
1

harnessing the power of formalism
for understanding interaction

Alan Dix

Lancaster University, UK
www.hiraeth.com/alan/tutorials/formal

λλλλ

sources

• Upside down ∀s and algorithms - computational formalisms
and theory. In HCI Models, Theories, and Frameworks:
Toward an Multidisciplinary Science. John Carroll (ed.).
Morgan Kaufman, 2003. pp. 381-429

• A. Dix, J. Finlay, G. Abowd and R. Beale (2004). Chapters 16,
17 & 18. In Human-Computer Interaction, third edition.
Prentice Hall.

• A. J. Dix (1991). Formal Methods for
Interactive Systems. Academic Press

for i

green letters tumble against black glass and dim pizza filled rooms tremble with heavy
intonations, fingers drum whilst a single screen reflects a bespectacled face on plastic
rimmed spectacles, seeing clearly four eyes doubled and redoubled by interactions of
photons, words form from the void within

for i =
it is done

language is the ultimate formalisation tying patterns of electrical and chemical activation,
spaghetti wrapped neurons, discretised to token sounds, virtuosity to vocabulary; in
writing digitised as fingers scratch ink upon parchment or softly caress smooth worn key
tops

before I continue let us reflect, for i can only tell my story, but the words are our own, for
eye to eye and voice to voice the tokens were formed, even though sheet to sheet or
screen to screen we use them now

and we have found ways to bare our soul and transport our listeners through simple
words, and to, in turn, reflect and talk about the talking, formalising the understandings
we have about words in words

the hard edged symbols cut upon stone, dark text stamped from lead, and pixelated
poetry touch our very heart

is it surprising that silicon and liquid crystal should be no less richly understood

2

outline

• setting the scene
– what is formal? – first examples

– types of formalism – placemat maths

• models of systems
– dialogue notations – modelling state

– generic models of interaction

• why do it?
– it works! - a formal methods success story

– formal futures - ubiquity and physicality

what is formal?

• dinner jacket and bow tie?
– outward appearance of things – the form

• in maths and computing …
– representations (diagrams, formulae, etc.)

• analysed and manipulated separate from meaning

– how?
• faithfully encapsulate significant aspects of meaning

counting cockroaches - first night

213

3

counting cockroaches - second night

279

which night had more?

• second night: 279 > 213

• how can you be certain?
– count faithfully represents significant feature

• but not everything …
– cockroaches on first night may be:
– bigger, different colour, more friendly

representing things absent

• symbols, icons, words
– stand for things not present

• simulated screen shots
– represent the unrealised designs

(N.B. no dynamics – limited meaning)

• counting cockroaches
– keep in a jam jar? disrupts the world
– numbers make the impossible possible

4

placeholders

• homunculus – any person
– not just someone, anyone

• maths: ∀ n: n+1 > n

– saying an infinite amount

• counting: 279 > 213
– cockroaches, apples, llamas

abstraction

• increasing abstraction
– screenshot – one screen
– storyboard – single sequence of interaction
– navigation diagram – potential paths

• and further ...
– work on UNDO
– any system with particular properties ...

forcing you to think

 when you count cockroaches
 you have to decide

 what counts as a cockroach

• baby or adult
• live or deadlive or dead

baby or adult

5

the myth of informality

• spiritus mundi
– formality, precision

= reductionism, positivism = BAD

• focus (rightly) on
– context, situatedness, contingency

• BOTH needed
– the world is rich and complex
– but computers are formal (as is language)
– key is choosing the right absteractions
– and knowing what is left out

6

λ
early examples

formalism in action

λ
λ
λ

digital watch – user instructions

• two main modes

• limited interface
 - 3 buttons

• button A
 changes mode

• state transition
network (STN)

S M T W T F S S M T W T F S

STP

S M T W T F S

SET

A

Time display Stop watch

Time setting Alarm setting

A

AA
Depress
 button A
 for 2 seconds

S M T W T F S

ALM

AM

example - nuclear control

• what happens if we
press ‘+’ in red mode?

