
CHAPTER 8

Dynamic pointers: an abstraction for
indicative manipulation

8.1 Introduction

This chapter is about manipulation, by which I mean "doing things to things".
This is a rather wide definition, which at its simplest can be thought of as editing,
but at its richest encompasses virtually all interaction. Most computer activities
involve manipulation at several levels. For instance, you manipulate the
characters and paragraphs of a file to make a document, but you also manipulate
the entire document when you print it. Another example would be statistical
analysis: you manipulate the individual data items to put them in suitable form,
and then manipulate the whole data set with the analysis tool.

It is the opposing forefinger which enables us to be manipulative in the
physical world, and of course it is our forefinger which allows us to be
manipulative in the computer world.

8.1.1 Modes of manipulation

When considering manipulative operations, both in computer systems and in
real life, they appear to be of two major forms:

descriptive – add £1500 to Alan Dix’s salary
indicative – delete this line

In the former case, the content of the desired change is used, and in the second
the word "this" would probably be augmented by a pointing finger indicating the
position of the relevant line. Some operations involve a mixture of these two
modes of manipulation, and the imperative part of the operation (the "add" or the
"delete") may itself be rendered descriptively (e.g. typing) or indicatively (e.g.

- 173 -

Formal Methods for Interactive Systems © Alan Dix 1991

http://www.hiraeth.com/books/formal/

clicking on a button). This leads to a strong hypothesis: content and position are
sufficient for interaction.

To put it another way: when we want to talk about something it is in terms of
what it is like (content) or where it is (position).

This hypothesis is supported in older systems where position is indicated by
line numbers, file names or relative to some "current" position. However, it is
ev en more apparent with modern mouse-based systems where all operations are
supposed to be point and click.

8.1.2 Mediated interaction

Not only are these systems very indicative, but they hav e highly display-
sensitive input. The meaning of this is the thing displayed where the mouse is
pointing. We cannot describe such systems in terms of a "pipe-line" model with
user’s inputs being parsed, then processed and finally outputs being printed.
Such a model of interaction is sufficient to describe "what you see is what you
get", which relates the different outputs of the system, but it cannot handle these
more manipulative systems. In these cases, we expect that any object is
manipulable by indicative actions upon its displayed representation, that is: what
you see is what you can grab. The relevant model for this is one of mediated
interaction, where the current display context is central to the interpretation of
the user’s actions.

8.1.3 Relating levels – translating pointers

These two concepts of mediated interaction and indicative interaction are
closely intertwined. In fact, from the example given, the crucial aspect of display
sensitivity is knowing what the user is indicating. At a cruder level that means
translating between the world of screen positions and the world of object
pointers. All indicative systems achieve this, and the ways in which they do so
are many and varied (and weird but rarely wonderful!). This relationship
between levels can be represented by a pair of functions fwd and back between
the pointers to the objects at the levels (fig. 8.1). These functions are, of course,
connected to the function proj which represents the application objects as
display objects.

This sort of translation may be repeated several times at different conceptual
levels within the system. Typically there seem to be at least three levels. The
innermost consists of the application objects themselves. These are then
represented in some sort of virtual display, for instance, the idea of a whole
formatted document, the entire drawing in a CAD system, or the collection of all
windows. Finally, this unbounded virtual display is mapped into the finite
physical media.

174 Formal Methods for Interactive Systems

display
objects

application
objects

proj

display
pointers

application
pointers

fwd back

figure 8.1 Relating levels – object and pointers
When a user issues an indicative command, the display position can be

translated using the back maps at each level in turn until the appropriate level for
interpreting the command is reached. Similarly, if the system’s response is in
terms of positional information, this is translated using the fwd maps to appear at
the screen in a suitable form.

In such a multi-layered organisation, care is needed to ensure that the repeated
translations back and forth between these pointer spaces behave sensibly. One
expects the fwd and back maps to be "sort of" inverses to one another. It is
surprisingly hard to capture just how "sort of" this is! Further, even having
decided how each level should relate back and forth sensibly, it does not follow
that the composite translation behaves well. An example of this is ladder drift: a
phenomenon where the "lexemes" implicitly defined by the pointer relations do
not agree at the intermediate level. The result of this is that mapping back and
forth through both levels diverges rather than stabilising.

As all indicative systems implicitly have such maps (or even sev eral for
different types of pointers), it is clearly important that they be designed, rather
than come upon accidentally, in order to avoid the pitfalls described, and to
present a systematic user interface.

8.1.4 Pointers in the state

The importance of positional information is clear if we consider the internal
organisation of a manipulative system. The components fall into four basic
classes of object:

• Simple types – For example, mode flags.

• History – For undos. This could either be abstracted into a "meta-context"
or conversely be thought of as making the domain recursive. In either case

Dynamic pointers: an abstraction for indicative manipulation 175

it adds no new types into the system.

• Sub-objects – Sub-objects of the object type that is being manipulated. For
example, copy buffers, find/replace strings, etc. Strictly, these sub-objects
may have some context attached to them; however, again this merely
makes the domain recursive and does not add more basic types.

• Positional information – The cursor position, block pointers, etc.

The confidence that this list is complete stems from the above observation that
manipulative actions are either of the content-oriented form "change fred to
tom", or of the indicative form "do this here", or a mixture of the two. In
particular, the elements that are most distinctively interactive are linked to
positional information.

Further, this positional information is the major element in the interpretation
of commands in relation to the display. In fact, nearly all such feedback can be
regarded as simple conversion between screen position and some positional
information in the underlying object.

Pointers are thus seen to be fundamental in understanding manipulative
interactive systems, and we will study them in detail. We will study the way
pointers change as the objects change, and thus be able to update the editing state
which is constructed largely of pointers. We will be able to separate the object
from its pointers as required in the previous section. We will study the relations
between different objects and their pointers and thus be able to describe the
transformations that occur when a command is interpreted in a particular display
context, and the fidelity of these transformations.

8.1.5 Dynamic pointers

The pointers that are mentioned are not static: rather, when changes happen to
the object the various pointers are changed accordingly, in the sense that they
point to the same semantic entities. That is, we are interested in dynamic
(semantic) pointers.

We can clarify the concept of dynamic pointers in the context of programming
languages, comparing them with normal Pascal or C pointers. These are
dynamic in the sense that they can be assigned different values, but are pointers
to structurally static objects. That is, they may point to different objects and the
objects they point to may change value, but the structure of the object is constant.

We want truly dynamic pointers, semantic pointers to within a structurally
dynamic object, that change their (static) value as the object pointed to changes.
A piece of pseudo-program makes this clear:

176 Formal Methods for Interactive Systems

String A = "abcde" ;
Pointer pt = ref(A[4]) ;
<code to insert x at beginning of A>
print (A, "::", val(pt)) ;

The result would be :

Static pointers: xabcde::c

Dynamic pointers: xabcde::d

That is, the static pointer still points to the fourth element of A, but the
dynamic pointer points to the fifth element of A: it has changed its value as
interpreted statically, but is still pointing to the same semantic entity, "d".
Examples of such pointers in other contexts include pointers to elements in
linked lists (particularly simple, since in most cases the address pointed to stays
fixed) and file names considered as pointers into a file system

8.1.6 How are dynamic pointers specified elsewhere?

Suzuki (1982) and Luckham and Suzuki (1979) give formal semantics for
normal Pascal-type pointers; however, these are, of course, static pointers. We
have to look towards user interfaces to find dynamic pointer specifications.

