Formal Methods for Interactive Systems © Alan Dix 1991
http://www.hiraeth.com/books/formal/

CHAPTER 5

The myth of the infinitely fast
machine

5.1 Introduction

Most specification and documentation of interactive systems covers only
steady-state functionality. That is, the effect of each user command on the state
and display of the system is described, but the effect of lags between the entry of
these and when the system actually responds is ignored. Effectively, the system
is seen as executing on an infinitely fast machine! The obvious exceptions to this
are those systems which deal explicitly with real-time phenomena: response
timing, games, simulations, etc. However, it is those systems whose real-time
behaviour is incidental which this paper addresses.

There are good reasons for ignoring real-time behaviour. Specifications are
deliberately aimed at some aspect of the functionality of a system, and from this
abstraction they obtain their power of concise expression. It is therefore
important that any considerations of non-steady-state behaviour do not clutter up
these abstractions unduly, and can be considered independently. For this reason
most of this book has deliberately ignored timing issues. Other formal
techniques are equally silent on such issues, for example all the contributors to
Harrison and Thimbleby’s recent book on formal methods in HCI (Harrison and
Thimbleby 1989).

Again, documentation is often complex enough anyway. It is comparatively
easy to describe steady-state behaviour in terms of changes in the objects
manipulated and snap-shots of screens, but it is both difficult and probably
confusing to describe dynamic behaviour without on-line or video presentations.
Further, the exact dynamic behaviour may depend on the run-time environment
and machine, whereas manuals are often written in a machine-independent
fashion.

- 109 -

110 Formal Methods for Interactive Systems

Both these considerations prompt one to look for ways of dealing with real-
time behaviour which are both simple and can be factored out from the main
time-independent description of functionality. The next section examines various
system compromises that are used to approximate the ideal machine (buffering
and intermittent and partial update), and the problems to which these give rise.
Section §5.3 introduces a simple formal model which includes temporal
behaviour and uses it to give precise descriptions. This provides a framework
within which to make precise the problems which arise and the possible
solutions. In particular, a precise definition is given of the steady-state
Sfunctionality of a system and of typical system behaviour, such as buffering, as
they appear to the user, without regard to a particular model of implementation.
This model is then used as a basis for proposing properties that a dynamic
system must obey if its steady-state functionality is to be usable. Various
concrete expressions of these properties are discussed in §5.5, both existing
techniques and novel, including analysis of their user impact. These techniques
put demands on the surrounding system software and hardware which are
outlined in §5.6, which show where changes are needed in order to put these
proposals into practice. Finally, these features are brought together in a design
approach where the dynamic aspects of system behaviour are considered
separately from the steady-state functionality.

5.2 Compromises and problems in existing
systems

In reviewing the research into computer response times, Shneiderman (1984)
found that, with a few exceptions, faster is better. This is certainly the general
approach taken when implementing interactive systems. At first, care is taken to
obtain general efficiency, concentrating on those areas where serious lags are
expected. Then, where this proves insufficient, either because the computer is
too slow, or because the output device cannot handle the rate of refresh, various
additional strategies may be used.

The most common such strategy is for either the application or its surrounding
environment (operating system, window manager, etc.) to provide buffering to
avoid loss of user commands. So normal has buffering become that its absence
can be quite unnerving. Slightly less frequently seen are intermittent update
strategies where the application only occasionally updates the screen: (Stallman
1981) for instance, after receiving 10 scroll-up-line commands the system may
decide to display only one screen scrolled up 10 lines, ignoring the intermediate
stages. Some versions of the word processor Wordstar augment this by adopting
a partial update strategy, where the system attempts to keep the current cursor
line permanently up to date but updates the rest of the screen only intermittently

The myth of the infinitely fast machine 111

as it has the time. Both intermittent and partial update are particularly useful
when the output device is the limiting factor. They also save some processor
time. In Chapter 6, I will suggest non-deterministic intermittent update to reduce
processor time further, but the analysis presented below does not cover this more
complex case.