N.B. question from form only

+

–
REDAMBERGREEN

+

–

+
–

Alarm Control

7

digital watch – user instructions

“depress button A
for 2 seconds”

so ...

• time important

• distinguish depress A
and release A

S M T W T F S S M T W T F S

STP

S M T W T F S

SET

A

Time display Stop watch

Time setting Alarm setting

A

AA
Depress
 button A
 for 2 seconds

S M T W T F S

ALM

AM

designer’s instructions

and ...

that’s just
one button

S M T W T F S S M T W T F S

STP

S M T W T F S

SET

Time display Stop watch

Time setting Alarm setting

Depress A

2 seconds

S M T W T F S

ALM

AM

S M T W T F S S M T W T F S

STP

Release A Release A

Depress A

Depress A 2 seconds

Release A Release A

lessons

• formal analysis
– ask questions based on form of diagrams

• early analysis
– catch problems even before prototyping

• lack of bias
– usually test what we expect, analysis breaks this

• alternative perspective
– different representations show different things

• forcing deisgn decisions
– did watch designer make these decsions or programmer?

8

λ
using formalism in HCI

from cognitive models
to placemats

λ
λ
λ

what to model

• users
– cognitive models
– task models

• system
– behaviour
– architectural structure

• world
– domain models 

notations

• graphical
– digital watch STNs, Petri Nets, CTT, UML

• textual
– production rules (used in UIMS and cog. models)
– mathematical formulae, process algebras

• plain old sums
– back of the envelope/placemat calculations

9

placemat math - menu sizes

• on-screen menus
– e.g. web site navigation

• how many items per screen?

• frequent misapplication of Miller 7±2

• but how many is right?

placemat math (ii)

• menu tree has N items
• number of items per screen = M (breadth)
• depth (d) = log2(N) / log2(M)

xxxx
yyyy
zzzzz

xxxx
yyyy
zzzzz

xxxx
yyyy
zzzzz

xxxx
yyyy
zzzzz

xxxx
yyyy
zzzzz

xxxx
yyyy
zzzzz

. . .

xxxx
yyyy
zzzzz

xxxx
yyyy
zzzzz

xxxx
yyyy
zzzzz

xxxx
yyyy
zzzzz

xxxx
yyyy
zzzzz

. . .

. . .

depth
(d)

breadth (M)

placemat math (iii)

Ttotal – time to find an item
= (Tdisplay + Tselect) × d

Tdisplay – time to display screen (fixed)

Tselect – time to select menu item
= A + B log(M) (Fitts’ Law)

Ttotal = (Tdisplay + A + B log(M)) × log(N) / log(M)

= ((Tdisplay + A) × log(N)) / log(M) + B log(N)

cancel

10

best menu size?

Ttotal =((Tdisplay + A) × log(N)) / log(M) + B log(N)

– larger M means shorter total time
– the bigger the better!

N.B. other factors
– visual search (linear if not expert)
– error rates
– minimum selectable size
– effective organisation of menu items

what to model

• users
– cognitive models
– task models

• system
– behaviour
– architectural structure

• world
– domain models 

what to model

• users
– cognitive models
– task models

• system
– behaviour
– architectural structure

• world
– domain models

11

types of system model

• dialogue – main modes

• full state definition

• abstract interaction model

specific
system

generic
issues

12

λ
dialogue notations

what to do when

λ
λ
λ

what is dialogue?

• conversation between two or more parties
– usually cooperative

• in user interfaces
– refers to the structure of the interaction
– syntactic level of human–computer ‘conversation’

• levels
– lexical – shape of icons, actual keys pressed
– syntactic – order of inputs and outputs
– semantic – effect on internal application/data

structured human dialogue

• human-computer dialogue very constrained
• some human-human dialogue formal too …

Minister: do you man’s name take this woman …
Man: I do
Minister: do you woman’s name take this man …
Woman: I do
Man: With this ring I thee wed

(places ring on womans finger)
Woman: With this ring I thee wed (places ring ..)
Minister: I now pronounce you man and wife

13

lessons about dialogue

• wedding service
– sort of script for three parties
– specifies order
– some contributions fixed – “I do”
– others variable – “do you man’s name …”
– instructions for ring

concurrent with saying words “with this ring …”

• if you say these words are you married?
– only if in the right place, with marriage licence
– syntax not semantics

… and more

• what if woman says “I don’t”?
• real dialogues often have alternatives:

– the process of the trial depends on the defendants
response

• focus on normative responses
– doesn’t cope with judge saying “off with her head”
– or in computer dialogue user standing on keyboard!

