typically one screen,
one keyboard and one mouse. Furthermore, the user has a single pair of
eyes and fingers, so that even if you had a screen huge enough to show
every possible application the user would not be able to loom at them all at
once! One job of the windowing system is to share these fixed interaction
resources between applications. See section 8.2, p 291, for the notion of a
virtual/abstract terminal so that each application for many purposes can
think it has the computer with all its resources to itself.

The input devices are usually shared using the idea of input focus. By
clicking on a window, or sometimes tabbing between them, the user can
choose to use the keyboard to type into different applications, or the mouse

HCI252 – Implementation support - extra notes 4

to select or point in different windows. Note this is effectively time-based
sharing as at any point in tome a single application 'owns' the keyboard and
mouse.

For the screen there are several possibilities for window layout:

tiled (space shared) – Here each window/application is given a dedicated
portion of the screen and can do what it likes there. This is often
found in web sidebars, where widgets are stacked one above another.
Note that this is a form of space-based sharing as each application
has a part of the screen space. Of course, this has a natural limit
when the screen is full. For web sidebars this is partly managed by
the fact that the screen can scroll, however also each widget may be
able to be hidden or expanded by clicking its title bar, thus giving the
user more control over what is seen at any single moment.

Fig 1. tiled sidebar with expandable widgets

in Wordpress admin screen

single app (time shared) – Some systems do the opposite and dedicate the
whole screen to a single application or window, swopping which
application gets the screen at any point in time. This was found in
early versions of Windows, but is now more common in mobile
devices such as phones as the screen is so small anyway that
splitting it further would be silly. Note that this is a form of time-
based sharing of the resource as at any moment precisely one
application 'owns' the screen. The window system needs only have
some means to swop between applications. For example, on the
iPhone this is achieved by clicking the big button at the bottom and
selecting an icon representing the intended application.

overlapping (time and space) – For desktop and laptop PCs, the most
common layout is nether of the above, but instead the use of
overlapping windows. In this case we have something that has
elements of both time and space based sharing as some part of the
screen have overlaps and are therefore time-shared (depending on

HCI252 – Implementation support - extra notes 5

which is on top) and other parts, where smaller windows sit side-by-
side, are space shared.

(i) (ii) (iii)

Fig 2. window layout (i) tiled (ii) single app and (iii) overlapping

Of course it is not just the screen and keyboard that users care
about; other aspects of the device are also shared, especially
when thinking about a mobile device. There is one battery, so
that power management is crucial. Some phone-based
operating systems work very like desktop-based ones with
applications running all the time and consequentially running
down the battery! The iPhone is often criticised for being single-
threaded, but this is almost certainly one of the reasons for
relatively long battery life. The network is also a shared
resource and if one application hogs it may slow down others ...
furthermore it may cost the user in data charges!

application management
There are many applications! While they typically have control of what
happens inside their windows, the window manager provides a consistent
look-and-feel to the window 'decoration', the borders, resizing controls, title
bar. As an application programmer you simply create a window and
occasionally get events such as 'resized' or 'close', but otherwise the
windowing system worries about what they look liek and how they behave.

The window system also takes responsibility for many aspects of inter-
application sharing such as cut & paste and drag & drop. As an application
developer there are typically calls to the windowing systems to say "here is
some data of this type for the clipboard", and the windowing system will
provide events such as "data of this type has been dropped here". The
window system also manages a degree of negotiation between the
application providing data (where it was cut/copied or dragged from) and the
application using it (paste or drop location). Some windowing systems also
provide a level of scripting or automation between applications, for example
the Mac Automator.

Finally, the windowing system has to provide some form of user interface to
mange things like swopping between applications, closing windows, selecting

HCI252 – Implementation support - extra notes 6

the keyboard focus, or arranging overlapping windows and setting various
global user preferences (e.g. Mac Finder, Windows Explorer). As well as 'big
applications', even desktop interfaces now often have additional micro-
applications such as the Mac Dashboard, which also need means for
activating, etc.

architecture of window systems
(see section 8.2.1)

not just the PC
Issues of application management and architecture are not just issues for
PCs, but any platform where there are multiple applications:

phone – Faces similar issues to the PC sharing screen, keyboard, etc.. As
noted the choice is usually to go for ‘full screen’ apps, not overlapping
windows, however Vodafone 360 has semi-open apps, which take up
several 'tile' locations in the screens showing application icons.