In Sufrin’s editor, (Sufrin 1982) the cursor is very neatly handled as an
intrinsic part of the object, being the separation point of the text into before and
after. This leads to very clean definitions of operations at the cursor, but is not
suitable for generalisation to more than one pointer. In fact, when an additional
"mark" pointer is required, this must be added as a special character within the
text. This is again very sensible, as on primitive display devices such a mark
would have to be displayed in a character cell of its own. This is also the
approach taken by Wordstar (Wordstar 1981) when allowing user markers,
which are simply embedded control codes. Being an actual character in the text,
such markers are guaranteed to change in a way semantically consistent with the
underlying text.

The disadvantage of this approach is that the object being edited, and the
pointers being used to describe the context of that editing are conflated. This is a
problem even in this simple example; however, in more complex domains it
becomes insuperable. For instance, the technique would be unmanageable if one
allowed several editing windows on the same object, each with its own cursor
and marks! In the following discussion it as crucial that the object being edited
is separate from its pointers.

Dynamic pointers can be found elsewhere. Any editor with user- or system-
defined marks must use them in some sense, as must hypertext systems such as
NoteCards. (Halasz 1987) They may even be supplied in a programmers’
interface: the SunTools graphics package for the Sun workstation has a notion of

Dynamic pointers: an abstraction for indicative manipulation 177

marks for user-modifiable text regions of the screen that have the properties of
dynamic pointers. (Sun 1986) However, the techniques used for implementation
are ad hoc and certainly the importance of dynamic pointers as a datatype does
not seem to be recognised.

8.2 Pointer spaces and projections

We now move on to a more formal treatment of dynamic pointers. Instead of
launching straight into this, we first produce a model of static pointers and then
see how this can be augmented. We then go on to look at the relationships
between pointer spaces using projections, as is necessary if we want to use
pointer spaces for layered designs of interactive systems. The last two
subsections describe the way that several projections can be composed, and how
this affects the properties of the maps that relate the pointers at the different
levels.

8.2.1 Static pointers

In the case of static pointers, clearly we have two sets of interest:

Obj – the set of all objects
Pt – the set of all possible object pointers

For example, in the simple case of character strings and pointers to these we
would have:

Obj = Char*

Pt = IN

where the pointer 0 denotes before the first character, and a pointer n denotes the
gap between the nth and n + 1st character.

Of the possible static pointers, only a subset are meaningful for a particular
object: for instance, the 5000th character is not very meaningful for "abc". Thus
we have a valid pointers map giving the particular subset of Pt meaningful for a
particular object:

vptrs : Obj → IPPt

So, in our example, vptrs(obj) would be {0, . . . , length(obj)}.

This valid pointers map sounds very similar to the vhandles map for handle
spaces in Chapter 4 when we considered windowed systems; however, the
meaning attached is very different. The handles are merely labels for windows

178 Formal Methods for Interactive Systems

and can thus be renamed at will, whereas the pointers possess a semantic
meaning in themselves.

In addition, there will be operations defined on Obj from a set C. Each
operation from C will have a signature of the form:

c : Params[Pt] × Obj → Obj

Params[X] represents some sort of parameter structure, including (possibly)
members of the set X . In the following if f is a function X → Y then we will
assume there is a canonical extension of f to Params[X] → Params[Y], which
is obtained by applying f to each component belonging to X .† Similarly, if Z is
a subset of X then Params[Z] will represent the subset of Params[X] where
each component from X is constrained to lie in Z .

Example

The insert operation on strings may have a parameter structure:

Paramsinsert[Pt] = Char × Pt

with full signature:

insert : Char × Pt × String → String

Clearly, it will only make sense to have parameters containing valid pointers for
the object being acted on. So we will always have the precondition:

params, obj ∈ dom c ⇒ params ∈ Params[vptrs(obj)]

The reader familiar with type theory will recognise this as the parameter being a
dependent type.

For the above example of insertion on strings, we would have for an insertion
into the string "abc":

params ∈ Paramsinsert[vptrs("abc")]
= Paramsinsert[{ 0, . . . , length("abc") }]
= Char × { 0, . . . , length("abc") }

In general, the precondition requiring valid pointers is necessary but not
sufficient. An operation may have a stricter precondition. For instance, consider
deletion on strings.

Paramsdelete[Pt] = Pt

delete : Pt × String → String

The precondition obtained from the valid pointers map would be:

† That is, Params is a functor on the category of sets.

Dynamic pointers: an abstraction for indicative manipulation 179

params ∈ { 0, . . . , length(obj) }

whereas in fact 0 would be an invalid pointer for deletion – there’s nothing to
delete. A more appropriate condition would be:

params ∈ { 1, . . . , length(obj) }

This model describes the sort of pointer values and operations commonly
encountered in programming languages. We will now extend this to allow an
element of dynamism for the pointers.

8.2.2 Pointer spaces – static pointers with pull functions

The essential feature of dynamic pointers is that they change with the object
being updated. The model of static pointers above is functional, and we cannot
change the pointers as such (although later we will consider a model where we
can). Instead we supply a function that describes the changes necessary for the
pointers to retain their semantic integrity.

This is achieved by augmenting the signature of update operations:

c : Params[Pt] × Obj → Obj × (Pt → Pt)

The first part of the result is exactly as described for the static case, and we
require the same consistency condition on the parameters:

params, obj ∈ dom c ⇒ params ∈ Params[vptrs(obj)]

The second result from the operations is the pull function. This tells us how to
change pointers to the original object into pointers to the updated object so that
they maintain their semantic meaning. The pull function must always take valid
pointers to valid pointers, and this leads to the following condition on all com-
mands c:

∀ params, obj ∈ dom c
c(params, obj) = obj′, pull ⇒ pull ∈ vptrs(obj) → vptrs(obj′)

Example (revisited)

We can now redefine the insert operation for strings as:

insert((c, n), s) = s′, pull
where
s′ = s[1, . . . , n]: : c: : s[n + 1, . . . , length(s)]
pull(pt) = pt if pt < n

= pt + 1 if pt ≥ n

180 Formal Methods for Interactive Systems

Given the assumption argued at the beginning of the chapter that pointers are the
principal component of editor state, we can use the pull function as a way of
ensuring that this state changes "naturally" with the underlying object. For
instance, if we have a set of objects Obj and an editing context Context[Pt], we
can perform the obvious update after a change to the object obj ∈ Obj due to an
operation c:

context, obj → pull(context), obj′

where

obj, pull = c(params, obj)

In particular, we can use pull to provide our complementary function for global
commands that we were looking for in Chapter 2. We could, in fact, now giv e a
more generous definition of a global command as any operation where the
parameter contains no pointers.

8.2.3 Relationships between pointer spaces – projections

As well as consistency for pointers, we also entered this chapter at an impasse
when considering layered editor design. In particular, we wanted to relate the
outer display layer to the underlying objects. Further, we wanted the display
context to affect the parsing of user inputs, an important instant being mouse
commands.

In order to describe such layering we will examine relationships between
pointer spaces. In addition, this will enable us to describe one pointer space in
terms of another, perhaps a simpler one, or one possessing an efficient
implementation.