Judge: How do you plead guilty or not guilty?
Defendant: either Guilty or Not guilty

a simple graphics package

File Graphics Text Paint
Circle
Line

14

state transition networks (STN)

• circles - states

• arcs - actions/events

Start Menu

Circle 1 Circle 2 Finish

Line 1 Line 2 Finish

select 'circle'

select 'line'

click on centre
click on

circumference

draw circlerubber band

rubber band draw last
line

click on
first point double click

click on point
draw a line

state transition networks - events

• arc labels a bit cramped because:

– notation is `state heavy‘

– the events require most detail

Start Menu

Circle 1 Circle 2 Finish

Line 1 Line 2 Finish

select 'circle'

select 'line'

click on centre
click on

circumference

draw circlerubber band

rubber band draw last
line

click on
first point double click

click on point
draw a line

Start Menu

Circle 1 Circle 2 Finish
select 'circle'

select 'line'

click on centre
click on

circumference

draw circlerubber band

...

state transition networks - states

• labels in circles a bit uninformative:

– states are hard to name

– but easier to visualise

15

hierarchical STNs

• managing complex dialogues

• named sub-dialogues
Graphics Submenu

Text Submenu

Paint Submenu

Main
Menu

select ‘graphics’

select ‘paint’

select ‘text’

action properties

• completeness
• missed arcs
• unforeseen circumstances

• determinism
• several arcs for one action
• deliberate: application decision
• accident: production rules

• nested escapes

• consistency
• same action, same effect?
• modes and visibility

state properties

• reachability
• can you get anywhere from anywhere?

• and how easily

• reversibility
• can you get to the previous state?

• but NOT undo

• dangerous states
• some states you don't want to get to

e.g. digital watch: time/alarm set, button press for 2 secs

16

checking properties (i)

• completeness
– double-click in circle states?

Start Menu

Circle 1 Circle 2 Finish

Line 1 Line 2 Finish

select 'circle'

select 'line'

click on centre
click on

circumference

draw circlerubber band

rubber band draw last
line

click on
first point double click

click on point
draw a line

double
click

?

checking properties (ii)

• Reversibility:

– to reverse select `line'

Start Menu

Line 1 Line 2 Finish

select 'circle'

select 'line'

rubber band draw last
line

click on
first point double click

click on point
draw a line

...

select 'graphics'

select 'text'

select 'paint'

... Main
Menu

Graphics Sub-menu

...

checking properties (ii)

• Reversibility:

– to reverse select `line'

– click

Start Menu

Line 1 Line 2 Finish

select 'circle'

select 'line'

rubber band draw last
line

click on
first point double click

click on point
draw a line

...

select 'graphics'

select 'text'

select 'paint'

... Main
Menu

Graphics Sub-menu

...

17

checking properties (ii)

• Reversibility:

– to reverse select `line'

– click - double click

Start Menu

Line 1 Line 2 Finish

select 'circle'

select 'line'

rubber band draw last
line

click on
first point double click

click on point
draw a line

...

select 'graphics'

select 'text'

select 'paint'

... Main
Menu

Graphics Sub-menu

...

checking properties (ii)

• Reversibility:

– to reverse select `line'

– click - double click - select `graphics'

– (3 actions)

• N.B. not undo

Start Menu

Line 1 Line 2 Finish

select 'circle'

select 'line'

rubber band draw last
line

click on
first point double click

click on point
draw a line

...

select 'graphics'

select 'text'

select 'paint'

... Main
Menu

Graphics Sub-menu

...

example - nuclear control

• missing arcs

• dangerous state?