Not only can dynamic behaviour be confusing for the user, but it can also
seriously undermine various desirable properties. A system that could be
described as "what you see is what you have got" (cc) on an ideal machine may
well not be so on a real buffered machine, as the lag means that the current
context as measured by the commands entered so far but still unprocessed, is not
the context displayed. A case of "what you see is what you had"!

Problems arise particularly when applications are embedded within a
surrounding environment; for instance, multi-processing often leads to long
delays which would invalidate a partial update strategy. Further, the
environment’s strategies may conflict with those of the application, for example
the operating system’s buffering and the application’s buffering may interact
badly.

The worst problems occur when the user feedback loop is important, in other
words, in the most interactive systems. Key-ahead is usually no problem so long
as delays are not too long, but cursor movement and mouse positioning are far
more critical. When using cursor keys, delays in cursor movement may lead to
entry at the wrong point, and in the worst case to cursor tracking. This is the
phenomenon where, because of display lag after using cursor keys, the cursor is
moved too far and misses its target, then in moving back it again overshoots.
Users develop strategies of their own for dealing with this, moving one character
in the opposite or an orthogonal direction after a long sequence of moves, or
even inserting a character just to see if the cursor has stopped. These strategies
become so automatic that some users claim that cursor tracking is not a problem.
On the other hand, for small moves, feedback is not so critical: correcting typing
mistakes on the fly is relatively easy since the number of moves to make is
known, and can be an almost automatic reaction.

Mouse-based systems pose more serious problems. Some systems obtain the
mouse position independently of button clicks, and thus, for instance, in a
drawing application, depressing a button and moving will result in a start point
somewhere along the mouse’s path. Users of such systems get used to a "click
and hold" strategy when drawing or manipulating icons and menus. Because the
meaning of a mouse action is so heavily dependent on the display context, some
systems disallow mouse-ahead. Again this leads to a "click and wait for
confirmation" strategy for the user. The task of accurately positioning the mouse
cursor already places high cognitive demands on the user, which are increased if
the user must be constantly vigilant to check that the various mouse actions have
had the intended effect. This is stressful, makes it difficult for the user to think

112 Formal Methods for Interactive Systems

ahead, and prevents the user developing effective motor responses. In particular,
the illusion that the mouse is an extension of the user (Runciman and Thimbleby
1986) is destroyed.

5.3 Modelling

In this section we develop an abstract formal model of interactive systems,
taking into account the timing of input and output. We will use this to define
explicitly what is meant by steady-state functionality, to describe the various
departures from this ideal functionality and the various observability constraints
that are required to make such a system usable. In line with the philosophy of
this book, the model will as far as possible be a surface model, in the sense that it
will try to describe the system from the outside. For example, the definition of a
perfectly buffered system is not in terms of a physical representation, such as a
block of memory in which keystrokes are stored, but in terms of the behaviour of
the system. This approach both avoids odd hidden problems (e.g. the system
may save keystrokes, then later ignore them) and, by staying outside the system,
is a description of its interface only and has therefore a greater validity for HCI.

5.3.1 A simple temporal model

There are many possible formulations, and the one presented here is chosen
because it is most similar to the previous models. We consider a sequence of
discrete time intervals. At each time interval the user may enter a single
command (from a set C) or do nothing (represented by z — a tick). Also, with
each time interval, we associate a current display (from a set D); however, we
assume that this occurs just after the input for that interval, so that there is time
for a fast computer response, but so that the gap is imperceptible to the user.
Thus the display in the same interval can be seen as the instant response, but lags
are represented by responses several time-steps later.

The display is obtained from the current machine state (from a set E), by a
function display : E — D. This state comprises all the computer’s memory of
the past. The relation of this state to the input history can be represented in two
ways, either by considering the whole history at once, or by an incremental
approach. The first method calls for an interpretation function (/) which gives
the state due to any input history. The input history (from a set H) will consist of
sequences of commands (from C) and ticks (7):

I: H— E

The myth of the infinitely fast machine 113
The alternative is to use a state transition function, which, given the input for any
time step and the last state, gives the new current state:

doit: (CU{7}) x E - E
These two representations are of course not independent and are linked by the

equations:

I([]) = Cinit — the initial state
:: doit(c, I(h))

~
~
=
o
~
I

That is the state obtained for a history is obtained by starting at the initial state
and repeatedly applying doit. We could call this a temporal PIE or a -PIE.