Any relation will be governed by a structure containing pointers and other data
types similar to the parameter for operations, and we will call the set of such
structures Proj struct[Pt]. The relation, which we will call a projection, is a
function with three results:

proj: Obj × Proj struct[Pt] → Obj′ × (Pt → Pt′) × (Pt′ → Pt)

The first component of the result is the simple relation between objects; the sec-
ond and third are the forward and back maps, respectively. These maps relate the
pointers of the two objects in a way which is intended to represent the semantic
relationship between parts of the objects. Clearly, the back and forward maps are
defined only for valid pointers and only valid pointers are allowed in
Proj struct[Pt]:

Dynamic pointers: an abstraction for indicative manipulation 181

∀ obj, proj struct ∈ dom proj
proj struct ∈ Proj struct[vptrs(obj)]
proj(obj, proj struct) = obj′, fwd, back ⇒

fwd ∈ vptrs(obj) → vptrs(obj′)
back ∈ vptrs(obj′) → vptrs(obj)

If the projection is used to describe a layered system, the target of the
projection, Obj′, would be "closer" to the interface and Obj would be more an
internal object. The system would be built by composing the inner object with
the projection. That is, we would be interested in the behaviour of a pair:
Proj struct[Pt] × Obj. We can extend any command c on Obj to an operation
on Proj struct[Pt] × Obj with a pull function on Pt′:

c proj : Param[Pt] × (Proj struct[Pt] × Obj)
→ (Proj struct[Pt] × Obj) × (Pt′ → Pt′)

c proj(param, (proj struct, obj)) = (proj struct′, obj′), pull′

where

proj struct′ = pull(proj struct)
obj′, pull = c(params, obj)
pull′ = fwd′ pull back
fwd′ = proj(proj struct′, obj′). fwd
back = proj(proj struct, obj). back

Predictability demands that a user of such a layered system can infer the
relevant internal state. If this state is of the form above, we must ask what can be
inferred about Proj struct[Pt] × Obj from Obj′, and whether any additional
user-level pointers from Pt′ are needed to determine it.

If there were a one-to-one correspondence between Proj struct[Pt] × Obj
and Obj′, this would give a pointer space structure directly to it. Usually, but not
necessarily, this happens when Proj struct does not have any pointer
components. An example of such a mapping would be certain kinds of pretty
printing, when there is a corresponding parsing function. Proj struct would
then contain information such as line width.

In other cases it will not even be possible to maintain a one-to-one
correspondence with Proj struct[Pt′] × Obj′: for instance, in a display frame
map where only a portion of the underlying object is visible, in a folding map
where the folded information is hidden, or in a pretty printer that displays tabs as
spaces. Thus, if we use projections to model editors, observability will depend
on a strategy of passive actions, as with the red-PIE. In this case we have a much
better definition of passivity, namely an action that alters the Proj struct[Pt] of

182 Formal Methods for Interactive Systems

the state but not the Obj one. In the first two cases, of the display and the folding
map, we would be particularly interested in issues of faithfulness between Obj
and Obj′. This is made easy by the separation of the projection into object and
pointer parts. In the third example, the pretty printing, we would be interested in
the existence of a single projection that gav e a one-to-one correspondence
between Obj and Obj′: for instance, a special view showing tabs as a special font
character.

8.2.4 Composing projections

One use of projections is to aid in the layering of certain types of specification
and modularisation. Bearing in mind that it will almost certainly be necessary to
add extra state at each level as well as the projection information, it seams a good
idea to study the composition of projections in isolation.

We will consider two projections, proj from Obj to Obj′, and proj′ from Obj′
to Obj′′. We consider initially triples of the form:

Obj × Proj struct[Pt] × Proj struct′[Pt′]

We can then derive:

proj†: Obj × Proj struct[Pt] × Proj struct′[Pt′]
→ Obj′′ × (Pt → Pt′′) × (Pt′′ → Pt)

proj†(obj, ps, ps′) = obj′′, fwd′′, back′′

where

fwd′′ = fwd′ ˆfwd
back′′ = back back′
obj′′, fwd′, back′ = proj′(ps′, obj′)
obj′, fwd, back = proj(ps, obj)

This is not a satisfactory projection, as it contains pointers from Pt′ as well as
Pt. Howev er, if the subset of vptrs′(obj′) giv en by fwd(vptrs(obj)) is
sufficiently rich, we may not need the Pt′ pointers at all. Instead, we can project
forward to obtain Proj struct′[Pt′] from Proj struct′[Pt]. We can then
define a proper projection proj′′ from Obj to Obj′′, with projection structure
Proj struct′′[Pt]:

Proj struct′′[Pt] = Proj struct[Pt] × Proj struct′[Pt]

proj′′ : Obj × Proj struct′′[Pt] → Obj′′ × (Pt → Pt′′) × (Pt′′ → Pt)

proj′′(obj, (ps, ps′)) = obj′′, fwd′′, back′′

Dynamic pointers: an abstraction for indicative manipulation 183

where

fwd′′ = fwd′ fwd
back′′ = back back′
obj′′, fwd′, back′ = proj′(fwd(ps′), obj′)
obj′, fwd, back = proj(ps, obj)

This is identical to proj† except for the term fwd(ps′), to change the Obj point-
ers to Obj′ pointers in Proj struct′.

Compositions of projections are particularly useful when we want to consider
multi-layer models of interactive systems. If the projection information is being
embedded into the state of an editor, then the first form may be sufficient.
However, as well as its theoretical interest, the second form has the advantage of
only using one set of pointers, so its behaviour is likely to be more predictable
and comprehensible to the user. Howev er, any attempt to update the second
structure using pointers from the surface Pt, will involve a lot of backing and
fwding. This may lead to odd behaviour unless the two maps have the right sort
of inverse relationship.

8.2.5 Relation of back and forward maps and ladder drift

We hav e said that fwd and back relate the pointers and we expect them to be
"sort of" inverses. There are several possibilities:

(i) Total inverses – the pointers are in one-to-one correspondence, rarely true.

(ii) The back map is an inverse of fwd – often true of pretty printing, but not of
display-type maps where many pointers from the object are mapped to the
display boundaries or bottom.

(iii) The fwd map is an inverse of back – opposite to (ii), ok for display-type
maps, but no good for pretty printing where many pointers in the printed
version may correspond to one in the object, for instance when padding
with spaces.

(iv) There is a subset of "stable" pointers on each side of the projection in one-
to-one correspondence, and fwd and back map the entire set of pointers
into these "stable" subsets. This is represented by the two conditions:

(iva) fwd back fwd = fwd

(ivb) back fwd back = back

Either of (ii) or (iii) implies both these conditions.

Condition (iv) seems a general one that could be demanded of all projections.
Amongst other things, it imputes a lexical structure to the pointers, the set of
pointers mapped together by fwd or back representing a lexeme. It does,
however, suffer from incomposability.

184 Formal Methods for Interactive Systems

If some property is useful, and we want to use projection compositions to
modularise our design of systems, then it is important that the fwd and back maps
from the different projections compose properly.

Pairs of functions, f and b say, obeying (i), (ii) or (iii) all preserve these
properties when composed with similar pairs; property (iv) is unfortunately not
preserved. We can summarise these properties of compositionality in a table.
We hav e two pairs of functions (f : Pt → Pt′, b: Pt′ → Pr) and (f ′: Pt′ → Pt′′,
b′: Pt′′ → Pt′). We compose these to give F = f ′ f , B = b b′ (fig. 8.2).

(ii) (iii) (iva) (ivb)
b f = idPt f b = idPt ′ f b f = f b f b = b

(ii) b′ f ′ = idPt′ B F = idPt FBF = F & BFB = B** FBF = F

(iii) f ′ b′ = idPt′′ * F B = idPt′′ –

(iva) f ′ b′ f ′ = f ′ – BFB = B –

(ivb) b′ f ′ b′ = b′ – BFB = B –n

figure 8.2 properties of composite projections

Unfortunately, the condition marked with the single asterisk is the one most
commonly encountered in the design of display editors; an object is pretty
printed to an intermediate object of infinite extent which is then viewed by a
display mapping. No general conclusions about the resulting projection can be
made, and we have to be careful in the design process to avoid problems.

