
CHAPTER 2

PIEs – the simplest black-box model

2.1 Introduction

We are interested in formalisation of various properties of interactive systems.
We want to state these properties over abstract models of interactive systems, in
order to make them generic and to make the correspondence between the
informal and formal statements as easy as possible.

This chapter presents a very simple model called the PIE. This is probably
one of the simplest models that can be defined, and yet many useful properties
can be given some expression in terms of the model. Further, the more specific
models given in the succeeding chapters will have very much the same flavour as
PIEs and studying them will make these later models easier to understand.

2.2 Informal ideas behind PIEs

Although the PIE model is the simplest in terms of the number of elements in
it, the treatment is probably the most complicated in this book. Many things are
dealt with in detail here which have parallels in the more specific models
developed later. When these issues arise later they can be skimmed over because
of the experience gained in the PIE model. This first section gives an overview
of the rest of the chapter so that the reader can pick up a good enough idea of the
contents to read further chapters. The remaining, more formal, sections can thus
be skipped on the first reading and returned to later.

- 23 -

Formal Methods for Interactive Systems © Alan Dix 1991

http://www.hiraeth.com/books/formal/

2.2.1 PIEs

As we are interested in the human interface to computer systems, we want our
models to refer only to what is visible (or audible, etc.) to the user. That is, we
want a black-box model. The PIE model describes a system in terms of the
possible inputs and the effect these have. Typically the input will consist of a
sequence of commands (we will call the set of such allowable commands C, and
the set of all such sequences the programs P). The relation between these inputs
and the output is described using an interpretation function, what in control
theory would be called a transfer function. The output we will call the effect:

input
(P)

black box
(interpretation)

output
(effect)

The three together – inputs (P), interpretation (I) and effect (E) – give the model
its acronym.

The effect is the most complex part of the model. We may wish to focus on
the screen display, or some part of it. Perhaps the effect is some external activity,
or it may be interpreted internally, perhaps the database or spreadsheet being
manipulated. We deliberately leave this vague so that we may apply our analysis
retrospectively to many different situations. However, when we define properties
we will usually have some idea of what we mean by the effect in that
circumstance, and we would not expect the same principles of usability to apply
to all levels of analysis.

The input may similarly be applied at various levels. For instance, at one level
we may wish to regard it as the physical keystrokes of the user, but at another we
may want to think about the abstract application-level commands.

2.2.2 Properties of interest

Even this sparse model will be sufficient to give formal expressions of certain
classes of principles. These same principles will arise in different forms
throughout succeeding chapters:

• Predictability – Can we work out from the current effect what the effect of
future commands will be? This can be thought of as the "gone for a cup of
tea" problem. When you return and have forgotten exactly what you typed
to get where you are, can you work out what to do next?

24 Formal Methods for Interactive Systems

• Observability – Although the system is seen as a black box, the user can
infer certain attributes of its internal state by external observation. How
much can the user infer? How should the user go about examining the sys-
tem? We will define the idea of a strategy: a plan that the user follows in
order to uncover information about the system. Predictability can be
viewed as a special case of observability when we are interested in observ-
ing the entire state as it affects subsequent interaction.

• Reachability – This is concerned with the basic functionality of the system.
Is it possible to get to all configurations? Are there any blind alleys, where
once you’ve entered some state there are other states permanently inacces-
sible? Related to the general notion of reachability, will be the specific
case of undo and the problems associated with this.

2.2.3 Internal state and external behaviour

Although the primary definition of PIEs will make no reference to internal
state, we will find it useful to distinguish a (not necessarily real) minimal state
that can be inferred from external observation. It will be minimal in that it
distinguishes fewer states than any other state representation that describes the
same functionality. It is a very important concept, as it is often easier and clearer
to give certain properties using the idea of state, and yet this would otherwise
risk producing a definition that "knows too much" about the inside of the black
box. We can always assume that such properties refer to this minimal state.
Similarly, in later chapters when models are defined using state, these will be
assumed to be minimal in the same way.

This operation of obtaining just enough information on the state we will call
monotone closure, and given any view of a system V we will refer to the
monotone closure of this as V †. This can be thought of as the part of the state
which is just sufficient for predicting the future behaviour of V . The user cannot
necessarily observe V † directly, but if two systems differ in this respect there is
some command sequence that the user can type which would expose the
difference. Thus the user needs to know V † in order to predict the behaviour of
the system (and hence control it). Unfortunately, in general, the user would have
to be able to try, and undo all possible command sequences to know for certain
the state of V †. An example of this would be a pocket calculator. After having
entered "3+4" the display would read "4". On its own the display is insufficient
to predict what the effect of pressing the "=" key would be. The monotone
closure of this view would include the pending operations and data.

The user can and does find out about the internal state of the system by
experimenting with it. The simplest example of this is scrolling up and down in
a word processor to see all of the document. By following such a strategy the
user obtains a partial idea of the internal state. We call this the observable effect.

PIEs – the simplest black-box model 25

Obviously, different strategies are useful in different circumstances and yield
different observable effects. The observability principles of the next chapter are
framed largely in terms of the way the observable effect derived from the display
tells us about the monotone closure of the result.

2.2.4 Exceptions and language

We will also consider some issues arising when the system as implemented
differs from some "ideal" system, and what principles apply at these boundaries
(the exceptions). We will consider two system models, one of the "ideal" system
and one of the system as it actually is. The places where mismatch occurs are
the exceptions. We will look at principles which demand that the user is made
aw are of exceptions (e.g. by a bell or message) and that the user is able to predict
when exceptions will occur. Depending on the type of exception and the
recovery principle used (see below), the designer may choose to apply the former
or the latter (stronger) principle. These observability and predictability
principles are supplemented by a discussion of recovery principles determining
what sort of response the system should make to exceptions. The strongest is
"no guesses", which asserts that when an exception occurs the system state is left
unchanged. A weaker variant is "nothing silly please", which asserts that the
system behaves in a way that the user could have achieved by non-exceptional
commands.

This analysis of exceptions will lead naturally on to considering systems
where the input language is for some reason restricted. This is not the normal
"grammar" of the dialogue, which describes what the system expects of the user,
but expresses some form of physical limitation of the user’s input. The obvious
example is a bank teller machine which covers the keypad with a perspex screen
until the customer inserts a cash-card. The user is not free to perform all
possible action sequences but, on the other hand, it may not be wise to assume
that "illegal" sequences will not occur. The various principles need slight
reformulations in the light of these properties.

2.2.5 Relationships between PIEs

We will briefly examine the ways in which we can relate PIE models to one
another. This forms a basis for understanding the way that we can have sev eral
models of the same system, perhaps with different scopes or at different levels of
abstraction. This will be taken up again in Chapter 7.

26 Formal Methods for Interactive Systems

2.2.6 Health warning

The rest of this chapter will be quite "heavy", so as a reminder to the reluctant
formalist, there are easier waters in subsequent chapters.

2.3 PIEs – formal definition

There are several ways we could use to define PIEs. The one we shall regard
as basic, and probably the simplest, is as a triple < P, I , E >, as follows:

P – The set of sequences of commands from C (P stands for programs). More
generally P can be a semi-group, which has little relevance for the user but
can be useful occasionally in constructions (see §2.8).

E – The effects space, the set of all possible effects the system can have on the
user. This may be thought of in different ways, and at different levels. For
example, it may be regarded as the actual display seen by the user, or as
the entire text of a document being edited, perhaps even the entire store of
information available to the user.

I – The interpretation function, P → E, representing all the computation done
by the system.

We can represent a PIE as a diagram:

P
I

E

Later we will use the following class of functions. For any p ∈ P, we define
I p by:

I p(q) = I (pq)

That is, I p gives the functionality of the system as if when you get to it the com-
mand sequence p has already been entered. Obviously this will have relevance
to the "gone away for a cup of tea" problem.

Alternative, equivalent formulations of the PIE model will be useful in
different circumstances.

By state description and doit functions

Sometimes it is easier to describe a system as a state with transitions on each
command. We will call the transition function doit and the set of states S:

PIEs – the simplest black-box model 27

doit : S × C → S

There will be, of course, some initial state s0 ∈ S.

In general, the state will contain more information than we want to consider as
the effect. In these case we will require an abstraction function proj yielding the
effect:

proj : S → E

That is, we need a sextuple < C, S, E, s0, doit, proj > in place of the triple!