web – In web applications the browser in many ways takes to role of window
manager. The browser may make use of he window system's ability
to have several browser windows open, but within a window space is
usually managed using tabs, which are effectively a form of space-
based sharing.

web micro-apps – Various web platforms allow the user to add micro-
applications such as Facebook apps and Google widgets. The
platform may offer these access to shared data (e.g. Facebook

HCI252 – Implementation support - extra notes 7

friend's birthdays) and have to manage screen space, often using a
combination of space-shared columns and time-shared tabs.

dedicated devices (e.g. microwave control panel) – These are mostly coded
direct to hardware as they have very bespoke input and output.
However, there are appliance-oriented variants of Java and Windows
providing some higher-level abstractions.

programming the application
toolkits
(see section 8.4)

paint models
When you ant to put something on the screen it goes through all the layers
referred to earlier. Your code interacts with a toolkit (say Jave AWT/Swing),
which then passes this on to the window manager, which then manages
things like overlaps with other application windows before interacting through
the operating system and device drivers to actually paint pixels on the
screen.

HCI252 – Implementation support - extra notes 8

Systems and toolkits differ in what you actually draw to:

direct to the screen – The simplest is when the application are given direct
access to screen pixels. This is clearly most efficient for high-
throughput graphics, such as vide replay, but has problems if the
application misbehaves and starts to draw to areas of the screen that
it shouldn't such as other applications' space or the windowing
system's own UI elements.

direct to screen via viewport – The windowing system may exert a little more
control by only allowing access through a 'viewport'. This means that
when the application asks to draw pixels the output may be clipped if
it is outside the allowed region, or if part of the window is currently
covered by another window. This might also include coordinate
transformations o that the application can effectively draw in a
window with x and y coordinates 0-199, but have the window really
positioned in the middle of the actual screen. For example, Java AWT
works in this manner.

separate buffer – Sometimes instead of writing instantly to the screen the
applications drawing operations are applied to a buffer in memory
and only when this is finished is the whole buffer written to the
screen. This may happen at the level of toolkit or and/or underlying
window system and is normally called double buffering in a toolkit or
retained bitmap in the windowing system. The latter we deal with
later. The reason for double buffering at the toolkit level (whether or
not the windowing system has a buffer), is to reduce flicker. Without
double buffering it may be that the user sees a screen half-drawn,
whereas double buffering means that the entire window instantly
swops from the old to the new buffer. This is an option in Java Swing.

display list – Instead of working wit the screen as an array of pixels, some
systems store a list of operations recording, say, that there should be
a line, image ort text at a particular location on the screen. The
toolkit then worries about showing these on the screen. This means
that the application can simply change the display list when screen
elements need to be updated, rather than redraw the whole screen.
Also it allows the toolkit or window system to perform optimisations
and hence is used in some high-performance graphical toolkits
including OpenGL.

Buffering may also be used by the window system to store parts of the
application window in order to more quickly update the screen when the user
is swopping between overlapping windows. For example Mac OSX offers
applications the choice of three levels of buffering which differ largely in how
they cope with overlapping or translucent windows.:

nonretained – This is the simplest options, the window manager remembers
nothing and whenever a part of the application window that was
hidden is later exposed the application is asked to redraw the
previously hidden portion. This works best if the contents of the

HCI252 – Implementation support - extra notes 9

application window are changing very rapidly as any hidden parts will
need to have fresh contents anyway.

retained – Where the window manager buffers just the hidden parts of
overlapping windows. This means that when the window is later
exposed the hidden part can be instantly drawn. Note that 'hidden'
here includes being covered by a translucent overlay which may later
move.

buffered – Here the window manager keeps a copy of the entire window,
both hidden parts and non-hidden parts. This takes most memory,
but gives the maximum responsiveness if, for example, the window is
itself translucent and is dragged over other windows.