The difficulty is that the lexemes generated by the two projections do not agree
on the intermediate pointers, Pt′. We can see this by way of an example:

Pt = Pt′ = Pt′′ = IN

f (n) = b(n) = n if n odd or n = 0
= n − 1 if n even and n ≠ 0

f ′(n) = b′(n) = n if n even
= n − 1 if n odd

∀ n > 0 F B(n) = n − 1
{ the only stable point is 0 }

We can can call this problem ladder drift. We can view it pictorially as two
ladders, the rungs being the stable points in one-to-one correspondence of the
two projections. As we step from ladder to ladder and back we gradually slip
downwards: (fig. 8.3).

The only way to avoid ladder drift is to have the lexemes partly "agree" on the
intermediate pointers. The simplest case is when both lexemes are atomic, which
is marked ** in the above table. Another alternative is to hav e the lexemes

Dynamic pointers: an abstraction for indicative manipulation 185

f

b

f ′

b′

.

.

.
.
.

.

0

1

2

2n − 1

2n

2n + 1

figure 8.3 ladder drift

generated by one projection always be complete subsets of those generated by
the other. Even this lax condition is not met by pretty prints and display
mappings. However, they usually satisfy it locally. Pretty prints usually have
lexemes contained within lines; the display map has at its extremes two lexemes,
one for everything before the screen and one for everything after, each of which
consists of whole lines; in the area of the screen its lexemes are atomic. At the
boundary of the two, care must be taken to ensure reasonable behaviour. Despite
this complexity, it is far easier to be convinced of the reasonableness of these
maps when the pointer relation is available separately from the object.

186 Formal Methods for Interactive Systems

8.3 Block operations

We hav e already noted that pointers need not point only to positions within the
object, but may also point to whole areas. Such block pointers are often used as
cursors in syntax-directed editors (Bahike and Hunkel 1987, Parker and Hendley
1987).

Whereas the pull functions for operations concerning atomic pointers are fairly
simple, we find that the cases of block movement and copying are far more
complex. We will concentrate in this section upon block operations upon a
string, partly because it is a well-known structure and the various options are
easy to describe. The resulting problems are far from simple to deal with,
however, and if anything linear structures have more complex behaviour and
more problems associated with their block operations than do operations on tree-
like data structures.

8.3.1 Block delete and insert

Before going on to the complicated examples of move and insert we will look
at block delete and insert operations, which are simpler:

Pt = Block ptrs + Atomic ptrs

block delete: Block ptrs × Obj → Obj × (Pt → Pt)

block delete((n, m), obj) = obj′, pull
where

obj′ = obj[1, . . . , n] : : obj[m + 1, . . . , length(string)]
pull(r) = r if r ≤ n

= n if r ∈ {n + 1, . . . , m}
= r − m + n if r > m

pull((r, s)) = (pull(r), pull(s))

We might complement this with block insert:

block insert : Block ptrs × String × Obj → Obj × (Pt → Pt)

block insert(n, string, obj) = obj′, pull
where

obj′ = obj[1, . . . , n] : : string : : obj[n + 1, . . . , length(string)]
pull(r) = r if r < n

= r + length(string) if r ≥ n
pull((r, s)) = (pull(r), pull(s))

In both these cases the obvious thing to do with block pointers is to modify their

Dynamic pointers: an abstraction for indicative manipulation 187

endpoints using the pull function for atomic pointers. Note, however, the follow-
ing behaviour for block insert:

obj = "abcdef"
b1 = (1, 3)
b2 = (3, 5)
sub object(b1) = "bc"
sub object(b2) = "de"

let obj′, pull = block insert(3, "xyz", obj)
then

obj′ = "abcxyzdef"
pull(b1) = (1, 6)
pull(b2) = (6, 8)
sub object(pull(b1)) = "bcxyz"
sub object(pull(b2)) = "de"

Is this the correct behaviour for semantic pointers?

8.3.2 Block move and copy

In defining these operations, we expect more problems. To help us we
consider several different algebraic properties we might want to hold:

(i) copy(bpt, pt, obj) = block insert(pt, sub object(bpt, obj), obj)

(iia) move(bpt, pt, obj) = obj′, pull
where

pull = pullinsert pulldelete

obj′, pullinsert = block insert(pulldelete(pt), sbpt , objdelete)
sbpt = sub object(bpt, obj)
objdelete, pulldelete = block delete(bpt, obj)

(iib) same as (iia) with delete and insert swopped around.

(iii) move(bpt, pt, obj) = obj′, pull
where

pull = pulldelete pullcopy

obj′, pulldelete = block delete(pullcopy(bpt), objcopy)
objcopy, pullcopy = copy(bpt, pt, obj)

(iv) copy(bpt, pt, obj) = obj′, pull
where

188 Formal Methods for Interactive Systems

pull = pullinsert pullmove

obj′, pullinsert = block insert(pullmove(pt), sbpt , objmove)
sbpt = sub object(bpt, obj)
objmove, pullmove = move(bpt, pt, obj)

If pt is not contained in bpt, (iia) and (iib) are identical. If, however, pt is
contained in bpt then (iib) would imply move(bpt, pt, obj) is the same as
delete(bpt, obj), not quite as intended! Some systems (e.g. ded; Bornat and
Thimbleby 1986) deliberately disallow this case, as it is difficult to reason about
ev en informally and is (for similar reasons) often difficult to implement.

In both cases of (ii), the pointers from within the moved block are not moved
with the block, but are destroyed – in fact, mapped to the single old block
position. In conjunction with them, (iv) says that copy(bpt, pt, obj). pull maps
all pointers within bpt to the old bpt position, even though that area has been
unchanged.

Suppose now that (i) is true. In this case (iib) and (iii) are identical. Condition
(iv) is inconsistent with (iia) or (iib). This is because (iv) corresponds to a "drag
’em along" policy on pointers, whereas condition (i) together with (iia) or (iib)
corresponds to a "keep ’em still" policy. The latter has the great advantage of
monotonicity on pointers.

The "drag ’em along" policy has further strange effects. We consider moving
and copying the block (n,m) to the point p. For simplicity, we assume p ≤ n:

move((n, m), p, obj) = obj′, pull
where

obj′ = obj[1, . . . , n] : : obj[m + 1, . . . , p] : : obj[n + 1, . . . , m]
: : obj[p + 1, . . . , length(obj)]

pull(r) = r if r ≤ n
= r + p − m if r ∈ {n + 1, . . . , m}
= r − m + n if r ∈ {m + 1, . . . , p}
= r if r > p

pull((r, s)) = (pull(r), pull(s)) ??

Dynamic pointers: an abstraction for indicative manipulation 189

copy((n, m), p, obj) = obj′, pull
where

obj′ = obj[1, . . . , p] : : obj[n + 1, . . . , m]
: : obj[p + 1, . . . , length(obj)]

pull(r) = r if r ≤ p and r ∈ {n + 1, . . . , m}
= r + p − n if r ∈ {n + 1, . . . , m}
= r + m − n if r > p

pull((r, s)) = (pull(r), pull(s)) ??