We can then define a corresponding PIE with interpretation function Idoit as
follows:

Idoit(p) = proj(doit*(s0, p))

where doit* is the iterate of doit:

doit*(s, null) = s
doit*(s, p: : c) = doit(doit*(s, p), c)

and ": :" is the concatenation operator.

It is possible to reverse this and obtain a state representation for any PIE by
simply taking S = P, and defining s0, doit and proj thus:

s0 = null
doit(s, c) = s: : c
proj = I

However, taking the complete command history as state is a little excessive. In
fact this is a maximal state representation: no other state representation can dis-
tinguish more reachable states. We will later, as promised, define a minimal (and
much more useful) state representation, the monotone closure.

The fact that systems defined by doit functions can easily be related to PIEs,
and hence have the various principles we will define over PIEs applied to them,
is very important. The actual systems that I have specified have used doit
functions as these are often the simplest way to describe interaction. In
particular, the specification described in Chapter 11 uses just this mechanism.
Also, in later chapters, we will use whichever representation is most convenient
for the particular circumstances, and may even switch fluidly between the two
representations.

By equivalence relations on P

28 Formal Methods for Interactive Systems

A mathematically very simple (although not necessarily very meaningful to
the user) way of defining an interactive system is by equivalence relations on P.
Essentially, two command histories are equivalent if they hav e the same effect.
That is, for any PIE < P, I , E > we can define a relation ≡I :

p ≡I q =̂ I (p) = I (q)

Similarly, giv en such an equivalence, it defines (in some way) an interactive sys-
tem and we can obtain a PIE <P, I≡, E≡ > from it:

E≡ =̂ P / ≡
I≡(p) =̂ [p]≡

where [p]≡ is the equivalence class of p in P / ≡. These are inverses of one
another, in that ≡I≡ is the same as ≡ and I≡I

is the same as I up to a one-to-one
map on E. To prove the former:

p ≡I≡ q =̂ I≡(p) = I≡(q)
= [p]≡ = [q]≡
= p ≡ q

The other way round is similar, except it is relative to the one-to-one map
between P / ≡I and E given by [p]≡I

→ I (p).

We will define other relations on P later which will be useful for defining
observability properties.

By complete effect histories

We hav e given the basic definition of a PIE using an interpretation function
relating complete command histories to the single effect they yield. On grounds
of symmetry (and in analogy with transfer functions), we could have chosen to
relate complete histories of commands to complete histories of effects. For
example, for any interpretation I we can define a new interpretation I* yielding
the complete history of effects given by I :

I* : P → E+

where E+ is the set of non-empty sequences of effects from E, such that:

I*(c0c1c2
. . . cn) =

(I (null), I (c0), I (c0c1), I (c0c1c2), . . . , I (c0c1c2
. . . cn))

This form of definition is very similar to the use of streams to define interactive
systems in lazy functional programming.

Any function generated thus satisfies some simple properties:

PIEs – the simplest black-box model 29

∀p, q ∈ P

(i) p ≤ q ⇒ I*(p) ≤ I*(q)
(ii) length(I (p)) = length(p) + 1

Contrariwise, any such stream function can be turned into a PIE by taking the
last element. Examining these conditions leads one to imagine generalisations of
the PIE model based on such stream functions, but with a relaxation of one or
other of these conditions:

(i) This is a necessary condition asserting that the function is temporally well
behaved. If we drop this function we have systems that change their mind
about effects already produced!

(ii) This is not so obviously necessary and it could fail to hold for one of two
reasons (or both):

(iia) ∃ p, c st I*(pc) = I*(p)
(iib) ∃ p, c st length(I*(pc)) > length(I*(p)) + 1

(iia) This says that the new command has no additional effect. Note, this is not
the same as saying the current effect is the same as the last one, which
would be I*(pc) = I *(p) : : last(I*(p)). How would you distin-
guish these at the interface? This would only seem useful as an abstraction
from the true interface.

(iib) This has a more reasonable interpretation, namely that the system has
some sort of dynamic behaviour after the command c. This (and iia) could
be captured by using a more expressive effect space which represents
within it the elements of dynamism: however, in doing this one might
loose naturalness of expression.

Elements of this generalisation can be found in several places in this book. It
could be seen as a half-way house between the PIEs and the fully temporal
model considered in Chapter 5. Although we do not use the generalised form of
stream function, we use the stream representation of PIEs when considering non-
determinism in Chapter 6. Finally, there is some similarity to the model
developed to describe status input in Chapter 10.

2.4 Some examples of PIEs

Although almost all interactive systems can be cast into the PIE framework,
choosing appropriate examples is a little difficult. "To y" examples are useful for
getting to grips with nitty-gritty properties, but are of course unrealistic. (In fact,
the toy examples may be parts or abstractions of more substantial systems.) If
we look at realistic systems, we cannot expect to express the interpretation

30 Formal Methods for Interactive Systems

function very concisely or fully (if we did we would have a complete
specification of the entire system). Bearing this tension in mind, we will look at
a few examples.

2.4.1 Simple calculator

The first example we shall look at is a calculator that adds up single digits:

C = { 0, . . . , 9 }
E = IN – the natural numbers { 0, 1, . . . , 57, 58, . . . }

I (null) = 0
I (pc) = I (p) + c

The interpretation basically says:

• We start off with a running sum of zero.

• If at any stage we enter a new number (c) it gets added to the current run-
ning sum (I (p)).

To make the example a little more interesting we could add a clear key #. We
augment C appropriately:

C# = { 0, . . . , 9, # }

The effect is the running total as before. The interpretation is built up recursively
in a similar manner to I above:

I#(null) = 0
I#(pc) = I (p) + c c ≠ #
I#(p#) = 0

The only difference is the obvious one, that if a clear (#) is entered the running
total is zeroed.

2.4.2 Calculator with memory

Now we will add a memory to the calculator. We will call the new commands
MS and MR (memory store and memory recall). The command set is obvious:

Cm = { 0, . . . , 9, #, MS, MR }

Again the effect space is simply the natural numbers. The interpretation function
is as before, but must "scan back" into the command history to find the last mem-
ory store, every time a memory recall is used:

PIEs – the simplest black-box model 31

Im(null) = 0
Im(pc) = I (p) + c c ∉ { del, MS, MR }
Im(p#) = 0
Im(p MS) = I (p)
Im(p MR) = 0 MS ∉ p
Im(p MS q MR) = I (p) MS ∉ q

Notice that the scanning back process makes the interpretation relatively
complex. In fact, if readers are not familiar with such tricks they may well want
to check it a few times to see that it really does what they would expect. The
reason for the complexity is that the effect does not hold all the state information
necessary for interpreting the next command. The appropriate information has to
be gleaned from the command history.

We can produce an identical system using a state representation that explicitly
includes the calculator’s memory. We model the state as a pair of numbers, the
first being the running total and the second the memory contents. The initial
state is with both zero:

S = IN × IN
s0 = (0, 0)

The projection function proj that extracts the effect is simply the first compo-
nent:

proj((e, m)) = e

The doit function just does the obvious adding and swapping around between
memory and running total:

doit((e, m) , c) = (e + c, m) c ∉ { #, MS, MR }
doit((e, m) , #) = (0, m)
doit((e, m) , MS) = (e, e)
doit((e, m) , MR) = (m, m)

2.4.3 Typewriter

From numbers to text. To simplify descriptions we will just consider simple
typewriters and editors with no line-oriented commands. The whole text will be
on a single line. Adding multiple lines just makes the descriptions rather longer.
First the simple typewriter:

C = Chars = {a,b,c,d,e, ...,z,A,B, ..., etc. }
E = P = Chars*

That is, the commands are the printable keys on the keyboard and the effect is a
single sequence of these characters.