Note that the results of Chapter 2 concerning monotone closure mean we do
not have to worry about the full abstractness of assuming a state. In fact, we
could proceed without the concept but the definitions would become more
complex.

5.3.2 Defining steady-state functionality

To talk about steady-state functionality, we need an idea of when the system
has stopped changing. This is clearly when further time intervals with no user
input (i.e. 7s) don’t alter the state:

e stable = doit(t,e) = e

If the state does not change, then the display, which is obtained from the state,
clearly doesn’t change either. However, just because the display is stable, it does
not follow that the state is. For instance, in a multi-processing environment, a
background task may well be altering the file system but not produce any visual
effect, or, when a large global edit is being performed, there may not be any indi-
cation of completion; in the most extreme case, consider a user response timer
continually ticking away with no visible change until the user responds and the
delay is recorded.

We will define steady-state functionality by associating it with the response
obtained by a patient user who always waits for the system to stabilise before
entering more commands. Unfortunately, from the last example, we see that
there are in fact systems that never stabilise: another similar example would be
an alarm clock. However, it is usually the case that either the system does
always stabilise, or that the parts that do not, can be abstracted away. Making
this assumption, we can associate with any sequence of inputs a longer sequence
with additional ticks on the end, which gives rise to a stable state. These ticks
can be thought of as the time a patient user would have to wait:

114 Formal Methods for Interactive Systems

steady: H — H
steady(h) = h::w

where w is the shortest sequence of zs such that I(& :: w) is stable.

If the machine were infinitely fast, it would reach a stable state instantly, and
w would be empty. As there would be no time to type-ahead, all users would
effectively be patient. For any sequence from H, we can obtain the sequence
that a patient user would have entered:

patient : H — H

steady([])
patient(h)
steady(patient(h)::c) when c=7

patient([])
patient(h :: 1)
patient(h :: c)

We can now define the steady-state functionality to be exactly that which the
patient user would obtain: that is, / composed with patient. This is precisely the
functionality defined by most specifications and described in most
documentation, and is therefore the behaviour that should be validated against
them.

5.3.3 Buffering and update strategies

How does this differ from the actual functionality observed by a less patient
user? To see this, we compare the steady state obtained from a sequence of
commands (and ticks) /4 with that obtained if the user had been patient. That is:

I(steady(h)) comparedto I(patient(h))

If these are equal, then the system obtains the same steady state no matter how
fast the user enters commands. That is, equality in the above is the definition of
a perfectly buffered system:

perfect buffering:
I(steady(h)) = I(patient(h))

Note that this definition is purely in terms of the behaviour of the system; it
makes no reference to a buffer as an implementation device. Later on we shall
consider departures from perfect buffering.

We can also examine total versus intermittent display update using this
scheme. We say a system has a total update strategy if all steady-state displays
occur in the actual display sequence:

The myth of the infinitely fast machine 115

total update:
YheH, hysh shy---<h,<h
I so=s, =5, =5, =<steady(h)
st Vi display(steady(h;)) = display(s;)

A large proportion of systems are perfectly buffered and adopt a total update
strategy: this is because they are effectively programmed for an ideal machine
and buffering is supplied by the environment. The environment can supply
degrees of automatic intermittent update in addition to buffering; for instance,
TIP, (ce) a screen control package, attempts to suppress display update when
there is input pending.

The decision whether or not to update is not just one of efficiency. Some
intermediate displays convey information by their dynamic behaviour: for
instance, seeing a display scroll up line by line gives the user more of an
impression of direction than a sudden jump. On the other hand, if the user has
typed ahead it is likely that any such feedback will be too late!

5.4 Dealing with display lag

As we have said in §5.3, the interpretation that the user gives to commands
depends on the display context. The problem of display lag can be addressed in
two ways:

. A computer response, trying to reinterpret or ignore commands.