The pull for the pointers is obvious given the policy, but the pull for the blocks
(marked with ??) is not so clear. In fact, the non-monotonicity of the pull
function has had disastrous consequences on the blocks, as we can see from the
following example:

obj = "abcdefg"
b1 = (3, 5)
b2 = (4, 6)
sub object(b1, obj) = "de"

let obj′, pull = block move(b2, 2, obj)
then

obj′ = "aefbcdg"
pull(b1) = (5, 2) = (2, 5) ??
sub object(pull(b1), obj′) = "fbc"

As we see, the block pointer gets its ends reversed. If we assume (at the point
marked ??) that this is the same as the properly ordered block pointer, then we
get the very odd result for the sub-object of the pulled block. This is clearly not
correct behaviour for semantic pointers.

The alternatives for the choice of block pull function are either to treat pointers
like pull(b1) as inv alid and say (5, 2) = bottom, put up with silly behaviour
like " fbc" above, or hav e more complex block pull functions. Both those blocks
totally contained in bpt and those disjoint from it behave as we would expect.
Blocks bridging either end of bpt could be curtailed in some way, either by
removing the bit inside, or the bit outside bpt. There are two alternatives for this
chopping. We could chop off the inside, that is, a "leave ’em behind" policy for
these blocks – within the general "drag ’em along" policy for atomic pointers:

pullmove((r, s)) = (r′, s′)

where

190 Formal Methods for Interactive Systems

if r, s ∈ {n + 1, . . . , m} or r, s ∉ {n + 1, . . . , m}
then

r′ = pull(r)
s′ = pull(s)

else
r′ = pull(n) if r ∈ {n + 1, . . . , m}

= pull(r) otherwise
s′ = pull(n) if s ∈ {n + 1, . . . , m}

= pull(s) otherwise

Alternatively, we could chop off the bit outside, leading to a "drag ’em along"
policy for these blocks:

pullmove((r, s)) = (r′, s′)

where

if r, s ∈ {n + 1, . . . , m} or r, s ∉ {n + 1, . . . , m}
then

r′ = pull(r)
s′ = pull(s)

else
r′ = pull(n) if r ∉ {n + 1, . . . , m}

= pull(r) otherwise
s′ = pull(n) if s ∉ {n + 1, . . . , m}

= pull(s) otherwise

These strategies, although possible, are hardly simple or clear and have very
strange behaviour on the block inclusion relationship.

Another way round the problem is to allow complex blocks consisting of lists
of intervals.† In the example given above:

b1 = (3, 5)
sub object(b1, obj) = "de"
pull(b1) = {(5, 6), (1, 2)}
sub object(pull(b1, obj′)) = {"e", "d" }

This solution still has problems, since intervals can become non-intervals; we
may need to define block moves and their pulls with non-interval parameters!

† I hav e been told that this is the solution adopted for links in the Xanadu hypertext system
(Nelson 1981), although I have not seen any documentation confirming this.

Dynamic pointers: an abstraction for indicative manipulation 191

8.3.3 Block move in various editors

It is instructive to look at various editors and see how they handle pointer
movement for block operations. We will consider four editors. Vi (Joy 1980)
and ded (Bornat and Thimbleby 1986) are two heavily screen-based text editors
operating under Unix. Wordstar, (Wordstar 1981) in various versions is
probably the world’s most widely used word processor for microcomputers. Spy
(Collis et al. 1984) is a mouse-based multi-file editor for bit-map workstations.

• Atomic pointers – Vi inherits line pointers from its line editor predecessor;
however, it uses cut/paste rather than an atomic block copy or move. It
therefore follows a "leave ’em behind" strategy, satisfying conditions (i)
and (iia). Vi gets round this very neatly, by having only one pointer, the
current cursor position, and making all insertions at this point! Ded has
only one atomic pointer, the cursor, and it always moves this to the site of
block deletion, or movement, irrespective of where it started off. Wordstar
has multiple atomic pointers, but these are represented within the text as
control sequences, thus they are moved with the rest of the text in block
moves, and the user can even choose whether or not to include the pointers
at the block boundary. Spy has marks which are moved with the text in
block moves, and duplicated in block copy.

• Block pointers – Vi doesn’t hav e any, howev er, because it uses cut/paste; if
it were to have block pointers they would presumably be handled by the
"leave ’em behind" strategy. Ded allows only non-intersecting blocks, and
hence avoids the intersecting blocks problem. Wordstar and Spy both have
only one block pointer (in Spy’s case the selection) and so also avoid this
problem.

We see that common editors usually solve these problems in an ad hoc
manner, sometimes deliberately avoiding them, sometimes not possessing the
functionality to show them up. They also tend to incorporate many special cases
(especially for the cursor/selection). These inconsistencies are precisely what we
want to avoid by use of pointer spaces. Even if some inconsistency is tolerable
for monolithic editors, it is not acceptable where generic components are
required or where concurrent access to the edited object is required. A good rule
of thumb is to adopt the "leave ’em behind" strategy, possibly with special rules
for cursor/selection.

192 Formal Methods for Interactive Systems

8.4 Further properties of pointer spaces

In this section we discuss briefly some more advanced properties of pointer
spaces, particularly those concerned with the formal treatment of block pointers.
A more rigorous treatment of these properties, many of which are simply
generalisations of the properties of intervals, can be found in Dix (1987b).

8.4.1 Types of pointer and relations on pointers

So far, no structure has been assumed on the set of pointers. However, in
practice most pointers spaces are highly structured. This structure includes:

• Special elements – e.g. beginning and end pointers.

• Classes of pointers – e.g. for strings before-character and after-character
pointers, and for trees, node and leaf pointers.

• Ordering and other relations – e.g. partial or total ordering of Pt or
vptrs(obj).

The relation on pointers is most general, classes being unary relations and special
elements being classes of a single element. They can thus all be described in the
same way, but there is certainly a perceived difference.

The structure of the object may force structure on the pointers: for instance, an
object consisting of two major sub-objects may have a set of pointers divided
into two classes according to the sub-object to which they point. Conversely, the
pointers may be used to impute structure to an otherwise unstructured object: for
instance, a string of characters may have pointers corresponding to paragraphs,
sentences and words.

We hav e already considered the case of block pointers onto string; in general,
there are likely to be block pointers indicating portions of the object. These
typically have associated with them a whole set of relations of their own (e.g.
inclusion, intersection), and special sub-object projection maps.

8.4.2 Absolute and relative structure

As we have seen, some structure is built into the pointers themselves, and
some they inherit from the objects. When the structure is inherited from some
non-constant feature of the objects, or when it is defined using the objects, it will
be relative to a particular object. If, on the other hand, the structure can be
defined independently of any particular object, we will say it is absolute. If
F(Pt) represents the structure operator we are interested in, then we have the
following two definitions:

Dynamic pointers: an abstraction for indicative manipulation 193

absolute structure:

struct ∈ F(Pt)

relative structure:

struct ∈ Obj → F(Pt) st struct(obj) ∈ F(vptrs(obj))

Note that an absolute structure is a relative structure with a constant map. Hence
we may, if we wish to, deal with relative structures and include absolute struc-
tures by default.

An example of a class with relative structure is word pointers on strings:
whether a block refers to a word or not depends on the specific string pointed to
and not on the pointer. Perhaps a more common form of relative structure is the
end pointer for strings, which depends on the length of the string. This does
have the useful property that it needs to be parametrised only over vptrs(obj).

There are strong consistency and simplicity arguments for trying to deal with
absolute structures as much as possible. However, as the word pointer and end
pointer examples illustrate, relative structures are often natural.

