

harnessing the power of formalism for understanding interaction

Alan Dix

Lancaster University, UK www.hiraeth.com/alan/tutorials/formal

sources

- Upside down \u03c8s and algorithms computational formalisms and theory. In HCI Models, Theories, and Frameworks: Toward an Multidisciplinary Science. John Carroll (ed.). Morgan Kaufman, 2003. pp. 381-429
- A. Dix, J. Finlay, G. Abowd and R. Beale (2004). Chapters 16, 17 & 18. In *Human-Computer Interaction, third edition*. Prentice Hall.
- A. J. Dix (1991). Formal Methods for Interactive Systems. Academic Press

for i
green letters tumble against black glass and dim pizza filled rooms tremble with heavy intonations, fingers drum whilst a single screen reflects a bespectacled face on plastic rimmed spectacles, seeing clearly four eyes doubled and redoubled by interactions of photons, words form from the void within for i =
it is done
language is the ultimate formalisation tying patterns of electrical and chemical activation, spaghetti wrapped neurons, discretised to token sounds, virtuosity to vocabulary; in writing digitised as fingers scratch ink upon parchment or softly caress smooth worm key tops
before I continue let us reflect, for i can only tell my story, but the words are our own, for eye to eye and voice to voice the tokens were formed, even though sheet to sheet or screen to screen we use them now
and we have found ways to bare our soul and transport our listeners through simple words, and to, in turn, reflect and talk about the talking, formalising the understandings we have about words in words
the hard edged symbols cut upon stone, dark text stamped from lead, and pixelated poetry touch our very heart $% \left({{\left[{{{\rm{T}}_{\rm{T}}} \right]}_{\rm{T}}} \right)$

outline

- setting the scene
 what is formal?
 - is formal? first examples
 - types of formalism placemat maths
- models of systems
 - dialogue notations modelling stategeneric models of interaction
- why do it?
 - it works! a formal methods success story
 - formal futures ubiquity and physicality

- dinner jacket and bow tie?
 outward appearance of things the form
- in maths and computing ...
 - representations (diagrams, formulae, etc.)
 analysed and manipulated separate from meaning
 how?
 - faithfully encapsulate significant aspects of meaning

which night had more?

- second night: 279 > 213
- how can you be certain?
 count faithfully represents significant feature
- but not everything ...
 cockroaches on first night may be:
 bigger, different colour, more friendly

representing things absent

- symbols, icons, words
 stand for things not present
- simulated screen shots
 represent the unrealised designs (N.B. no dynamics – limited meaning)
- counting cockroaches

 keep in a jam jar? disrupts the world
 numbers make the impossible possible

abstraction

- increasing abstraction
 - screenshot one screen
 storyboard single sequence of interaction - navigation diagram - potential paths

• and further ... - work on UNDO

- any system with particular properties ...

the myth of informality

spiritus mundi

 formality, precision
 = reductionism, positivism = BAD

focus (rightly) on

 context, situatedness, contingency

- BOTH needed
 the world is rich and complex
 but computers are formal (as is language)
 key is choosing the right absteractions
 and knowing what is left out

- formal analysis
 ask questions based on *form* of diagrams
- early analysis
 catch problems even before prototyping
- catch problems even before prototypin
 lack of bias
- usually test what we expect, analysis breaks this
- alternative perspective
 different representations show different things
- forcing deisgn decisions
 did watch designer make these decsions or programmer?

- graphical
 - digital watch STNs, Petri Nets, CTT, UML
- textual
 - production rules (used in UIMS and cog. models)mathematical formulae, process algebras
- plain old sums
 - back of the envelope/placemat calculations

placemat math - menu sizes

- on-screen menus - e.g. web site navigation
- how many items per screen?
- frequent misapplication of Miller 7±2
- but how many is right?

placemat math (iii)

T_{total} – time to find an item

 $\mathsf{T}_{\mathsf{select}}$

 ${\rm T}_{\rm display}~$ – time to display screen (fixed)

= ($T_{display} + T_{select}$) × d

time to select menu item
 = A + B log(M) (Fitts' Law)

 $T_{total} = (T_{display} + A + B \log(M)) \times \log(N) / \log(M)$

cancel

= (($T_{display} + A$) × log(N)) / log(M) + B log(N)

best menu size?