+

–
REDAMBERGREEN

+

–

+
–

Alarm Control

18

revised STN

CONFIRM

Emergency Confirm

CANCEL

+

–
TEMPAMBERGREEN

+

RED

–

CONFIRM

CANCEL

+
–

Alarm Control

dangerous states

• word processor: two modes and exit
F1 - changes mode
F2 - exit (and save)
Esc - no mode change

but ... Esc resets autosave

edit exitmenu
F1 F2

Esc

dangerous states (ii)

• exit with/without save ⇒ dangerous states
• duplicate states - semantic distinction

F1-F2 - exit with save
F1-Esc-F2 - exit with no save

edit exitmenu
F1 F2

Esc

edit exitmenu
F1 F2

Esc

any
update

19

lexical Issues

• visibility
• differentiate modes and states
• annotations to dialogue

• style
• command - verb noun
• mouse based - noun verb

• layout
• not just appearance ...

layout matters

• word processor - dangerous states

• old keyboard - OK

Esc

F1 F2

F3

...
F4

...

1

tab

...
...

edit exitmenu
F1 F2

Esc

edit exitmenu
F1 F2

Esc

any
update

layout matters

• new keyboard layout

intend F1-F2 (save)

finger catches Esc

Esc F1 F2 F3 ...

edit exitmenu
F1 F2

Esc

edit exitmenu
F1 F2

Esc

any
update

20

layout matters

• new keyboard layout

intend F1-F2 (save)

finger catches Esc

F1-Esc-F2 - disaster!

Esc F1 F2 F3 ...

edit exitmenu
F1 F2

Esc

edit exitmenu
F1 F2

Esc

any
update

21

λ
modelling state

looking within

λ
λ
λ

what is state

that in the present
of that in the past
which affects that of the future

time

modelling state

• describe state using variables

• types of variables:
– basic type:

x: Nat – non-negative integer {0,1,2,...}

– individual item from set:
shape: {circle, line, rectangle}

– subset of bigger set:
selection: set Nat – set of integers

– function (often finite):
objects: Nat → shape

– user defined:
Point = x, y: Real – e.g. (1.79,-3.2)

22

stages

iteratively define:

state – what needs to be remembered

invariants – what is always true

initial state – how it starts

actions – what can happen to the state
(need to relate this to keys etc.)

display – what the user sees (hears etc.)

use scenarios to check they are what you want

four function calculator

• formal description of the state

• define the effect of the following actions:
type_digit(d) – user presses single digit
equals – user presses ‘=‘ button
op(p) – user presses ‘+’,’–’, ‘*’ or ‘/’ button

N.B. will not be right first time ... spot the mistakes

calculator state – first attempt

state
total: Nat – running total (accumulator)

disp: Nat – number currently displayed

no invariants

initial state
total = 0
disp = 0

display
disp – more complex calculator may show formulae

23

calculator actions – first attempt

type_digit(d)
add d to the end of disp
total unchanged

equals
do last operation “+,-,*,” to disp and total
...

what is it!

calculator state – second attempt

state
total: Nat – running total (accumulator)

disp: Nat – number currently displayed

pend_op: {+,–,*,/,none} – pending operation

initial state
total = 0
disp = 0
pend_op = none

calculator actions – second attempt

type_digit(d)
add d to the end of disp
total and pend_op unchanged

equals
do pend_op to disp and total
put result in both disp and total
set pend_op to none

op(o)
do pend_op to disp and total
put result in both disp and total
put o into pend_op

24

calculator – scenario

• user types: 1 + 2 7 = – 3
• start after 1 + 2

action total disp pend_op
1 2 +

type_digit(7)
1 27 +

equals
28 28 none

op(–)
28 28 –

type_digit(3)
28 283 –

!!!