8.4.3 Pull functions and structure

For consistency, it would be desirable if pull functions preserved in some
sense the structures on the pointers. Taking again strings as examples, most
simple manipulative actions, such as insert and delete, are monotonic on the
natural pointer order. Similarly, they preserve block inclusion and end pointers.
They do not, however, preserve start pointers when inserting at the string
beginning. The start pointer for the original string ends up pointing after the
character inserted and is therefore not preserved. We might try to get round this
by adding start pointers as special objects to Pt, Pt = IN ∪ {START }, but we
would quickly find that adding such elements complicates the description, and
hides consistency (START behaves like pointer 0 in all respects except update).

On the positive side, note that the start pointer is altered only when it is near to
the site of the insert. That is, there is some locality of the update outside which
the pull is consistent. This idea of locality is very important in the interactive
context, as changes to an object can afford to be strange so long as they are
strange only in the locality of the point of interaction, and consistent elsewhere.
The simple string functions even preserve (up to locality) the relative word
pointers.

194 Formal Methods for Interactive Systems

8.4.4 Block structure

The fact that blocks refer to sections of the underlying object means that they
have some inherent structure. We would want to say whether two block pointers
intersected, (or interfered with) one another, or whether one contained the other.
Similarly, we might want to define an operation that, given two block pointers,
gave a pointer as their intersection. These relations would want to satisfy
sensible lattice properties, similar to those of sets or intervals. For example, we
would want the intersection of two blocks to be contained in both of them.

There are some differences between the operations on block pointers and the
natural operations on intervals. We want to be conservative when dealing with
blocks, so we want to say that two blocks interfere even if the intersection we
return is empty. Similarly, we should not insist that the intersection of two
blocks is maximal.

Depending on the structure of the underlying object, we may be able to
distinguish blocks that refer to several disparate parts of the object from
intervals. This sub-class of blocks would have additional properties, especially
when there is an ordering on the object and its atomic pointers.

8.4.5 Sub-object projections

Most objects of any richness at all can be viewed in part as well as in whole.
Even simple integers can be decomposed into digits or into prime factors.
Sometimes we have a relatively unstructured relation between object and sub-
object, such as sub-strings of strings. In other cases, the relation is stronger, for
instance a sub-tree of a syntax tree corresponding to a while loop. If the
relationship between object and sub-object is sufficiently natural there will be a
relation between their pointers, and we will be able to construct a projection, the
defining structure of which will typically be a single block pointer. If the
pointers are not rich enough for this already, they can usually be extended to
include sub-object projection structures.

In more explicit terms, we are going to associate with a pointer space,
<Obj, PObj >, a sub-object pointer space, <Sobj, PSobj >, and a projection:

sub object: BptObj × Obj → Sobj × (PObj → PSobj) × (PSobj , PObj)

The normal rules for projections apply but, because of the special nature of sub-
objects, the fwd and back maps will have additional properties. In particular, we
would expect a one-to-one correspondence between the sub-object pointers and
some subset of the object pointers. That is, fwd is a left inverse to back:

∀ b ∈ Bpt, obj ∈ Obj let sobj, fwd, back = sub object(b, obj)
then fwd back = idvptrs(sobj)

Alternatively, we could define a sub-object projection to be any projection

Dynamic pointers: an abstraction for indicative manipulation 195

satisfying the above condition.

Often there will be a block pointer corresponding to the whole of an object
(usually relative to vptrs(obj)) that yields the whole object. That is, the fwd and
back for this sub-object are one-to-one, and the resulting projection is one-to-one
when considering Obj as whole. If we do not possess such block pointers, we
can always construct them.

It will usually be the case that we can consider sub-objects of sub-objects; that
is, the sub-object projection is in fact an auto-projection:

sub object: < Sobj, PSobj > → < Sobj, PSobj >

the original objects, Obj, being a subspace of Sobj.

We expect there to be coherence properties for the sub-object projections. If
we look at a sub-object B and a sub-object of it, C, then we expect the combined
sub-object projections from the object to B and then from B to C to be the same
as if we had gone to C directly.

The existence of a sub-object projection automatically generates some
relations on the block pointers. There is an obvious containment relation by
examining the block pointers of sub-objects, and we can generate an
independence relation on blocks by seeing whether all possible values of the sub-
objects can occur together.

8.4.6 Intervals and locality information

Blocks, usually interval blocks, have a special role to play in providing locality
information. Typically an operation changes only a very small part of an object,
and outside this locality the object is unchanged and the pull function takes a
particularly simple form. We can express this by having certain operations return
an additional block pointer value, its locality:

c : Params[Pt] × Obj → Obj × (Pt → Pt) × Bpt

We will refer to this additional component as c(params, obj). loc.

This locality information has the property that for any block that doesn’t
intersect, c(params, obj). loc yields the same object before and after the
operation; similarly, the pointers yielded by the sub-object projection are
invariant under c(params, obj). pull:

let obj′, pull, loc = c(params, obj)
if b ∈ vptrs(obj)
and b does not intersect loc
then sub object(b, obj) = sub object(pull(b), obj′)

196 Formal Methods for Interactive Systems

We could, in fact, define an optimal locality by letting the locality of
c(params, obj) be a minimal block satisfying the above. In practice, however,
we would return a conservative estimate of the locality, rather than the optimal
locality. For instance, for the overwrite operation on strings, overwriting the nth
character will normally have a locality of (n − 1, n); however, if the character
overwritten is the same as the original character the optimal locality is null. In
such cases it may often be better to deal with the generic locality rather than the
particular one, both for computational simplicity and for ease of abstract
analysis.

Locality information can be used to express user interface properties. If the
locality of an operation is contained within the display then the user has seen all
of the changes. This gives a more precise version of the "mistakes in local
commands are obvious" principle stated in Chapter 2. We hav e confidence not
only that we can see when there has been a change, but also that we can see all
of the change.

8.4.7 Locality and optimisation

Locality information can also be invaluable in performing various
optimisations. By knowing where changes have occurred, we can cache sub-
objects and know when the caches become invalid. Further, if we know the
structure of pointers we can often optimise pull functions outside the locality.
For example, if we know that the locality of the string operation,
op(21307, The complete works of Shakespeare), is (21306, 21309) and that
pull(21310) = 21323, then we know we can just add 13 to all pointers greater
than 21306, leave unchanged those less than 21306 and perform the function call
only on pointers in the range 21306 to 21309. Such optimisation can be very
important, as a function call is expensive compared with addition.

Frequently such optimisations will be possible where the operation is defined
using a projection and the projection has "nice" locality properties. A self-
contained block is the simplest such locality property. It is a block whose
projection is dependent only on the sub-object it contains. An example of a self-
contained block, would be a paragraph in text, which can be formatted
independently of the surrounding context. If an update operation is performed
and the locality of the operation does not intersect with the locality of the block,
then the projection of that block is unchanged.

There is a slight complication in this definition. Whether or not a block is
self-contained is usually dependent on the object into which it points. That is,
self-containedness is usually a relative structure. We must therefore demand that
a block is self-contained both before and after the operation. For example, if we
deleted the line between a paragraph and the preceding one, the original
paragraph would be part of a larger paragraph and hence no longer be self-

Dynamic pointers: an abstraction for indicative manipulation 197

contained itself.

Even where self-contained blocks exist, they may be large. If we change a
character within a paragraph, it will not change the formatting of much of the
paragraph. Only occasionally will it even mean reformatting to the end of the
paragraph. However, not even the beginning of the paragraph will be a self-
contained block, as the formatting of its last line will depend on the length of the
following word.