$T_{total} = ((T_{display} + A) \times log(N)) / log(M) + B log(N)$

larger M means shorter total timethe bigger the better!

N.B. other factors

- visual search (linear if not expert)
- error rates
- minimum selectable sizeeffective organisation of menu items

what is dialogue?

- conversation between two or more parties
 usually cooperative
- in user interfaces
 - refers to the *structure* of the interaction
 syntactic level of human-computer 'conversation'
- levels
 - lexical shape of icons, actual keys pressed
 - syntactic order of inputs and outputs
 - semantic effect on internal application/data

structured human dialogue

- human-computer dialogue very constrained
- some human-human dialogue formal too ...

Minister: do you *man's name* take this woman ... Man: I do Minister: do you *woman's name* take this man ... Woman: I do Man: With this ring I thee wed

Man: With this ring I thee wed (places ring on womans finger) Woman: With this ring I thee wed (places ring ..) Minister: I now pronounce you man and wife

lessons about dialogue

- wedding service
 sort of script for three parties
 specifies order

 - specifies order
 some contributions fixed "I do"
 others variable "do you man's name ..."
 instructions for ring concurrent with saying words "with this ring ..."
- if you say these words are you married?
 - only if in the right place, with marriage licence
 syntax not semantics

... and more

• what if woman says "I don't"? • real dialogues often have alternatives:

Judge: How do you plead guilty or not guilty? Defendant: *either* Guilty *or* Not guilty

the process of the trial depends on the defendants response

- focus on normative responses
 - doesn't cope with judge saying "off with her head" - or in computer dialogue user standing on keyboard!

action properties

- completeness
 inissed arcs
 unforeseen circumstances
- determinism
 several arcs for one action
 deliberate: application decision
 accident: production rules
- nested escapes
- consistency

 same action, same effect?
 modes and visibility

state properties

reachability

- can you get anywhere from anywhere?
- and how easily
- reversibility
 - can you get to the previous state?
 - but NOT undo
- dangerous states
 - some states you don't want to get to e.g. digital watch: time/alarm set, button press for 2 secs

stages						
iteratively def	iteratively define:					
state	 what needs to be remembered 					
invariants	 what is always true 					
initial state	 how it starts 					
actions	 what can happen to the state (need to relate this to keys etc.) 					
display	 what the user sees (hears etc.) 					
use scenarios to check they are what you want						

four function calculator

- formal description of the state
- define the effect of the following actions:

 - type_digit(d) user presses single digit equals user presses `=' button op(p) user presses `+','-', `*' or `/' button

N.B. will not be right first time ... spot the mistakes

	ace mise accompt
tato	
total: Nat	- running total (accumulator)
disp: Nat	- number currently displayed
no invariants	
nitial state	
total = 0	
disp = 0	
lisplay	
disp – m	ore complex calculator may show formulae

alculator	- scer	nario	
user types: 1 + start after 1 +	+ 2 7 2	= - 3	
action	total	disp	pend_op
tune digit(7)	1	2	+
type_digit(7)	1	27	+
equals	28	28	none
op(-)	28	28	-
type_digit(3)	28	283	
		\smile	!!!

calculator state - third attempt

state

total: Nat running total (accumulator) disp: Nat number currently displayed pend_op: {+,-,*,/,none} - pending operation typing: Bool true/false flag

added 'typing' flag

 user in the middle of typing a number

calculator actions - third attempt

type_digit(d) _

if typing then add d to the end of disp otherwise clear disp and put d in it also set typing to true total and pend_op unchanged

equals and op(o): - as before except both set typing to false

	- scen	ario re	evisited]
user types: 1 start after 1	+ 2 7 =	= - 3		
action	total	disp	pend_op	typing
type digit(7)	1	2	+	yes
type_digit(7)	1	27	+	yes
equals	28	28	none	no
equalo				
op(-)	28	28	-	no

defining state

two problems:

- too little state elements missing from specification may be deliberate e.g. dialogue level spec.
- too much state too many states, too complex state may be deliberate redundancy, extensibility

too little state

• forgotten elements

e.g. 'typing' flag for calculator

- checking:

 - dialogue state can you work out current dialogue state?