32 Formal Methods for Interactive Systems

The effect of any key sequence is simply the sequence of keys hit:

I (p) = p

or equivalently:

I (null) = null
I (pc) = I (p): : c

The second recursive description can be used to extend the system, first to
include a delete key. We will use ∇ for this:

C∇ = Chars + ∇

The effect is as before:

E∇ = Chars*

The effect is built up in a similar manner to the simple typewriter except that
the delete key removes the last character:

I∇(null) = null
I∇(pc) = I∇(p): : c c ∈ Chars
I∇(p∇) = null if I∇(p) is empty
I∇(p∇) = q if I∇(p) = qc

2.4.4 Editor with cursor movement

We can now add a cursor position with left and right movement. The
command set has these additional two commands:

Ccursor = Chars + ∇ + LEFT + RIGHT

The effect we can regard as two sequences, those before and those after the cur-
sor:

E = Chars* × Chars*

This method of describing a cursor position is due to Sufrin (1982). Typing a
character C from Chars simply adds text to the before half:

Icursor (null) = { null, null }
Icursor (pc) = { before: : c, after }

where

{ before, after } = Icursor (p)

The delete ∇ operates on the before half in a similar manner to the typewriter

PIEs – the simplest black-box model 33

above, so we will skip it and move on to the cursor commands:

Icursor (p LEFT) = { before, c: after }

where

{ before: : c, after } = Icursor (p)

and

Icursor (p RIGHT) = { before: : c, after }

where

{ before, c: after } = Icursor (p)

That is, the LEFT key moves characters from before to after, and RIGHT vice versa.

2.4.5 Editor with MARK

Finally (well almost finally), we have an editor with a marked position to
which we can jump:

Cmk = Chars + ∇ + LEFT + RIGHT + MARK + JUMP

The effect space must be extended so that we can see where the mark is. We do
this by just having the mark as a special character in the effect too:

Emk = (Chars + MARK)* × (Chars + MARK)*

This allows any number of marks, but we will arrange it so as there is only ever
one. The interpretation of all the existing commands is just as before, and MARK

is treated almost like any other character. We let delete remove a mark if it is the
last "character" before it, and cursor movement go back and forth over it. How-
ev er, to ensure that there is only one mark the adding of it must be slightly differ-
ent:

Imk(p MARK) = { strip(before): : MARK, strip(after) }

where { before, after } = Imk(p). We assume strip is a function that gets
rid of any marks.

That only leaves us with the JUMP command:

34 Formal Methods for Interactive Systems

let { before, after } = Imk(p)

Imk(p JUMP) = { b1 MARK , b2 after }
if before = b1 MARK b2

Imk(p JUMP) = { before a1 MARK , a2 }
if after = a1 MARK a2

Imk(p JUMP) = { before, after }
otherwise

These definitions simply move the cursor to just after the mark if there is one, or
leave it where it is if there is none.

In Chapter 8 we will look more closely at positional information such as
cursors and markers, and give a cleaner and more uniform treatment. However,
these more detailed descriptions will still be able to be rendered as PIEs like the
above.

2.4.6 A full wordprocessor

The last example will be the word processor I am using to write this.
Unfortunately, if described in full it would take up the rest of the chapter, so we
shall elide a few of the details.

First, let’s say what are the commands and effect space:

C = Keys – the keys on my PC keyboard
E = {1 . . . 25} × {1 . . . 80} → Glyph

Here Glyph is the set of characters, spaces and symbols that can appear on my
screen. Basically, E is the set of all possible screen displays.

The interpretation function is quite simple:

I (p) = what I see when I have typed the keystrokes p

2.5 Predictability and monotone closure

Now we come to the "gone away for a cup of tea" problem. Can we predict
the future effect of commands from the current effect? It is likely that two
different sequences of commands may yield the same effect, but if more
commands are entered some difference comes to light. We then say that the
original effect is ambiguous, as more than one internal state is possible:

PIEs – the simplest black-box model 35

ambiguous(e) =̂ ∃ p, q, r ∈ P
st I (p) = e = I (q) and I (pr) ≠ I (qr)

If we look at the examples in the previous section, the calculator with memory
is always ambiguous, since from the effect, we only can tell the running total.
Thus, if we have a current effect of "57" and then use the memory recall
command, we may get any effect depending on the precise history that led to the
running total of "57". Similarly, the word processor I am using is ambiguous
(when the effect is regarded as the screen image), as a scroll up key will reveal
text that cannot be inferred from the current screen.

The other examples, such as the simple calculator and all the simple editors,
have no ambiguous effects at all. If no effect is ambiguous then things that look
the same are the same. We call a PIE that has this property monotone:

monotone:
∀p, q, r ∈ P I (p) = I (q) ⇒ I (pr) = I (qr)

Or alternatively, in terms of I p:

∀p, q ∈ P I p(null) = Iq(null) ⇒ I p = Iq

Is this a useful property, and does it say what we wanted it to say? What it
says is that the entire future effect can be predicted from the present one. In
other words, the current effect could be regarded as a state, and in fact, any
monotone PIE can be represented with a doit without a corresponding proj
function.

If we think about an actual computer system (like my word processor) and
take the effect to be the actual screen display, this monotone property is far too
strong: we know that the screen could not possibly hold sufficient information
for that. We don’t even want it to. We want to view only relevant parts of what
we are manipulating. Clearly, if this property is to be useful it should be applied
to an effect which is not the underlying machine state (when it becomes
tautologous) and not the display itself, but something "just underneath" the
display, a widening of the display view. In the next section we will look at just
such a widening.

We can give a very simple statement of monotonicity using the monotone
equivalence ≡ † defined by:

p ≡ † q =̂ ∀r ∈ P I (pr) = I (qr)

That is, p and q are monotone equivalent if they hav e the same interpretation and
whatever commands are entered afterwards they both yield the same effects.
Monotonicity then becomes:

36 Formal Methods for Interactive Systems

monotone:
∀p, q ∈ P p ≡ q ⇒ p ≡ † q

We can use ≡ † to define a PIE using the construction defined in §2.3. This
PIE is clearly monotone and can therefore be described completely using state
transitions. Further, we can define a projection function from E≡† to E by
[p]≡† → I (p). This is a function, as clearly p ≡ † q ⇒ I (p) = I (q).

This interpretation and projection together give us the monotone closure, the
minimal state representation of the PIE. We will call the resulting interpretation
I†, the effect space E† and the projection proj†.

If it is preferred, we can give an (up to isomorphism) equivalent definition
without the use of relations:

E† ⊂ P → E

I†(p) = I p

The monotone closure is minimal in that given any monotone (state-based)
PIE < P, I ′, E′ > and projection proj′ such that I = proj† I†, we can
define a projection proj′′ from E′ to E† so that the following diagram commutes:

P

E′

E†

E

I ′ proj′

I† proj†

proj′′

Another way we can view this minimality is that any distinctions that are made
between states in E† are implied directly by the possible observations. In that
sense it has no implementation bias. (Jones 1980) This is important because it
means that we can freely assume the existence of a state-transition
implementation of a PIE without sacrificing our surface philosophy, as the states
within PIE† are directly observable from the interface.

It should be noted that this is intended as a theoretical construction, useful for
the statement of principles and for defining terms, but not for the implementation
of systems. The minimal state representation need not be realisable in practice,
as even when I is computable and we can thus for any p represent the function
I†(p), we cannot in general decide whether two such functions are identical.

PIEs – the simplest black-box model 37

Having said that, however, the construction can be useful for implementation.

If the PIE represents a finite automaton then I† is computable and this gives us
a construction for the finite state automaton, with minimal number of states
satisfying the behavioural specification given by the PIE.

Even when the PIE is not a finite automaton the monotone equivalence is
sometimes useful. In many cases it turns out to be computable and it is possible
to label the equivalence classes giving a constructed minimal state
representation. Alternatively, the attempt to compute the monotone equivalence
may suggest a non-minimal, but still good, state representation.

As an example, if we look at the calculator with memory, the monotone
closure of the interpretation function yields precisely the state representation that
we gav e. The monotone closure of my wordprocessor is much more complex,
including at least all the text off-display, an invisible marked location,
find/replace buffers, a copy of the last deleted item, and a ruler with tab
positions.

2.6 Observability and user strategy

In the last section, we said that we will often want the effect itself to be
something that is not predictable, yet there is another wider effect just beneath
the surface of what is seen directly and which can be inferred from the
immediate defect. For example, when using a display editor, there is (say) a
25-line window which is visible on the screen, yet one conceptually "sees" an
arbitrarily large text just beneath this. Because the process of discovering this
underlying text from the display is relatively easy, it will for most purposes be
safe to ask for the PIE defining the underlying text to be predictable.