We can cater for such cases by considering the notion of the context of a
block. This is some information that, together with the contents of the block, is
sufficient to determine the projection of the block. This context will typically be
a surrounding block pointer together with some additional information. Thus if
the locality of an operation does not intersect the context of a block, we do not
have to update the projection of the block. This generalises the notion of self-
contained block sufficiently to be useful. Indeed, block contexts were used in the
optimisation of an experimental editor developed at York. (ce)

8.4.8 Locality information and general change information

The locality information, like the pull function, can be thought of as an
example of change information. Similar constructs appear when considering, for
example, views of objects. Again a view cannot be defined outside the context of
a particular object. Thus pointers and pull functions can be seen as examples of
a general phenomenon. On the other hand, I believe that many such constructs
can be modelled using pointers and pulls, although sometimes it will be best to
import only a subset of their functionality into the new domain.

8.4.9 Generalisations of pointer spaces

The reader will have been struck by the similarity between operations with
pull functions, and projections. The former are, of course, a special case of the
latter where the two objects are of the same type. The reason for not including
an inverse for pull in the definition of all operations is that we are after a way to
describe the update properties of systems, and hence this is unnecessary. We
could imagine cases where it would be of help. For instance, I might change a
file and want to trace back a position in the changed document to the original.
We might go further and say that both update operations and projections should
supply a relation, rather than functions. We could constrain this relation so that it
satisfies the pseudo-inverse property of §8.2.5. Again, the reason for not doing
so is that we are after a formulation that will enable a system to perform the
translations automatically; a relation will yield a choice that the system would
not know how to deal with.

198 Formal Methods for Interactive Systems

We could use relations in two sets of circumstances, though. First, in the early
specification of a pointer space or projection, we might know what class of
behaviours is acceptable, but not be decided exactly which as yet. This would
certainly be the case with the various options for block move and copy, where the
range of possibilities is reasonably clear, but not the exact choice. The second
place where relations would be useful would be where the pointers are an explicit
part of the interface. For instance, it might be sensible for user-defined marks to
split when the block containing them is copied, or alternatively for the user to be
consulted on what to do with them. This would still be arduous if the user was
not given sensible defaults, especially as the number of pointers grows (as in a
shared hypertext). Perhaps the best course to take would be to supply both a
relation and preferred destinations (in the form of functions consistent with the
relation). The designer of a system could then choose whether to use the default
supplied, to split pointers over their options, or to offer the end-user choice.

The changes that would need to be made to encompass this generalisation are
fairly obvious and would serve only to clutter the exposition. For that reason this
chapter (long enough already!) has followed the simple method.

Generalising in a different direction, dynamic pointers are associated with
positions. This was the starting point for this chapter. In fact, the axioms given
for pointer spaces are very sparse and do not constrain us to this interpretation.
There are other structures that are not directly positional in themselves but have
similar properties. For instance, we discuss views in the next chapter.
Throughout most of that chapter we deal with static views, but many views of
objects in interactive applications share many of the properties of pointer spaces.
Elsewhere I have shown how dynamic views can be defined in terms of block
pointers and sub-object projections. (cf) This supports the hypothesis that
position is central to interactive system design. On the other hand, even if we
can describe a phenomenon in terms of positional pointers, it may be better (in
view of our behavioural slant) to use just that subset of the properties of pointer
spaces that are needed to describe it, and apply them directly to the domain of
interest.

8.5 Applications of dynamic pointers

To conclude this chapter we look at the uses of dynamic pointers, both present
and future. We first concentrate on the ways that dynamic pointers are used
currently in a variety of systems. Some of these have been mentioned before in
the chapter, but they are gathered together for reference. After this, we consider
the importance of dynamic pointers in the creation of advanced user interfaces.
In particular, many of the examples concentrate on programming support
environments.

Dynamic pointers: an abstraction for indicative manipulation 199

8.5.1 Present use of dynamic pointers

The use of dynamic pointers which we have focussed on particularly has been
the design of editors. Here, as we have already seen, are found many examples:
cursors, selection regions, marked blocks, display frame boundaries, folded
regions. All of these constructs must have some of the properties of dynamic
pointers, and would ideally have some sort of consistency between them.
Usually their semantics are regarded severally and in an ad hoc manner; even an
informal concentration on their similarity would rationalise editor design.

Hypertext systems must again use dynamic pointers; these fall into several
categories. NoteCards (Halasz et al. 1987) is primarily a point-to-object system:
the text of a card can contain atomic references to other cards in the system. The
references to the objects can be regarded as dynamic pointers into the card
database, as well as the reference points being dynamic pointers into the card’s
text. NoteCards also supports what it calls global links. These are links between
cards that do not reside at a particular location in the card, and could be
described as object-to-object. This is the sort of linkage handled by conventional
databases. The Brown University Intermedia system (Yankelovich et al. 1985)
uses a block-to-block method where blocks in the text of a hypertext object
reference other blocks. However, these references take place through
intermediate objects recording information about the link, so this could be
regarded as a sugared form of a block-to-object link. The awkward problem of
how to represent block links is resolved here by indicating only the start position
of a referenced block and displaying the whole block on request. This problem
of display arises continually when dealing with objects with a large number of
links. If the density of links is too high it will be necessary to hide those types of
links not of interest, or if one is interested only in the object itself then perhaps
all the links. If this is the case then it becomes even more important that the
movement of these links is sensible and predictable when the object is edited. In
the majority of cases the pointers in the above are implemented either by
embedded codes in the objects of interest or as references to representations such
as linked lists.

Databases and file systems provide a wealth of dynamic pointer examples. In
a way, all file names can be thought of as dynamic pointers. They usually retain
the semantic link to the files to which they point, even when those files change
their content. They are a particularly simple example, because of the simplicity
of typical file system structures. They fail to be true dynamic pointers, in that the
file name itself has (or should have) some sort of mnemonic meaning in itself: it
both denotes some of the subject matter of the file and often, by means of
extension names, may denote type information. Thus the file name is in a sense
an attribute of the file rather than a simple handle to it. Those who call their files
names such as "jim" and "mary" come closer to the ideal of dynamic pointers!
Despite this difference, there are enough similarities to make the analogy useful.

200 Formal Methods for Interactive Systems

In the underlying implementation of file systems one comes closer to true
dynamic pointers. For instance, in the Unix file system (Thompson and Ritchie
1978), each file is denoted by an integer, its i-node number. Even when the file
name changes, this number remains unchanged and similarly, whereas the
location on disc where a file is stored may change as it is written to and
rewritten, the i-node remains the same.

Again, at two lev els databases have dynamic pointers. At the user level these
are database key values: these denote a semantic record, even when the record
contents change or the database is reorganised. These keys are usually
meaningful, like file names: in fact, usually more so. It is often argued that this
is a shortcoming in database design: for instance, a record keyed by surname and
forename might change its key value when the subject married. Some more
advanced relational database designs codify this meaninglessness by supplying
system-defined surrogate keys for each entity. (Earl et al. 1986) This gets close
to the sort of referencing between records and their sub-records in network
databases, again a place where the integrity of the semantic link must be
maintained despite changes in the database values.

Finally, we could look at the example (anathema to computer scientists) of the
BASIC programming language. (Kurtz 1978) In this, all statements are
numbered. When, as often happens, the programmer finds that the original
choice of numbering left too little space for the statements required, most
systems supply a command that changes the numbering to space out the
program. In the process all statements that refer to line numbers have their
operands changed accordingly. That is, the number "100" in "GOTO 100" is, in
fact, a dynamic pointer to the statement numbered "100"!