calculator state – third attempt

state
total: Nat – running total (accumulator)

disp: Nat – number currently displayed

pend_op: {+,–,*,/,none} – pending operation

typing: Bool – true/false flag

• added ‘typing’ flag
– user in the middle of typing a number

calculator actions – third attempt

type_digit(d)
if typing then add d to the end of disp
otherwise clear disp and put d in it
also set typing to true
total and pend_op unchanged

equals and op(o):
– as before except both set typing to false

25

calculator – scenario revisited

• user types: 1 + 2 7 = – 3
• start after 1 + 2

action total disp pend_op typing
1 2 + yes

type_digit(7)
1 27 + yes

equals
28 28 none no

op(–)
28 28 – no

type_digit(3)
28 3 – yes



defining state

two problems:

• too little state
elements missing from specification
may be deliberate

e.g. dialogue level spec.

• too much state
too many states, too complex state
may be deliberate

redundancy, extensibility

too little state

• forgotten elements

e.g. ‘typing’ flag for calculator

• checking:
– dialogue state

can you work out current dialogue state?
– action specification

do you have enough information?
– implicit global variables (see also later)

suggest state missing

26

too much state

• unreachable states
too few actions (see later)
constraints

• spare variables: constant/functional dependent

• dependent state
e.g. first point of line, number being typed

• indistinguishable states
what is observable?

states are not orthogonal

defining actions

• framing problems
= too little in result state

• unreachable states – insufficient actions

• using ‘global’ variables
implicit in operation definition

• beware extreme cases
(e.g. empty document, cursor at end of line)

internal and external consistency

state

scenarios

actions

invariants preserved?
actions complete?

missing state?

makes sense?

general
properties

specific
examples ∃

∀

27

λ
interaction models

talking generally

λ
λ
λ

interaction models

• generic models of classes of system

• mainly to aid understanding of general issues

• e.g. undo and ‘back’ button

the PIE model

• ‘minimal’ model of interactive system
• focused on external observable aspects of

interaction

P
I

E

R

D

result

disp

28

PIE model – user input

• sequence of commands
• commands include:

– keyboard, mouse movement, mouse click

• call the set of commands C
• call the sequence P

P = seq C

PIE model – system response

• the ‘effect’
• effect composed of:

ephemeral display
the final result
• (e..g printout, changed file)

• call the set of effects E

PIE model – the connection

• given any history of commands (P)
• there is some current effect
• call the mapping the interpretation (I)

I: P → E

P
I

E

R

D

result

disp

29

properties – WYSIWYG

∃ predict ∈ (D → R) s.t. predict o display = result

• but really not quite the full meaning

P
I

E

R

D

predict
result

display

proving things – undo

∀ c : c undo ~ null ?

only for c ≠ undo

Sa

S0

Sb

S0

a

b

undo

undo

undo Sa Sb=

lesson

• undo is no ordinary command!

• other meta-commands:
back/forward in browsers
history window

30

undo and history

work with Roberta Mancini, Univ. of Rome

used generic framework based on PIE ...
... the cube

proved uniqueness of certain kinds of undo

analysis of ‘back’ button and history in hypertext
and web browsers

– N.B. ‘back’ was different in them all!

the cube

Ha Sa
Ia

H S
I

eff proj

Ha Sa
Ia

H S
I

eff proj

 . c

 . c

doita(. ,c)

doit(. ,c)

<>
0sa

1

<> 0s

...

eff(<>) = <>
∀ c ∈ C, h ∈ Ha : eff(h^c) = eff(h)^c

full details …

R. Mancini (1997).
Modelling Interactive Computing by exploiting the Undo.
Dottorato di Ricerca in Informatica, IX-97-5, Università degli Studi di
Roma "La Sapienza”

A. Dix and R. Mancini (1997).
Specifying history and backtracking mechanisms.
In Formal Methods in Human-Computer Interaction, Eds. P. Palanque
and F. Paterno. London, Springer-Verlag. pp. 1-24.

31

λ
formal methods in HCI

a success story

λ
λ
λ

problem

• context
– mid 80s
– local authority DP dept

• transaction processing
– vast numbers of users
– order processing, pos systems etc.
– COBOL!