How do we define this wider view? One answer has already been suggested in
the introductory chapter, namely as the information contained in all possible
subviews. However, we also saw there that such a definition is probably too
strong: aliasing prevents it from working. A different way to approach the
problem is to examine what a typical user might do if he wanted to know the
entire text of a document. The scenario might be a bit like this:

1. Note where I am.

2. Use the TOP button to get to the top of the document.

3. Use the SCROLL DOWN button to move down page by page.

4. When I get to the end, use the SCROLL UP button to get back to where I
started.

38 Formal Methods for Interactive Systems

Depending on the functionality of the editor there may be more complex "short
cuts" to speed up this process, but the essential feature is that the user has a sort
of program or algorithm which he follows which "covers" the entire text.
Further, when bringing these snippets of information together, the relative
positions are known because of the strategy followed. So in the example in the
Introduction, one could tell "«1011»" from "«1101»" because in the former the
"11" window would come after the "10" window and in the latter it would
precede it. We will use this idea to extend the concept of observability. We will
call such a user algorithm a strategy, and the resulting wider view the observable
effect.

One possible formulation of the requirement for strategies is as follows. If E+

is the space of non-empty sequences of elements of E, we define a strategy as a
function s : E+ → P. To use this function starting at a given initial effect e
after a sequence of commands p, we define q1

. . ., p0
. . . and e0

. . . as follows:

p0 = p
pn+1 = pn qn+1

en = I (pn)
qn+1 = s (e0, e1, e2,

. . . , en)

That is, from all the effects so far in our use of the strategy we work out a new
command sequence qn using s which is then issued resulting in a new set of
commands to update pn and a new effect en. We would demand that the strategy
s actually comes to an end sometime and this is represented by qn = null, the
empty sequence.

We can distinguish between two states of the system generated by p and p′ if
for some i, ei ≠ e′i and the observable effect – "what you see" in the wide sense –
is precisely the equivalence classes generated by this. That is, we can define an
equivalence relation using the strategy ≡s by:

p ≡s p′ =̂ ∀i ei = e′i

The observable effect Os is then precisely P/ ≡s and we have the corresponding
interpretation function Is, derived in the standard manner. Note also that
e0 = I (p0) = I (p): thus p ≡s q implies p ≡ q, and so ≡s is stronger than
≡. This means that there is a natural projection projs from Os to E factoring I ,
(I = projs Is):

P
Is Os

projs E

PIEs – the simplest black-box model 39

On the other hand:

p ≡ † p′ ⇒ ∀q p ≤ q ⇒ I (pq) = I (p′q)
⇒ ∀i I (pi) = I (p′i)
⇒ ∀i ei = e′i
⇒ p ≡s p′

That is, ≡ † is stronger than ≡s, and thus there is a projection projO
† from the

monotone closure to Os factoring Is, (Is = projO
† I†):

P
I†

E† projO
†

Os
projs E

It may be that there is a strategy such that the projection from the monotone
closure is one-to-one, or in other words so that Is is monotone. In this case the
strategy has revealed sufficient information to predict all future effects. We will
say that such a strategy tames I and if such a strategy exists, we will call the
original PIE tameable.

Later we shall see a PIE which is not tameable: that is, how ever cleverly one
devised a strategy, there will always be states that are indistinguishable using the
strategy, but which eventually may differ given certain commands. We will
prove this by using the following constructions and lemma.

For any p, p′ and set Q ⊂ P we say Q distinguishes p and p′, if adjoining
some sequence to p and p′ yields a different effect:

Q distinguishes p, p′ =̂ ∃ q ∈ Q st I (pq) ≠ I (p′q)

We will say that a PIE is grotty if there is some p such that given any finite Q
there is some p′ which cannot be distinguished from p and yet is not equivalent
to it using the monotone equivalence That is:

grotty:

∃ p ∈ P st ∀ Q ⊂ P Q finite ⇒
∃ p′ st ∀ q ∈ Q I (pq) = I (p′q) and not p ≡ † p′

Note especially the order of the quantifiers: the indistinguishable element p′
depends on the distinguishing set Q.

The lemma is that any grotty PIE cannot be tameable.

40 Formal Methods for Interactive Systems

LEMMA: grotty ⇒ not tameable.

We shall prove this by showing that any strategy we may choose does not
tame the PIE.

PROOF:

Let p be the element which has the indistinguishability property, and
assume the strategy is s. Define Q as follows, using the sequence qi defined
above.

Q =̂ { null, q1, q1q2, q1q2q3, . . . }

This set is finite because the strategy terminates, and thus the qis are eventually
null. Therefore, because the PIE is grotty, there must be some p′ not monotone
equivalent to p which cannot be distinguished using Q, that is:

∀ i ∈{0, ...} I (p q1q2
. . . qi) = I (p′ q1q2

. . . qi)

But this means that e′0 = e0 and hence q′1 = q1, and then by induction
e′n = en and q′n = qn for all n. Thus:

∀ i ∈{0, ...} I (p q1q2
. . . qi) = I (p′ q′1q′2 . . . q′i)

That is (by definition) p ≡s p′.

Hence we have a pair p and p′ which are not monotone equivalent and yet
p ≡s p′, so that the projection projO

† is not one-to-one. However, this argu-
ment was for an arbitrary strategy and hence there is no strategy that tames I and
it is not tameable.

All the arguments and definitions in this section have been for an arbitrary
strategy s, but often the strategy of interest is clear by context, and in this case we
will drop the suffix s, for instance using O instead of Os .

2.7 Reachability

Reachability properties are about what can be done with a system, and
whether there are states one can get to from which other states are inaccessible.
The simplest reachability condition is to demand that I is surjective. If the set E
describes the intended set of effects then it will often be a basic requirement of
the system that all such effects can be obtained by some sequence of commands.
The surjectivity of I ensures this. We will call this condition simple reachability:

simple reachability:
I is surjective

PIEs – the simplest black-box model 41

Of course this is not enough: although we may originally be able to reach any
given effect, we may well be able to get ourselves up a "blind alley", forever after
being unable to obtain a desired effect. To make a stronger statement we must
look at the situation when we have entered some sequence of commands p; I p

(defined in §2.3) must still be surjective. We will call this stronger condition
strong reachability:

strong reachability:
∀ p I p is surjective

That is, "you can get anywhere from anywhere".

There are equivalent definitions using I or ≡ alone and assuming simple
reachability:

∀ p, q ∈ P ∃ r ∈ P st I (pr) = I (q)

∀ p, q ∈ P ∃ r ∈ P st pr ≡ q

There is a third, yet stronger, reachability condition we may want to impose.
Strong reachability says that any desired effect can be obtained after any initial
command history: however, this ignores the "hidden" state that may manifest
itself latter. We may want to say that we can get to anywhere in the stronger
sense that we cannot distinguish the way we got there by later observation. This
obviously refers to the monotone closure and we can express it as:

megareachability:
∀ p I†

p is surjective

Again there are equivalent definitions using I† or ≡ † alone, assuming simple
reachability:

∀ p, q ∈ P ∃ r ∈ P st I†(pr) = I†(q)

∀ p, q ∈ P ∃ r ∈ P st pr ≡ † q

2.8 Undoing errors

2.8.1 Importance and problems of undo mechanisms

The ability to spot errors quickly is one of the advantages of highly interactive
computing. But this ability is only appealing if the correction is just as easy!
Many systems supply some form of undo facility, either by direct command or as
a side effect of the form of the system. Shneiderman (1982) suggests that the
ability to easily undo one’s actions incrementally is one of the hallmarks of a
direct manipulation system.

42 Formal Methods for Interactive Systems

Undo mechanisms can get quite sophisticated, ranging from the simple
restoration of delete buffers to the keeping of entire session history trees. (Vitter
1984) It is important to realise that there are fundamental incompatibilities
between the various possible refinements. In practice, by ignoring these
incompatibilities, designers may fall into several traps.

Any editor that retains deleted line buffers or complete copies of the last editor
state is too inflexible to deal with the more general types of mistake, only being
able to recover back one or at most a few steps. But any editor that retains a
complete command and editor state history for the purposes of recovery has
further problems:

• Observability – The behaviour of the editor is obviously determined by the
state of the current history. So if we want to preserve monotonicity this
history must be part of the observable effect: that is, there must be com-
mands for perusing this structure (in fact, these commands are often
included in the undo procedure itself).