. A user-based solution, supplying sufficient information for the user to
make sensible decisions.

Typically a system will use a mixture of the two; in fact, we will see that
responses of the first kind necessitate the provision of specific information for the
user.

5.4.1 Computer response

In the first category, the most obvious example is disallowing any mouse-
ahead. This amounts to:

h = steady(h) and m € mouse commands
= I(h::m)=1I1Ch::1)

This says that when we are not in steady state, any mouse command is treated
just like a tick, an interval with no input. That is, mouse commands are ignored
out of steady state. This may be too rigid, however, and mouse-ahead may well
be acceptable if the displayed context when a command is issued is the same as
the context when it is eventually applied. For instance, if there are two

116 Formal Methods for Interactive Systems

independent editing windows, mouse-ahead in one would be allowable even if
there were commands outstanding for the other. Even if the contexts are differ-
ent, the denotation in the context of invocation may still have meaning at the time
of application. For instance, if there are still keyboard entries outstanding for a
find/replace buffer and the user wants to initiate the action, then, if a simple func-
tion key was being used, we would expect most applications to queue it; it seems
reasonable therefore that the lexical change to a find/replace button icon should
behave similarly, allowing mouse-ahead.

A system that disallows some commands, but not others, can be represented
by the existence of a function noted:

noted: H — H
YheH let n = noted(h)
n is a subsequence of &
and [(steady(h)) = I(patient(n))

This says that for any history, we can associate a shorter history of commands
that have been taken note of. These noted commands are a subsequence of the
original commands (dropping out the ignored ones), and the behaviour of the
system is the same as if only the noted commands had been patiently entered.
Note the similarity between this and the definition of perfect buffering in §5.3.3.
This similarity is because systems that possess such a noted function will obey
the exception rule "no guesses" (Chapter 2 §2.9), which suggests that when
exceptions occur a system should not perform a special action, but instead
merely ignore the command that raised the exception.

5.4.2 User solutions

The user should be able to discern what the correct context is. In particular, is
this steady state? This decision must be possible from the contents of the current
display, requiring the existence of a decision procedure for the user, is_steady?:

is_steady?: D — Bool
st VeckE: is_steady?(display(e)) = stable(e)

Although cast as a user decision function, its importance is of course the infor-
mation it requires of the system. This information could be positive (e.g. a status
light when the system is stable), or negative (a red cursor when it’s not): formally
both give equivalent information. Note, however, that the system response pro-
ducing the information must be immediate: it is no use waiting for steady state
for information to say the system wasn’t in steady state when you typed the com-
mand! This is why the definition refers to the current state and its display. Some
systems are always in steady state except when the screen is actually changing
(e.g. cursor moving or text scrolling), and thus lack of change indicates steady
state. We could modify the above condition to look at several displays; however,

The myth of the infinitely fast machine 117

it is reasonable to maintain the definition and regard change as being an attribute
of a single timeframe.

The user needs to determine whether the current context is steady, both to
make valid decisions based on the display, and to predict dynamic response for
cases like mouse-ahead. In the latter situation we see that there is interference
between the computer’s strategies for dealing with dynamic behaviour and the
user’s. For instance, if a user changes windows, the window manager might
throw away key-ahead until the window has been displayed, to avoid accidental
typing to the wrong window. This could be very annoying if the user does not
know when type-ahead can begin again.

If the simple strategy of no mouse-ahead is used then the existence of
is_steady? is sufficient. If, on the other hand, one of the context-sensitive
mouse-ahead strategies is used a more complex observability criterion must be
introduced. This will be related to the function noted introduced above. So that
the user can know whether a command has been noted or not, we need a user
predicate similar to is_steady?. We will call this is_noted?:

is_noted?: D — Bool
st VY h: is_noted?(display(I(h::c)))
< noted(h::c) = noted(h)::c

That is, is_noted? tells us immediately whether or not our command will have an
effect in steady state. An example of this would be a buzzer sounding whenever
a mouse-click has been ignored. Perhaps even better would be to predict before-
hand:

will_be_noted?: D x C — Bool
st YV h: will_be_noted?(display(I(h)), c)
< noted(h::c) = noted(h)::c