 - action specification do you have enough information?
 implicit global variables (see also later) suggest state missing

too much state

unreachable states
 too few actions (see later)
 constraints

states are not orthogonal

- spare variables: constant/functional dependent
- dependent state
- e.g. first point of line, number being typedindistinguishable states
 - what is observable?

defining actions

- framing problems
 - = too little in <u>result</u> state
- unreachable states insufficient actions
 using 'global' variables
 - implicit in operation definition
- beware extreme cases (e.g. empty document, cursor at end of line)

interaction models

- generic models of classes of system
- mainly to aid understanding of general issues
- e.g. undo and 'back' button

lesson

- undo is no ordinary command!
- other meta-commands: back/forward in browsers history window

undo and history

work with Roberta Mancini, Univ. of Rome

used generic framework based on PIE \ldots \ldots the cube

proved uniqueness of certain kinds of undo

analysis of 'back' button and history in hypertext and web browsers - N.B. 'back' was different in them all!

full details ...

R. Mancini (1997). Modelling Interactive Computing by exploiting the Undo. Dottorato di Ricerca in Informatica, IX-97-5, Università degli Studi di Roma "La Sapienza"

A. Dix and R. Mancini (1997). Specifying history and backtracking mechanisms. In Formal Methods in Human-Computer Interaction, Eds. P. Palanque and F. Paterno. London, Springer-Verlag. pp. 1-24.

formal methods in HCI

a success story

problem

- context - mid 80s
 - local authority DP dept
- transaction processing
 - vast numbers of users
 - order processing, pos systems etc.
 COBOL!
- existing programs ... didn't work

why?

program is trying to work out what is happening!

- standard algorithm – program counter implicit
- TP, web, event-based GUI – need explicit dialogue state

mixed up state

• many users - one application module

user A starts multi-screen search list application stores value 'next_record' user B starts multi-screen search list application overwrites value 'next_record' user A selects 'next screen' and gets next screen of B's search!

state is hard

- recent MSc course
 - CS and psych
 exercise state of 4 function calculator
 - difficult for both
- why?
 - in real life state is implicit
 - in standard CS state is implicit too!

and then ...

- hand transformation to boiler plate code
- store 'where next' for each terminal
 in 'session' data
- code starts with big `case'

- do processing
- set new `where next' ... send screen

lessons

useful	- addresses a real problem!
communication	 mini-pictures and clear flow easy to talk through with client
complementary	 different paradigm than implementation
fast pay back	 quicker to produce application (at least 1000%)
responsive	 rapid turnaround of changes
reliability	 clear boiler plate code less error-prone
quality	 easy to establish test cycle
maintenance	- easy to relate bug/enhancement reports to specification and code

formal futures

ubiquity and physicality

changing nature of the interface

- ubiquitous computing
 computers everywhere!
- many somple systems
 + complex interactions
- sounds like a job for formalism

an example ...

- understanding the tangible
- the physical world
 - we live in it
 - we are good at it!we understand it
 - we understand it
- properties of physicality
 - directness of effect push and it moves
 locality of effect here and now
 - visibility of state small number of relevant parameters

study the old to design the new

- work with Masitah Ghazali

look at ordinary consumer devices
 washing machine, light switch, personal stereo

- why?
 - we are used to using them ourselvesthey have been 'tested' by the marketplace
 - they embody the experience of designers

half empty?

- not the first ...
 Norman DOET/POET
 Thimbleby FSM for video, microwave
- often used as HCI strawman – emphasise for design flaws
- we are looking for the good lessons - how mundane devices exploit physicality

models of AR & tangiblity

- Ullmer and Ishii MCRpd
 architectural interaction model
- Benford et al. sensible/sensable/desirable – exploring design space
- Koleva et al. TUI framework
 'coherence' between the physical and digital

a brief history of formalism

from Aristotle to Alan Turing

first steps

- Aristotle (384 BC 322 BC) – foundations of logic
- Euclid (325 BC 265 BC) – axiom, theorem and proof