• Reachability – Supposing the command and state history exists in some
form and is observable, if the editor as a whole satisfies the reachability
properties, there must be some way for the user to edit this structure since
it is part of the editor’s state. This is usually the point at which an undo
system would call a halt, only asserting reachability for the unadorned sys-
tem. On the other hand, if this editing is allowed...

• Undoability – Are the relevant commands themselves undoable? If so we
start quickly to chase our tail!

2.8.2 Examples

To illustrate some of these problems, we consider two simple undo editors.
Both are based on the simple typewriter but could easily have been defined
generically over any PIE. They both seem quite reasonable at first glance, but
they are lacking in either functionality or in observability.

First, a basic one-step undo:

C1 = { a, b, c, . . . , z, # }
E1 = { a, b, c, . . . , z }

I1(null) = null
I1(#) = null
I1(p: : c) = I1(p): : c c ≠ #
I1(p: : c: : #) = I1(p) ∀ c

This is the sort of undo mechanism that is used in editors like vi: it essentially
retains two "states" and flips between them. It is not strong reachable, and

PIEs – the simplest black-box model 43

requires an additional delete mechanism to be so. Neither is it predictable, as it
is not possible to tell from the current display what a future undo (#) will result
in:

I1(null) = null = I1(a#)

but

I1(#) = null ≠ a = I1(a##)

It is, however, tameable, using the strategy "type ‘#’ twice". We can prove this
by defining a state transition function doit with associated projection proj equiv-
alent to I1 and then showing that the strategy can observe this state:

S = E1 × E1

s0 = (null, null)

doit(c, (e1, e2)) = (e2, e2: : c) c ≠ #
doit(#, (e1, e2)) = (e2, e1)

proj((e1, e2)) = e2

One can quickly verify that proj doit(. , s0) satisfies the conditions for I1.
Further, it is clear from it that the sequence "# then # again" followed no matter
what the effect is, will give rise to the two effects e1 and e2.

One might be tempted to design a more elaborate and powerful undo system,
where an indefinite number of commands could be undone:

C2 = { a, b, c, . . . , z, #1, #2, . . . }
E2 = { a, b, c, . . . , z }

I2(null) = null
I2(#n) = null
I2(p: : c) = I2(p): : c c ≠ #
I2(p: : c: : #n) = I2(p: : #n−1) ∀ c

That is, #n is the n-step undo which gets one back to the effect one had n com-
mands ago; however, this is not exactly the same state as measured by the mono-
tone closure. This new undo editor is in fact strong reachable, but not mega
reachable. It is also not only, not predictable, but grotty!

The minimal state representation is in fact huge:

S ⊂ E∞−
2

where E∞−
2 is the set of sequences from E2 semi-infinite to the left (in fact, the

sequences generated will always have only a finite number of non-null entries)

44 Formal Methods for Interactive Systems

and:

s0 = null∞− = (. . . , null, null, null, null, null, null)

doit(c, s: : e) = s : : e : : (e: : c) c ≠ #
doit(#n, s) = s : s[− n]

proj(s: : e) = e

where s[− n] represents the nth element of s from its end.

This state representation is clearly minimal, since any two states s1 and s2 can
be distinguished by repeating the command "#len", len times, where len is the
number of elements from the ends of the two sequences we need to go before all
preceding elements are null. (This must be finite by simple examination of doit.)

This makes the non-megareachability obvious. If we entered a then b, we
could never get from the latter state to the former, as the doit function only adds
to the end of the state sequence and thus the state would always have ab as its
first two non-null elements.

We can also now prove that I2 is grotty. Take the command sequence a and
any finite set of command sequences Q. Each command in Q may have some
ordinary commands and some commands of the form #n. Let m be the
maximum of all these ns over all the elements of Q. Finally, take p′ to be the
command history "a#1#2

. . . #ma" and p to be simply "a". p and p′ will yield
the states:

null∞− a = (. . null, null, null, a)

and

null∞− a nullm a

The doit function always adds to the end of the state, and the commands within
any element of Q can at most look m from the end of the state on which they act,
and hence at most m from the original state: hence the two states generated by p
and p′ will yield exactly the same effects for each element of Q. Yet p and p′
are not monotone equivalent by the minimality of S. Thus we have shown that
for any finite Q we can construct a p′ such that Q does not distinguish them, but
which is not monotone equivalent to p (#m+2 distinguishes them). Hence I2 is
grotty.

PIEs – the simplest black-box model 45

2.8.3 A simple definition of undo

As quite reasonable and simple undo mechanisms seem to have quite complex
semantic problems, can we progress further by framing some sort of formal
definition of undo? A weak form of error correction has already been described
in the reachability conditions. These tell us that we can get anywhere from
anywhere, so in particular, if we do something wrong we can get back to the
position before the mistake. However, the definitions of the reachability
conditions involve the entire program. It is more attractive if error recovery is
incremental, depending only on mistakenly entered commands, because typically
these are most recent and are short. Imagine a user telephoning an advisor with
the request "I’ve just done so-and-so and now I seem to be stuck; how can I get
out of it?": a helpful reply should exist and not depend on any other information.
Formally we could write this:

∃ undo ∈ P → P
st ∀ p, r, s ∈ P I (r p undo(p) s) = I (r s)

This appears to be not as strong as one might want: for instance, one might
really want the undo to always be the same command. However, it turns out to
be far more restrictive than is apparent. To see this we will define the strong
equivalence, and restate the simple undo condition using it.

2.8.4 Strong equivalence

We hav e already used a fairly strong equivalence ≡ †. Reg arding P as a semi-
group, one would call such an equivalence a right congruence, as equivalence is
preserved by adding commands to the right. This instantly suggests investigating
the full congruence, where equivalence is preserved in all contexts. We will call
this strong equivalence (˜):

p ˜ q =̂ ∀r, s ∈ P rps ≡ rqs

That is, two command sequences are strong equivalent if they hav e exactly the
same effect, no matter the context in which they are used (ignoring the temporary
effects while they are being invoked). If the PIE represents a finite-state automa-
ton, then the equivalences ≡ † and ˜ are called Nerode and Myhill equivalence
respectively. (Arbib 1969)

We can construct the semigroup P˜ as the quotient of P by the congruence ˜,

P˜ = P/˜. We can then define the map I˜ : P˜ → E by I˜ ([p]) = I (p).

This is a well-defined function because p ˜ q ⇒ I (p) = I (q). We can then

factor I using the canonical semigroup homomorphism parse˜ : P → P/˜ :

46 Formal Methods for Interactive Systems

P E

P˜

I

parse˜ I˜

This semigroup is in fact minimal for expressing <P, I , E > in the sense that
for any <P′, I ′, E′ > and semigroup homomorphism parse′ : P → P′ such that

I = I ′ parse′, we can construct parse′′ : P′ → P˜ so that the following
diagram commutes:

P

P′

P˜

E

parse′ I ′

parse˜ I˜

parse′′

Combining this with the monotone closure, we have the following
decomposition for any PIE:

P P˜ E† E
parse˜ I˜† proj†

where P˜ is "as far to the right" as possible for a semigroup, and E† is "as far to
the left" as possible for a state.

PIEs – the simplest black-box model 47

Again, we have no guarantee that P˜ is computable, as ˜ is in general not

decidable.

2.8.5 Undo and group properties

Using this strong equivalence, we can restate the undo condition as:

simple undo condition:
∃ undo ∈ P → P

st ∀ p ∈ P p undo(p) ˜ null

This is in fact a way of saying that P/˜ is a group. The resultant class of objects

has been studied in the theory of formal languages. (Ansimov 1975) One conse-
quence of this is that not only would there exist an undo for each command, but
that they would all be different! Thus knowing only that there exists a way of
undoing any action is of little comfort; we must also ask how easy it is to remem-
ber and to perform.

2.8.6 Undo for a stratified command set

A more realistic requirement is an editor with both ordinary commands, and a
small distinguished set of undo commands. Ordinary commands obey much
more stringent rules than undo commands, under the assumption that the latter
are used more cogently. This distinction could be expanded to other classes of
special commands.

Intuitively the class of ordinary commands includes some commands which
have undos (e.g. letters being undone with delete), some commands that do
behave like subgroups (e.g. cursor movement), and others like delete itself with
no undo; the special undo commands would then be added. However, it is worth
noting that in general even if some commands like cursor right/left have inv erses
relative to the ordinary commands, they do not do so once the new undo
commands are added.