• existing programs ... didn’t work

TP physical architecture

central server

user

corporate
database

terminal

other
users

32

what happens

user edits form
message goes to TP engine
passed to application module
which processes the message
and prepares new screen
which is sent to the user
....

structure of programs

if ..

if .. if ..

if .. if .. if .. if ..

why?

program is trying to work out
what is happening!

• standard algorithm
– program counter implicit

• TP, web, event-based GUI
– need explicit dialogue state

33

mixed up state

• many users – one application module

user A starts multi-screen search list
application stores value ‘next_record’
user B starts multi-screen search list
application overwrites value ‘next_record’
user A selects ‘next screen’ ...
 ... and gets next screen of B’s search!

state is hard

• recent MSc course
– CS and psych
– exercise – state of 4 function calculator
– difficult for both

• why?
– in real life state is implicit
– in standard CS state is implicit too!

solution?

• flowchart!

• not of program
 ... but of dialogue

• a formal dialogue
specification!

Delete D1

Please enter
employee no.: ____

Delete D3

Name: Alan Dix
Dept: Computing
delete? (Y/N): _
Please enter Y or N

Delete D2

Name: Alan Dix
Dept: Computing
delete? (Y/N): _

answer?
C2

Finish

Finish

read record
C1

delete record
C3

other

NY

34

full screen flow chartDelete D1

Please enter
employee no.: ____

Delete D3

Name: Alan Dix
Dept: Computing
delete? (Y/N): _
Please enter Y or N

Delete D2

Name: Alan Dix
Dept: Computing
delete? (Y/N): _

answer?
C2

Finish

Finish

read record
C1

delete record
C3

other

NY

details ...

• miniature
screen sketch

Delete D1

Please enter
employee no.: ____

Delete D3

Name: Alan Dix
Dept: Computing
delete? (Y/N): _
Please enter Y or N

Delete D2

Name: Alan Dix
Dept: Computing
delete? (Y/N): _

answer?
C2

Finish

Finish

read record
C1

delete record
C3

other

NY

Delete D2
Name: Alan Dix
Dept: Computing
delete? (Y/N): _

details ...

• minimal
internal details

Delete D1

Please enter
employee no.: ____

Delete D3

Name: Alan Dix
Dept: Computing
delete? (Y/N): _
Please enter Y or N

Delete D2

Name: Alan Dix
Dept: Computing
delete? (Y/N): _

answer?
C2

Finish

Finish

read record
C1

delete record
C3

other

NY

answer?
C2

delete record
C3

other

NY

35

and then ...

• hand transformation to boiler plate code

• store ‘where next’ for each terminal
• in ‘session’ data

• code starts with big ‘case’
• do processing
• set new ‘where next’ ... send screen

lessons

useful – addresses a real problem!

communication – mini-pictures and clear flow easy to talk through with client

complementary – different paradigm than implementation

fast pay back – quicker to produce application (at least 1000%)

responsive – rapid turnaround of changes

reliability – clear boiler plate code less error-prone

quality – easy to establish test cycle

maintenance – easy to relate bug/enhancement reports to specification and code

36

λ
formal futures

ubiquity and physicality

λ
λ
λ

changing nature of the interface

• ubiquitous computing
computers everywhere!

• many somple systems
+ complex interactions

• sounds like a job for
formalismformalism

an example ...

• understanding the tangible

• the physical world
– we live in it
– we are good at it!
– we understand it

• properties of physicality
– directness of effect – push and it moves

– locality of effect – here and now

– visibility of state – small number of relevant parameters

37

study the old to design the new

– work with Masitah Ghazali

• look at ordinary consumer devices
– washing machine, light switch, personal stereo

• why?
– we are used to using them ourselves
– they have been ‘tested’ by the marketplace
– they embody the experience of designers

half empty?