Fig 3. Buffering options in Mac OSX. from

http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/C
ocoaFundamentals/CoreAppArchitecture/CoreAppArchitecture.html

HCI252 – Implementation support - extra notes 10

There are different reasons why the screen needs to be redrawn:

internal events – Sometimes it is an event inside the application which leads
to the needs to update the screen. For example, in a clock the digits
need to change, or if downloading a large data file the progress
indicator may need to update. In the case of internal events the
application ‘knows’ that the screen has changed, but may need to tell
the toolkit and ultimately the window manager.

external events – Alternatively the event may be due to something the user
did to the application. For example the user might have clicked the
'bold' icon and the currently selected word needs to be emboldened.
In this case it is the window manager that first ‘knows’ that the user
ahs clicked the mouse, then passes this to the toolkit, which may
sometimes respond directly (e.g. during navigation of a menu) or
pass it on to the application.

However, just because the screen needs to be updated does not mean the
update happens at that moment. For example, if there were many updates
within a few tens of milliseconds, it would not be worth updating the screen
several times as this would all be within a single display frame.

internal control – This is probably the easiest option to understand. When
the application wants the screen changed it simply tells the
toolkit/window manager that something needs to be updated. This
has the problem noted above of potentially wasted updates, or taking
time redrawing the screen when maybe user input is queued up
needing to be processed. However this method works fine if there is
some sort of intermediate representation such as the display list or a
retained bitmap as then the actual display is only updated once per
frame.

external control – In this case the toolkit / window manager decides when it
wants a part of the screen to be updated (for example, when a
hidden part is exposed) and asks the application to draw it. In Java
this is what happens in a 'paint()' method. However, while this works
easily for externally generated events when the window system
'knows' that a change is required, there is of course a problem for
internally generated change. This is the purpose of the 'repaint()'
method in Java; the application is saying to the toolkit "please repaint
my window sometime when you are ready". At some later point,
often when the input event queue is empty, the toolkit calls the
applications 'paint()' method and screen is updated.

draw once per frame – This is a variant of external control used principally in
video-game engines where much of the screen updates in each frame
(e.g. first person shooters, or car racing). Once per frame the
application is asked to redraw the screen. If event happen between
these calls the application usually just updates some internal state
but does not update the screen itself. Then when it is asked to

HCI252 – Implementation support - extra notes 11

redraw itself, the application takes the current state, maybe polls the
state of joystick buttons, and generates the new screen.

event models
(see section 8.3 and notes "Events in Java: what happens when you click?")

architecture and frameworks
separation and presentation abstraction: Seeheim
 (see section 8.5, page 307–309)

HCI252 – Implementation support - extra notes 12

component models: MVC and PAC
(see section 8.5, page 308)

on the web – salami sliced Seeheim
The Seeheim. MVC and PAC architectures were all developed in the light of
desktop GUI applications. In web applications we can see similar facets but
often arranged differently, and in particular the components do not
necessarily all sit together in one place.

Given the browser is the bit close to the user it is tempting to think that
Seehem presentation layer would live entirely in the browser, with the
deeper functionality/semantics at the server end and a separation
somewhere in the dialogue component.

In fact, it is not this simple. Instead, we typically see bit of each layer
spread between browser and server. At the presentation layer, the actual
layout is clearly performed in the browser as is the application of CS style
sheets, managing layout of screen areas depending on the window size

HCI252 – Implementation support - extra notes 13

etc. However, the actual HTML that is delivered to the web page is usually
generated in the server either with raw code, or with the help of template
engines such as Smarty, or in XML-based web-stacks XSLT to transform
XML to HTML.

The dialogue component is similarly split. Some things happen at the
browser end. In an old HTML site this is limited to when the user selects
links or interacts with web forms; however in a Javascript-rich or Flash-
based site the level of interaction can be quite high. However, some of the
dialogue is happening at the server side. When the user selects a link to a
generated page or presses a form 'submit' button, the back-end server
script needs to work out what to do next.

Finally the semantics is largely situated in back-end databases and
business logic. However, in rich web applications including those based on
AJAX and Web2.0 technology, data may be updated on the page. For
example, Google docs spreadsheet is downloaded completely into the web
browser and edited there with updates periodically sent to the backend
server to keep the two in synchronisation.

Furthermore if one looks at the scripts generating individual application
pages, we will typically see bits of presentation, dialogue and semantics in
each. The problem then is that the interaction state becomes fragmented
and often developers find it hard to keep track of state spread between
server session variables, URL parameters, hidden fields in forms and
cookies. There are some MVC-like frameworks for web development,
which try to untangle the mess, but the picture is far from solved.