That is, will_be_noted? tells us before we enter a command whether or not that
command will have an effect. An example of this would be hour-glass mouse
icons. (Goldberg 1984)

If the user is able to tell from the display whether or not a command has taken
effect (but not of course whether the effect has been as expected, which requires
steady state), then certainly the system needs (in some sense) to know. This
disallows retroactive decisions, such as circular overwriting keyboard buffers (as
in some UNIX systems). In practice this will mean being conservative about
allowing mouse-ahead, only accepting it if we can be sure that the current
context and the steady state context are in the right relation.

Note also that the information for these decision functions must be available
all the time. In particular, it cannot be subject to intermittent or partial display
strategies.

118 Formal Methods for Interactive Systems

5.4.3 Summary of formal analysis

By considering the problem of real-time behaviour formally we have:

. Related precisely the steady-state functionality described in most specifi-
cations and documentation, to the actual temporal behaviour experienced
by the user.

. Shown how the departures from this steady-state functionality can be

described and recorded.

. Used the formal description of these departures to expose specific informa-
tion that must be available to the user: is_steady?, is_noted? and
will_be_noted?.

5.5 What would such systems look like?

Supplying sufficient information to ensure the existence of such decision
procedures is not sufficient; the information must also be in a form
comprehensible and noticeable to the user. We should also take account of
whether we expect the user to be acting consciously or automatically, and where
we expect the centre of attention to be. For example, a user having just asked for
a program to be compiled would expect it to take a while, and would consciously
look out for indications of completion (e.g. a new prompt); on the other hand, if
the user were typing fast into a word processor, we could not expect the same
degree of awareness. Again, if mouse-ahead is prohibited, flashing the mouse
cursor would be an acceptable signal since attention is likely to be centred on the
mouse, yet signifying a locked keyboard by a flashing LED on a key would be
unacceptable for touch typists. Monk (1986) discussed this and similar issues
when considering signalling modes to the user. In fact, the various conditions
considered here (the existence of type-ahead and ignoring commands) could be
thought of as a form of modiness.

We look first at information to represent the steady-state. Here there is a well-
established use of hour-glass, busy bee or watch icons, substituted for the normal
mouse icon, when the computer is busy. However, these tend to be used only
when some significant pause, such as file transfer or global editing, is occurring.
When used they tend to signify that either mouse input or possibly all input is
being ignored. Thus they fall closer to the will_be_noted? than the is_steady?
information. However, on such systems, it is often the case that mouse clicks can
be ignored in other contexts also. The mouse icon could be used consistently in
all non-steady-state situations, especially if we are using the rule of ignoring all
such mouse input. This would be acceptable only if we could be sure that in all
critical situations attention is focused on the mouse cursor, which does
fortunately seem quite likely. The alternative centre of attention is the text entry

The myth of the infinitely fast machine 119

point or current selection (the only one in non-mouse systems). Similar
mechanisms can be used here; however, on more conventional terminals it is
unlikely that there is much choice of cursor attributes, although the one choice
that is often available is between flashing and steady cursor, and this could be
quite appropriate.

The disadvantage of making steady-state information so prominent is that it
could be a significant distraction: imagine the cursor changing icon for a fraction
of a second on each keystroke! If we expect most uses of steady-state
information (as opposed to explicit will_be_noted? information) to be in
situations where users expect problems, then it could be consigned to a status
line, either as a simple flag or more elaborately. Perhaps the most extreme form
of such information would be the munchman buffer. As you type, the characters
appear on the bottom line of the screen. As the application deals with each
character, it is consumed in the bottom left corner (by the munchman!).
Although slightly strange, such an interface might be useful in certain
circumstances, such as command interfaces. Perhaps more likely, particularly
where quite powerful personal computers are used as terminals, would be to have
an icon associated with a window representing the state of the interaction. In its
collapsed form it could have a small bar indicating the fullness of the buffer.
When expanded, more information could be available; in particular, this could be
combined with the status information for a terminal emulator. This would again
be of particular value with command-based interfaces: it allows the user to
determine steady-state, to make predictions about the context where commands
will be interpreted, and gives feedback as to progress which can be very
important if response is slow. (Shneiderman 1984)