Formally, we hav e two alphabets C and U . We then have P, the sequences
from C, and Pu, the set of sequences from C +U , and the following equivalent
conditions:

∃ undo ∈ P → Pu

st ∀ p, q, r ∈ P I (p q undo(q) r) = I (p r)

∃ undo ∈ C → C +U
st ∀ p, r ∈ P, c ∈ C I (p c undo(c) r) = I (p r)

48 Formal Methods for Interactive Systems

2.9 Exceptions and language

When designing a concrete system, we often begin by designing an idealised
system, such as an editor with an unbounded text length or a graphics device
with arbitrary resolution. However, when turning this ideal into a running
system various boundary conditions arise. The user of a system may also have
an idealised model of the system; for instance, "UP-LINE followed by DOWN-LINE

gets me back where I started" (cf. undo above). This too may fail at boundaries.
For a system designed with user engineering in the foreground the two ideal
views should correspond. Given that some properties of the ideal system fail in
the actual system (if nothing else, the commands that hit the boundary condition
would behave inconsistently), we would expect that when an exception does
arise there is some sort of consistent system action. That the system warn the
user of such an exception by some means – bell, flashing light, etc. – goes
without saying!

2.9.1 Modelling exceptions

Suppose then that we have two PIEs < P, I , E >, the ideal, and < P, Iex , Eex >,
the exception PIE. They are related by a map proj from Eex to E. There is also
a boolean function ex on the elements of P, that satisfies ex(p) => ex(pq)
for all q. This means exceptions don’t go away – not as bad as it seems! The
following diagram commutes on the set Ok = { p ∈ P | not ex(p) }:

P

E

Eex

I

Iex

proj

That is, I (p) = proj(Iex(p)) unless ex(p).

Note that in general the map proj need be neither surjective nor injective. The
exception effects may have additions such as error status lines, which leads to
proj taking several members of Eex to one of E. Also there may be some effects
in E that can never be reached by proj Iex because exceptions block all paths.

PIEs – the simplest black-box model 49

For instance, if the exception represents a bounded version of a text editor, then
elements of the effect corresponding to large texts may never occur.

2.9.2 Detecting exceptions

Clearly we should be able both to detect when an exception has occurred, and
ideally be able to predict whether an exception will occur before submitting the
command that raises the exception. We can state this formally by requiring two
user decision functions, is ex? and will be ex?. The former can tell from an
effect whether an exception has occurred, and the latter can tell from the current
effect whether a particular command will cause an exception:

is ex? : E → Bool
will be ex? : C × E → Bool

is ex? Iex = ex
∀p ∈ P, c ∈C ex(pc) = will be ex(c, Iex(p))

We could equally well have been more positive and defined the "ok" operators
is ok? = not is ex? and will be ok? = not will be ex?: the two formulations
would be logically (but perhaps not psychologically) identical. Also one should
note that although these are expressed as user decision functions their importance
lies also in the constraints they put on the system.

The latter, prediction, information may be hard to achieve, and in case of
doubt one should of course aim for safety, warning the user against exceptional
conditions if one is unsure, especially if the consequences are major. This
corresponds to a weakening of the condition for this to an implication:

∀p ∈ P, c ∈C ex(pc) ⇒ will be ex(c, Iex(p))

In Chapter 5, we use similar decision functions for detecting steady state and
when commands will be ignored. These can be thought of as specific cases for
particular exception conditions.

2.9.3 Exception recovery principles

Although we’ve said that the exception effect may, and should, contain error
indicators, we will assume that we are dealing with an abstraction of the full
effect which does not include this extra information for the statement of the
following principles. These are concerned with the possible error recovery rules
after an exception has occurred.

One likely design principle for exceptions is "no guesses please". That is,
when a command causes an exception to be raised, subsequent commands
behave as if the command had never been issued. Formally:

50 Formal Methods for Interactive Systems

∀ p, q ∈ P, c ∈ C
not ex(p) and ex(pc) ⇒ Iex

†(pc) = Iex
†(p)

Or there is a weaker condition, "nothing silly please":

∀ p, q ∈ P, c ∈ C
not ex(p) and ex(pc) ⇒

∃ p′ st not ex(p′) and Iex
†(pc) = Iex

†(p′)

This just says that when an exception is raised, at least the position the user is
left in is one that could have been reached by legitimate means.

The reason for not including the error signalling in these principles is that
clearly the effect after an exception would be different, as the error message
would be there. One can clearly extend the rules to cover the more complex
case: for instance, one can ask that all but the immediate effect is identical when
considering the additional information. This would correspond to asking that all
error messages be cleared after the next (correct) response, rather than leaving
them there until the next error. There are many permutations of this ilk, and the
above simplifications give the flavour of possible exception conditions.

A tentative basis on which to choose between the alternative requirements is
that "nothing silly" is appropriate where the exception is associated with a limit
of the system, but "no guesses" should apply where the user has made an error.
For example, line break algorithms for most editors follow "nothing silly", but
cuts without previous marks follow "no guesses" – not deleting the entire
document up to the cut point, say! We can also reformulate our request for
undos, only asking for an undo when an exception has not occurred. (This is
safe if the "no guesses" condition is used.) For instance, up-line/down-line undo
one another except at the top/bottom of the document.

2.9.4 Languages

An exception occurs when a user does something that we wish he hadn’t.
There is the stronger restriction on input arising from what is possible. That is,
at the level we are designing the PIE it may be impossible for certain command
sequences to be generated. This may occur in two ways:

• There may be some physical constraint. For instance, a cash dispenser
may have a screen across it until the user puts the card in. The screen
closes down when cash is removed. Similarly, the "cash removed" event
cannot occur until the cash is presented to the user.

• There may be some logical constraint imposed by surrounding software.
For instance, we may be considering an abstraction of the real system
which is enclosed by a layer performing some syntactic checking.

PIEs – the simplest black-box model 51

In either case we may represent the set of possible actions by a subset L of P.
However, this subset must satisfy a simple temporal condition. If some
command sequence is possible, then all initial subsequences must also be
possible, else it wouldn’t hav e been possible to produce the longer sequence.
That is:

∀q ∈ P, p ∈ L q ≤ p ⇒ q ∈ L

If we have an exception PIE then the persistence condition on ex is exactly
equivalent to this condition on the exception-free language:

Lex = Ok = { p | not ex(p) }

Note that this condition is as weak as possible, as the temporal condition is a
minimal one to make the language sensible. Often there will be some more com-
plex condition. For instance, the possible command histories may be initial sub-
sequences of a context-free grammar, as is the case in Anderson’s work. (Ander-
son 1985)

We may require that it is possible to predict whether a command will be part
of the language from the effect, as we have for exceptions, but usually the
constraints will be evident if they are physical, or given by the enveloping system
if they are logical. Thus in general such a requirement will not be necessary; if it
is, then the exception conditions give a reasonable template.

Of greater importance is the way this affects the functionality of the system.
For instance, if we design cash dispenser software that asks for the customer’s
PIN number, then reads in the cash-card, then gives the money, it will appear to
have sufficient functionality when considered without the language constraints.
However, when we take into account the language, we see that the customer
cannot type in the PIN number until the card has been read and the cover raised.
The machine turns out to be rather tight-fisted. On the other hand, it is rarely
safe to assume when one is designing a system that the input will conform to
what one expects to be inviolable constraints: the cash machine’s window that
covers the keyboard may be broken!

The latter problem means that one of the exception rules should be used for
inputs that are not part of the language, and because this is a serious problem the
"no guesses" rule would be appropriate. Thus we can assume that any command
history a system has is effectively from the language, even if not actually so. The
restriction in the input set must, however, be reflected in the formal statement of
our principles. For instance, strong reachability for language PIEs becomes:

strong reachability with language:
∀p, q ∈ L ∃ r ∈ P st pr ∈ L and I (pr) = I (q)

The monotone closure and hence megareachability must also be modified, as two
states cannot be said to be equivalent based only on their effect: they must also

52 Formal Methods for Interactive Systems

have the same language extensions. Thus we redefine monotone equivalence for
languages:

∀p, q ∈ L p ≡ † q =̂
∀r ∈ P pr ∈ L ⇔ qr ∈ L and pr ∈ L ⇒ I (pr) = I (qr)

If the language does have warning information like is ex? then this is no differ-
ent from the standard definition, as the effects being the same ensures the same
language extension.