• not the first …
– Norman – DOET/POET
– Thimbleby – FSM for video, microwave

• often used as HCI strawman
– emphasise for design flaws

• we are looking for the good lessons
– how mundane devices exploit physicality

models of AR & tangiblity

• Ullmer and Ishii – MCRpd
– architectural interaction model

• Benford et al. – sensible/sensable/desirable
– exploring design space

• Koleva et al. – TUI framework
– 'coherence' between the physical and digital

38

physical–logical connections

physical–logical
mappings

device

physical aspects

knobs, dials,
buttons, location,

orientation

virtual aspects

screens,
lights,

buzzers, speakers

(ii) physical effects

(iii) virtual effects

show message,
turn light on

motors, effectors

(a) physical manipulation (i) sensed inputs

logical
system

A B

C
(c) felt feedback

(d)‘electronic’ feedback

(b) perceived state

see message on screen

resistance,
? physical sounds ?

turn knob, press button

effects on
logical objects

affordance

SSD

direct manipulation

fluidity

• ‘naturalness’ of device–logical mapping

?

device & logical states

switch

UP

DOWN

user pushes
switch up
and down

light

OFF

ON

39

exposed state

+ several visible states of device

+ one-to-one mapping to logical state

+ separate issue: is mapping clear?

hidden state

+ when no exposed state

+ may rely on semantic feedback

+ poor ‘fixes’ … LEDs, separate display

+ but sometimes necessary: too many logical
states, variable number of logical states, limited
space

+ transitions become more important: natural felt
bumps … haptic feed back

inverse actions

+ speaker dial – exploits natural
physical inverse actions: turn
left/right

+ especially important if the user does not
have a perfect knowledge of the
physical-logical mapping unknown
or mode-dependent

+ semantic feedback essential

+ issues: delays, obvious inverse?

40

spring-back controls

series of spring-back controls
each cycle through some options
–natural inverse back/forward

twist for track movement
pull and twist for volume
– spring back
– natural inverse for twist

compliant interaction

+ rotary knob exhibits
symmetry of machine–system
interaction

+ user sets the program by
turning the dial … system also
turns the dial itself as the
program advances

+ expert users learn to fine tune
the device: skip programmes
etc.

stop spin

rinsewash

twist knob

twist
knob

twist
knob

twist knob

program
advances

41

λ
a brief history of formalism

from Aristotle
to Alan Turing

λ
λ
λ

first steps

• Aristotle (384 BC - 322 BC)

– foundations of logic

• Euclid (325 BC - 265 BC)

– axiom, theorem and proof

breakthrough

• Evariste Galois (1811–1832)

– solving the quintic
– proving the impossible
– formalising groups

I have not time.
I have not time.
I have not time.
I have not time.
I have not time.
I have not time.
I have not time.
I have not time.

42

babel grows

• Georg Cantor (1845–1918)

– foundations of set theory
– mathematics of the infinite

• James Clerk Maxwell (1831–1879)

– Maxwell’s equations
– unifying electricity and magnetism
– the theory of everything

1/1

1/2

1/3

1/4

1/5

1/6

2/1

2/2

2/3

2/4

2/5

2/6

3/1

3/2

3/3

3/4

3/5

3/6

4/1

4/2

4/3

4/4

4/5

4/6

5/1

5/2

5/3

5/4

5/5

5/6

6/1

6/2

6/3

6/4

6/5

6/6

...

...

...

...

...

...
...

the cracks form

• self-reference
– all Cretans are liars

Epimenides the Cretan (6th century BC)

– the Russell Paradox
• the set that doesn’t contain itself

{ X | X ∉ X }

• uncertainty at the centre
– Einstein’s relativity
– quantum mechanics

The next line is true.
The last line was false.

battling on

• Bertrand Russell (1872–1970)

– Principia Mathematica
 (with Whitehead)

– reducing mathematics to logic
– the proof of all things

43

the end comes

• Kurt Gödel (1906–1978)

– incompleteness theorem
– mathematics is full of holes

• Alan Turing (1912–1954)

– formal foundations of computation
– inherent limitations of computation

this statement
cannot be proved

0101101011011010110101101101011011010110101101101

... but

• I still expect my change
to add up at the supermarket