If we consider mouse-ahead acceptability, or keyboard locking, then changing
mouse or cursor attributes again becomes by far the best solution. For the mouse
these attributes will be context sensitive, so that the mouse may display a locked
form when over a text window with outstanding updates, but be in its normal
state when moved over a control panel where mouse input is acceptable. This
effectively supplies us with the will_be_noted? information. However, even
though it may be safe to assume the user’s attention is focused on the mouse or
cursor, merely visual cues may not be noticed if the user is acting semi-
automatically. Thus it is insufficient to supply only will_be_noted?
information: feedback (preferably aural) is required when the user makes a
mistake. That is, we need to have the is_noted? information also, and in a
different medium. The usual objections to such feedback (people don’t like
machines that beep at them) don’t hold here, as there is sufficient visual warning
before the fact: the self-aware user can use the visual will_be_noted?
information and thus need never hear a thing.

120 Formal Methods for Interactive Systems

5.6 System requirements

If any of the strategies proposed or any alternatives are adopted, and are only
partly correct, then they may be worse than useless. Users may be lulled into a
false sense of security and then make mistakes which would go unnoticed
because of the reduced attention, or they may eventually come to ignore the
feedback, considering it an unreliable and therefore irrelevant distraction.

Successful implementation depends on the mutual cooperation of the
application, the environment (operating system, window manager, etc.) and the
interface peripherals. We will see that one recalcitrant partner can spoil the
system. Any of these parties, or a combination of them, can take the initiative in
the process. Thus we will consider each of these (environment, application and
peripheral) in turn.

5.6.1 Environment control

Except where communication is over large, slow networks, we can assume
that the operating system has almost immediate control over its interface
hardware. It may not be able to refresh an entire screen in an imperceptible
interval, but at least it will be able to guarantee immediate control over some
portion of the screen, enough to display some status information. Several
problems may arise, however, if the application does not cooperate.

If the application buffers input for itself (e.g. in multi-user systems where
system calls are expensive), the environment cannot know how much has been
used and hence can give only coarse estimates to the user (i.e. no per character
munchman buffers). In single-user systems (for instance CPM), system calls are
usually on a per character basis and the system can thus keep a more exact track
of input pending. In both cases if the operating system allows polling of input
then there is the possibility of busy waits, not allowing the environment to detect
steady-state. This will happen, in particular, when the application is attempting
to perform screen update optimisations, as it will poll to decide whether or not to
update: this is a case of antagonistic temporal strategies. Clearly the application
must pass some message back, for instance guaranteeing to wait on input
eventually. More problems arise when considering non-noted events. Unless
there is a system-wide policy, such as ignoring all mouse-ahead always, only the
application can know the allowable contexts. This is alleviated if the operating
system includes a rudimentary user interface management system. (Pfaff 1985)
The actual application would be perfectly buffered, and a separate
lexical/syntactic module would determine acceptable events, this second module
guaranteeing to run fast enough to be effectively instantaneous.

The myth of the infinitely fast machine 121

5.6.2 Application control

There are several reasons for investing temporal control in the application. It
has most knowledge about the way it will be used and what sort of displays and
feedback are appropriate and consistent with the rest of its operations. Further,
the turnover of applications is far greater than that of operating systems and thus
new ideas can be included more quickly. Finally, and more tentatively, similar to
the desire for consistency across a system, is the desire for consistency of the
same application on different systems.

The application is frequently prevented from exercising control by the
primitives supplied by the environment. On the input side, only blocking input
may be supplied, not allowing the application to decide whether there is any
pending input. This is true, for example, of older Unix systems. In these cases
intermittent update strategies are often possible by requesting large chunks of
input and updating on each chunk; however, steady-state indicators are very
difficult, even when scheduling can be guaranteed to be frequent.