2.10 Relations between PIEs

As a mathematician, one of the first things one does when faced with a new
class of objects is to look at the relationships between those objects. This section
will examine the relationships beween pairs and collections of PIEs. There are
several ways one can relate PIEs at an abstract level, and it will be seen how
these correspond to different ways of describing interactive systems. On the
whole, the tenor of this section will be rather abstract, but it forms a sound basis
for the more concrete discussion of layered systems in Chapter 7.

This examining of the relationship between things is the very stuff of
mathematics, but is not just abstract speculation. It is fairly obvious that there is
some insight to be gained by, for instance, looking at the way the cursor behaves
in a word processor in isolation. For the purposes of thinking about the cursor,
our keyboard could effectively have just a single "x" key for typing and the
normal complement of cursor control keys. By thinking about the cursor on its
own, we lose the distraction of other aspects of the system, and are able to better
understand the specific problems related to cursor movement. We then happily
relate this abstract view back to the full system, enabling us to extend our
understanding of the part to the whole. This process of relating different models
of a single system happens all the time in our informal analysis, often without
our ever noticing. The different relationships in this chapter attempt to capture
some of this informal reasoning in a formal framework.

2.10.1 Isomorphism

We saw in §2.3 that the <P, I / ≡I , P/ ≡I > was equivalent to <P, I , E > in
the sense that the following diagram commuted, where proj is a one-to-one
function:

PIEs – the simplest black-box model 53

P

E

P/ ≡I

I

I / ≡I

proj

This is, of course, a special case of isomorphism of algebras. The general
form of an isomorphism between <P, I , E > and <P′, I ′, E′ > requires two one-
to-one relations, parse between P and P′ and proj between E and E′, such that
the following diagram commutes:

P E

P′ E′

I

parse

I ′

proj

In fact, as we are interested in P as a semigroup, we also require that parse is
a semigroup isomorphism. That is:

parse(p, p′) and parse(q, q′) ⇒ parse(pq, p′q′)

For the normal case, where P is freely generated over the command set C and
likewise P′ from C′, this means that parse is generated from a one-to-one
relation between C and C′.

54 Formal Methods for Interactive Systems

Of course, although this seems like a sensible isomorphism when considering
the PIEs as mathematical objects, it is not necessarily sensible for the user. For
instance, a projection that involved reversing the letters in the alphabet ("abc" to
"zyx", etc.) would be perfectly acceptable mathematically, and in regard to its
information content, but no user would regard them as being the same.
Similarly, when we say that E and P/ ≡I are equivalent up to isomorphism, that
does not mean that a display editor and an equivalence class of command
histories are equally useful for the user!

2.10.2 Other relations

Clearly, the most general relationship between PIEs would be obtained by
letting parse and proj be general relations, perhaps with some restrictions on
parse. Howev er, we will only deal with a few special cases, in all of which we
assume that the relations are in fact functions. There are clearly two major cases
to consider:

• 1-morphisms – both parse and proj go in the same direction. Without loss
of generality, say parse: P → P′ and proj: E → E′.

• 2-morphisms – parse and proj go in opposite directions. Say
parse: P → P′ and proj: E′ → E.

In addition, there is the case when one or other of parse or proj is one-to-one,
and hence 1-morphisms and 2-morphisms coincide. We will call this special
case:

• 0-morphism – either parse or proj one-to-one.

Further, we will consider only two special cases of 1-morphisms: when both
parse and proj are injective, which we shall call extension, and when they are
both surjective, which we will call abstraction.

We will deal with each of these cases in the succeeding sections in the order
0-morphism, extension, abstraction and finally 2-morphism. But first we will
consider the restrictions we may want to place on parse.

2.10.3 Restrictions on parse

If we are interested in P and P′ as general subgroups then it is reasonable to
consider the meaning of requiring parse to be a subgroup homomorphism. That
is:

∀p, q ∈ P parse(p; q) = parse(p) ; parse(q)

In the normal case, when P is generated from C, this corresponds to simple
macro expansion of commands from C into sequences of commands from P′.

PIEs – the simplest black-box model 55

Often this will prove a too stringent a condition, and in these cases we will
often find that the temporal well-ordering condition introduced in §2.3 will be
useful:

∀p, q ∈ P q ≤ p ⇒ parse(q) ≤ parse(p)

This, of course, only has meaning if the semigroup is in fact free (that is, P is the
sequences from C): however, this is the most usual case, the only exception we
have dealt with being the construction of P/˜. Note also that it is strictly weaker
than the semigroup homomorphism condition.

This condition does seem to be quite general; the only reason for breaking it is
when we want to "backtrack" on some decision of parse. Not surprisingly, the
relationships that do not obey this condition, are those generated by undo
mechanisms. We will therefore assume that the temporal relation holds for all
the morphisms we consider, but only ask for the semigroup condition when
necessary.

Why didn’t we ask for this rather than semigroup isomorphism when
considering PIE isomorphism above? It would indeed have been possible, and
indeed the sort of bisimulation condition needed between the handle space
models of window managers would obey the weaker condition only. Howev er,
for simple PIEs, the informal idea of two systems being isomorphic must surely
be that they differ in a one-to-one way between keypress and effects (perhaps
also in any manifest effect structure). There is, of course, no right answer: one
uses the definition that is most appropriate to the circumstances.

Before we move on, the temporal condition does suggest the possible
generalisation of PIEs to where P is simply a well-ordered set. However, this
has no obvious meaning at the user interface, and I have found no useful
construction yielding such an object.

2.10.4 0-morphisms

We hav e already dealt with several 0-morphisms: in particular, the relation
between monotone closure and its original PIE is a 0-morphism where the P
spaces coincide:

56 Formal Methods for Interactive Systems

P

E

E†

I

I†

proj†

The relation between P and P˜ also forms a 0-morphism, except here it is the
effect spaces which coincide:

P

P˜

E

I

I˜

parse˜

In this case we have a general semigroup, and the semigroup homomorphism
condition does in fact hold. The temporal condition is of course inapplicable to
general semigroups.

PIEs – the simplest black-box model 57

The exception relation (§2.9) is a generalisation of the 0-morphism. Tw o
further examples will come in the next chapter when we consider red-PIEs: the
relations between I and Ir and between I and Id will both be 0-morphisms.

2.10.5 Extension and restriction

This is the special case of a 1-morphism where both parse and proj are
injective. A 1-morphism, we recall, is when parse and proj both go in the same
direction:

P E

P′ E′

I

parse

I ′

proj

This would arise if, having an existing system <P, I , E >, we added extra com-
mands to it to increase its functionality. Alternatively, we might start with
<P′, I ′, E′ > and restrict it by cutting down the commands available (perhaps to
meet size or performance constraints).

In §2.5 when we considered simple predictability, we suggested that it would
be a suitable condition to apply to certain parts of the system. These parts could
be specified formally as a restriction of the system. For instance, we may restrict
the command set of an editor to cursor movement and direct typing, and apply
the condition to the restricted PIE so obtained.

Another example would be the editor with simple cursor movement of §2.4.
We extended it by adding commands to set and jump to a mark. In these
examples the command and effects of the latter were simple extensions of the
former. So long as we never used the mark, the two interpretation functions
matched exactly.

In both these examples the parse function of the extension is a semigroup
homomorphism, and I cannot think of any reason to have it otherwise in the case
of extensions in general. If we do assume this, then it is fairly simple to prove
that monotonicity of PIE′ implies monotonicity of PIE. So, if we have a
predictable system, restricting it will not spoil it. On the other hand, if we have
an unpredictable system we cannot make it predictable by extending it. This is a
case of "adding commands to a bad system doesn’t make a good system".

58 Formal Methods for Interactive Systems

It must be emphasised, however, that this only applies to the definition of
predictability given by monotonicity. If we look at strategies and observable
effects, and define predictability in terms of these, we see that restricting the
command set may remove commands necessary for the strategy and hence
destroy predictability; contrariwise, adding commands may make an effective
strategy possible.