Scheduling problems combine with the paucity of primitives to prevent proper
synchronisation of input and output. Imagine we are about to output a screen
that comprises a major context shift, and we wish to ignore all outstanding input.
The operating system provides a flush_os_buffers call that does immediately
flush all of its outstanding events. The following sequence is no good:

flush_os_buffers();
update(screen);

because the application may be descheduled between the two lines and further
input may be entered before the screen is displayed. Even if there is no delay,
the update itself may take some time and unwanted input may still be accepted.
However, if we reverse the order the situation is worse:

update(screen);
flush_os_buffers() ;

If there is descheduling, the user’s input will be ignored, despite the fact that a
new screen is displayed which, among other things, will imply that input is
acceptable. On the other hand, if there is no delay, the call to update is likely to
mean that the request has been placed in the appropriate queue, but not that it has
completed, thus leading to the same problems as the previous order. These prob-
lems are particularly evident with bit-map displays where the refresh time can be
significant.

Where events are time-stamped, we might try to compare these time-stamps
against the time of last update; however, obtaining this time leads to the same
problems as before. It is only the front-end software that can meaningfully
synchronise input and output, and thus this must supply the relevant information.

122 Formal Methods for Interactive Systems

The simplest solution therefore, which could be provided at little cost, is to have
the window manager or tty-driver, upon request, insert an event into the input
stream when an update completes. The application would then know that any
events received before this were entered while the screen was not up to date.

5.6.3 Peripheral control

Poorly designed interface hardware can destroy attempts at good temporal
behaviour, perhaps by having uncontrollable buffering, or insufficiently rich
operations; however, in practice this is usually an annoyance which can be
overcome. On the other hand, the peripherals rarely contribute anything
positively. This need not be the case. Terminals are getting increasingly
intelligent and this intelligence can be used. To a large extent, a terminal taking
control has the same problems with the underlying system as the operating
system has with the application; however, there are cases where it could be
worthwhile despite this. For instance, where a PC is acting as a terminal over
slow lines or a network, it may well be worth reporting the state of its buffers
even when there may be additional buffering in the host. Perhaps, more
importantly, the terminal can cooperate either with the operating system to take
workload from it, or with the application despite a possibly antagonistic
operating system. This latter case is most interesting, as it can overcome the
technical inertia of the operating system. For instance, synchronisation, such as
suggested above, where output events generate input tokens, can be
accomplished trivially (in fact some VDUs have a who-are-you request which
can be used for this purpose). Instant feedback is more difficult, as this has to be
handled by the terminal if fast scheduling cannot be ensured. However, the
solutions proposed for environment control apply here. Either catch-all policies
such as no mouse-ahead, or simple descriptive mechanisms such as region-
sensitive mouse-ahead, could be provided by appropriate control codes. The use
of PCs as terminals, specially designed programmable terminals such as TIN
(Macfarlane and Thimbleby 1986). or intelligent workstations such as the BLIT,
(Pike 1984) allow the possibility of downloading programs of significant
complexity which could in particular handle the parts of an interface requiring
close synchronisation and rapid response, leaving a bare-bones application in the
host.

5.7 Conclusions — a design approach

The above discussion shows that it is possible to talk about and build fully
temporal systems, by embedding a steady-state design in a real temporal system.
From the above discussion, we have the beginnings of a design approach:

The myth of the infinitely fast machine 123

(i) Take a steady-state functionality.
(i) Decide under what circumstances to allow partial or intermittent update.
(iii)) Decide in what circumstances to ignore user commands.

(iv) Choose ways, not subject to partial or intermittent update, to represent the
achievement of steady-state, to signify when user input is acceptable and
to give feedback when input is ignored.

Stages (ii—iv) are considered separately from the first. In particular, they
would be specified and probably documented separately, there should be support
for them from packages, the environment, the peripherals or some combination,
and further there may be system-wide policies for them, especially for
presentation (stage iv).

Following such a design approach should lead to systems with real-time
properties that are easier to specify, easier to document and easier to use.

124 Formal Methods for Interactive Systems