The notion of extension is not really that useful, as although the extended
system behaves exactly like the original when no other commands are entered, it
tells us nothing about whether there is any sort of behaviour consistent with the
original when other commands have been used. We would normally want to say
something a bit stronger. For instance, in an editor with cut/paste, we want to
say that the effect of using just the cursor keys and normal typing is "the same"
ev en when some other commands have been typed. The start state will of course
be different. This can be partially captured by a "bundle" of extensions, one for
each member of P′. Explicitly, for each p′ from P′ there exists p and proj p′ as
follows:

p ∈ P
proj p′ : E → E′
proj p′ is injective
I ′p′ parse = proj p′ I p

That is, the following is an extension:

P E

P′ E′

I p

parse

I ′p′

proj p′

The parse functions are all the same, as we would expect the connection
between commands to be the same. The projections need to be different,
however, as the results of the "extra" commands in p′ may change the connection
between the effects.

As an example of such a bundle, let us look at the extension of the simple
typewriter to the editor with cursor movement. The parse function is the
identity, and for any sequence of commands p′ from P′, the characters with
cursor movement, we simply take p to be before where:

PIEs – the simplest black-box model 59

{ before, after } = I ′(p′)

The projection then merely maps an effect in E into the first component of E′:

proj p′ (e) = { e, after }

This says that for any period when the cursor commands are not used, the text
before the cursor acts as if generated by a simple typewriter.

Returning to the general case of a bundle, the fact that there are different
projections does unfortunately allow anomolies. It is quite possible for one
projection to take the text "abc" to "abc" as one would expect, but for another to
take the same text to "def": we would obviously like them to agree on the
"unextended" part of the effect. In the section on 2-morphisms we will introduce
a further condition that will enforce such consistency.

The bundle also does not help with more complex extensions like the
MARK/JUMP editor. This is because even if no more MARKs or JUMPs are entered,
the projection function cannot keep track of the position of the MARK.

2.10.6 Abstraction

The case of the 1-morphism where parse and proj are both surjective, we call
abstraction. It is probably the most important of the PIE relations. It is called
abstraction because the two PIEs have identical behaviour except that PIE
distinguishes more commands and effects than PIE′. Again we could look at it
the other way round, and say that PIE refines PIE′.

Consider the typewriter with delete from §2.4.3, < P∇, I∇, E∇ >, and the
simple counter < P′, I ′, E′ > defined by:

C′ = { − 1, + 1 }
E′ = { 0, 1, 2, 3, . . . }

I ′(null) = 0
I ′(p: : +1) = I ′(p) + 1
I ′(p: : −1) = I ′(p) − 1 I ′(p) > 0

= 0 I ′(p) = 0

The counter PIE is an abstraction of the typewriter when they are related by the
maps:

parse(c) = +1 c ≠ ∇
parse(∇) = −1

(the rest of parse is the semigroup homomorphism generated from these)

60 Formal Methods for Interactive Systems

proj(e) = length(e)

This is the abstraction whereby the counter just keeps a tally of the number of
characters typed.

In various places in the book we will mention the idea of something being an
abstraction of another, referring to the general idea of having one or more
abstraction functions. However, some instances deal with models other than the
PIE model and thus cannot be handled explicitly by the above. For example, in
Chapter 5, when we consider time-dependent systems, we find that systems may
have some facet such as a clock which would never reach steady state, but we
can look at some abstraction of the system which would stabilise. We could
formalise this abstraction as desiring the existence of a proj map between the
actual display (with clock) and the abstracted display (without). We can then
apply all the analysis which we develop concerning steady-state behaviour to this
abstracted temporal model.

We can investigate some of the properties of a PIE by looking at the simplified
PIE′. One result that is useful here is that if parse is a semigroup
homomorphism and PIE is strong (mega) reachable then so is PIE′. This would
tend to be useful in the negative: if we were to find that an abstraction of our
system is not reachable then we would know that some modification of the
original system is necessary. The relevant modifications may become obvious
when considering the abstraction. Abstraction is also useful when considering
how one system is built in layers upon another, a point we will return to in
Chapter 7.

If we allow abstractions to have exception conditions as in §2.9, we can have
bundles of abstractions in a similar way to bundles of extensions. This would
enable us to handle the relation between the MARK/JUMP and the plain cursor
editor. The parse function simply throwing away additional MARK commands,
with an exception being raised for JUMPs. The projection then just strips the
MARKs from the effect. That is, for any p in Pmk , we choose p′ in Pcursor to be
before and define parse and proj p to be:

parse: Pmk → Pcursor

parse(p) = strip(p)
proj p: Emk → Ecursor

proj((b, a)) = (strip(b), strip(a))

where strip removes any MARKs or JUMPs. These form an abstraction with
exceptions for each p. We notice that the exception condition obeys the "nothing
silly" condition, since every time we have an exception, the cursor editor can be
seen as being in the same state as if the relevant p′ had been entered.

PIEs – the simplest black-box model 61

2.10.7 2-morphisms, implementation

In a 2-morphism the two functions parse and proj go in opposite directions:

P E

P′ E′

I

I ′

parse proj

The commutativity condition is therefore:

I = proj I ′ parse

We hav e seen an example of this already, namely the relation between any PIE

and its associated PIE generated from E† and P˜:

P E

P˜ E†

I

I˜†

parse˜ proj†

We will call the 2-morphism an implementation because if we had coded
< P′, I ′, E′ > already, one way to implement < P, I , E > would be using the
functions parse and proj. For example, if we had implemented the calculator
with memory for PIE′, we could implement the simple calculator by making both
parse and proj identity maps. Although this seems a very useful construction it
does not live up to its promise. This will become apparent when we consider
such constructions in detail in Chapter 7. But now we will show how a
2-morphism can be useful in combination with an extension.

We recall that in order to have a better concept of a restricted system, we
introduced a bundle of extensions parametrised over the extended command
sequences P′. Each extension had a separate projection function proj p′. These

62 Formal Methods for Interactive Systems

needed to be different, as the "extended" part of the effects might differ, but we
wanted a way of enforcing consistency on the "unextended" part. We can ensure
this by having an additional function proj from E′ to E, the same for all the PIEs
in the bundle, which makes all the PIEs in the bundle into 2-morphisms when
taken with the original (constant) parse:

P E

P′ E′

I p

parse

I ′p′

proj p′ proj

This extra implementation projection function ensures the consistency
between the different extension projections. To be precise, the separate
commutativity conditions imply that:

proj proj p′ = identity

For example, consider extending the simple editor with cursor movement.
Recall for any p′ from the extended commands we chose p to be before, and
defined proj p′, where:

let { before, after } = I ′(p′)
proj p′(e) = { e, after }

The projection proj is then simply the function that extracts the "before" half of
the effect:

proj((b, a)) = b

2.10.8 What we can and cannot capture in PIE-morphisms

In this short analysis we can see some success, but also some problems in
describing the relationship between systems. We will see in Chapter 7 that the
abstraction relation is particularly important and has wide generality when
decomposing systems. Difficulties in relating formally systems that we believe
to be similar can arise for two reasons.

PIEs – the simplest black-box model 63

First, the problem may be a strictly technical. Our models miss out the
significant features that would enable us to express the relationship. If this is the
only barrier, a more extensive model will allow us to proceed. For instance, the
pointer space model described in Chapter 8 gives us just such enhanced
expressive power. The price we may pay for such power will typically be a more
complex model, and therefore a model which is more difficult to analyse
(although which is capable of more extensive analysis). However, if we are
careful the model may not necessarily be more complex, just more appropriate
for the relationship we wish to express.

The second, more fundamental problem is that the similarity we perceive
informally may be in some way unformalisable. Its expressiveness may be
related to a deep understanding of different situations that is lost if we try to
tease out the similarity too precisely. This is the contrast between metaphor on
the one hand, and allegory on the other. When we formalise a relationship, we
effectively allegorise it; this feature in the one situation corresponds to that
feature in the other, etc. If we are unaware of this problem attempts to formalise
a metaphor may be counterproductive, capturing the peripheral parts whilst
missing the central issues entirely. Howev er, if we keep these limitations in mind
it can be useful to find just how far a similarity can be captured formally, and
thus highlight where we do rely on intuition.

2.11 PIEs – discussion

Even using the very simple PIE model, we have been able to investigate some
non-trivial properties of interactive systems. We hav e introduced the principles
of predictability, observability and reachability, and the important notion of
monotone closure. We hav e also examined problems of undo, and dealing with
exceptions in interactive systems. Finally, we hav e seen how we can relate
different systems to one another. This was done at a largely theoretical level, but
gives us the machinery with which to discuss layered design and implementation
in Chapter 7.

64 Formal Methods for Interactive Systems