8.5.2 Future use of dynamic pointers in advanced applications

Once one recognises dynamic pointers as a central data type, many different
applications become obvious, some being self-contained, like the editor, others
requiring that the pointers be an integrated part of the environment in which the
application operates.

In the previous sub-section, we noted that file names are really an attribute of
file objects, rather than just a handle to them. In direct manipulation systems
there is less need for all objects to be denoted by file names. Naming is still
important, as the work on window managers and the problem of aliasing
emphasises (§1.5.2). However, names could become more of an extended
annotation of the file contents, rather than the principal method of manipulation,
a job taken over by the mouse and icon. In addition, temporary objects, which
have no identity of their own but have importance merely for their contents, can
remain anonymous, being denoted only by their spatial arrangement on the
screen. In such cases the distinction between objects and the windows and icons

Dynamic pointers: an abstraction for indicative manipulation 201

representing them can become slightly blurred, and it is not surprising that the
model for representing windows and that for dynamic pointers are similar. It is
likely that the distinction between such systems and hypertexts may also become
blurred: for instance, the directory or folder would become a simple list of
dynamic pointers to other objects, similar to the file-box in NoteCards (Halasz et
al. 1987). It would be quite natural that files describing the file system (perhaps
containing dependency information, such as in the Unix utility "make"
(Thompson and Ritchie 1978), could be created using pointers rather than names.
It is unclear whether names in such a system would be an attribute of the object
or of the link; perhaps both would be allowed.

Pointer spaces and projections will be indispensable for representing
concurrent editing on multiple views of the same object: for instance, when
manipulating a graphical object directly and at the same time editing its
representation in a graphics representation language. Similarly, one might want
to edit an unformatted text and its formatted form concurrently. Such dual-
representation editing overcomes some of the doubts raised about the limitations
of direct manipulation for representing the full functionality desired, freeing the
user to choose among the different representations as is most natural and useful.

As we’ve already noted, an environment where dynamic pointers are normal
would lead to the development of facilities such as find/replace as general tools.
Contrast this for instance with Unix, which has general-purpose find tools (grep,
fgrep, egrep) and global context editors (sed, awk) at the command interface
level (Thompson and Ritchie 1978), but because they are not easily interfaced at
the program level their facilities are repeated throughout the different editors of
the system. Obviously, for some task-specific reason a designer may want to
incorporate slight variants of existing tools within new applications, but she
should not be forced to do so.

Thinking of such simple text tools at the command interface level, leads nicely
to considering the more complex tools of a programming environment. Multi-
stage compilers already have to retain some of the notion of a back function to
the original source in order to give sensible error messages. For instance, the "C"
language pre-processor (Kernighan and Ritchie 1978) embeds control lines into
the output stream so that the later stages can know from which line of which file
errors originated. Other similar tools in the Unix environment do not have such
facilities, so for instance using the various pre-processors to the typesetter "troff"
(Ossanna 1976) means that error messages are recorded at line numbers that
bear no relation to the original text. A consistent framework at the level of the
environment would make all these tools easier to define and use.

When error messages are reported (assuming they refer to the correct
locations) dynamic pointers are again useful. For instance, the "ded" display
editor (Bornat and Thimbleby 1986) has a facility for taking the error messages
from a compiler and stepping through the source to the line of each error

202 Formal Methods for Interactive Systems

message. Unfortunately, as the file is corrected, the line numbers make less and
less sense in relation to the new file. In essence, the pull function has been
ignored. If the underlying implementation had been in terms of dynamic
pointers this failing would have been avoided: the error messages would have
been parsed into dynamic pointers to the original source file. (Assuming they
were not already supplied in this form by the compiler.) Then as the file changed
when the errors were corrected, the dynamic pointers would have kept pace with
the semantic position in the file to which they refer. The Microsoft QuickC
environment, (QuickC 1988) where a compiler, editor and debugger are all
designed in a consistent framework, does behave in the appropriate manner, and
positional elements such as breakpoints and error lines retain their semantic
position through changes. Of course, the dynamic pointers are part of the
QuickC environment, rather than of the operating system or file system.
Therefore, if you choose to use your own editor rather than the QuickC editor the
semantic positions are lost.

Where compilation is integrated into the editing environment, dynamic
pointers can aid in incremental compilation and error reporting. Alternatively,
they may actually form the basis of integration of editors and compilers, regarded
as separate tools within a dynamic pointer-based environment. In the next sub-
section we see a detailed example of how locality information can give textual
editing advantages similar to syntax-directed editing in terms of incremental
parsing, and superior in some important cases. It also gives an example of how
the locality information can be used to give improved error reports based on
assuming the changed region is at fault, and warnings where unintentional syntax
slips are suspected.

Similarly, dynamic pointers can be used for proof reuse. The correctness
proof between various stages in the refinement of a formal specification could be
very large. It would be tedious to have to redo the whole proof after every
change even when one knew that the proofs would be nearly identical. High-
level proof heuristics and plans (Bundy 1983) will, of course, save this work, but
in many cases it will be possible to use the proof exactly except that the pivot
points for the application of the proof steps will have changed marginally. If the
pivotal expressions are represented by dynamic pointers, then the positions after
the change will probably lead to a completely faultless reapplication of the proof.
In the cases where this fails, it will at least remove some of the tedious work
from the shoulders of either the programmer or the more intelligent theorem
prover.

Dynamic pointers: an abstraction for indicative manipulation 203

8.5.3 Incremental parsing and error reporting using dynamic
pointers

We hav e considered many possible uses of dynamic pointers and we will now
look in detail at their use for incremental parsing and error reporting. We could
expand in a similar fashion on several of the points raised above, but the present
discussion can serve as an illustration.

Syntax-directed editors can achieve a large degree of incremental semantic
checking and compilation because of their knowledge about the syntactic objects
changed and the extent of such changes. Often, as users are not totally happy
with the syntax-directed approach for all editing, they are allowed the selection
of regions for standard text editing. (Bahike and Hunkel 1987) Unfortunately,
such regions have to be completely reparsed and analysed when the text editing
is complete. Using the locality information that can be supplied by dynamic
pointer operations, together with the projection information between the existing
parse tree and original text and the pull function relating that to the new text, one
can reduce the work needed dramatically. This information can be used with
both small-scale and large-scale changes:

• Small-scale changes – The advantages here are similar to those of syntax-
directed editing. It is possible to infer from the locality of a change to the
text what corresponding section of syntax tree should be changed, and just
reparse this.

• Large-scale changes – One of the reasons for switching out of syntax edit-
ing mode may be that the syntactic primatives make it difficult to change
the flow of large-scale control structures, where the blocks that these con-
trol are unchanged. As the controlled blocks can be arbitrarily large this
may be very costly in terms of reanalysis. However, the locality informa-
tion can indicate which pieces of text corresponding to well-formed syn-
tactic entities are unchanged, and thus only the surrounding context will
require reanalysis.

The case of large-scale change is perhaps less obvious and is more important,
so we consider an example program fragment:

while (x > 0) {
y = f(x);
/* lots more statements */

......
/* finished all the hard work now */
x = x-1;
} /* end while */

204 Formal Methods for Interactive Systems

The programmer then realises that the variable x can only have the values 0 or 1
when the while loop is encountered, and amends the program by changing the
while statement to anif and deleting the line x = x-1:

if (x > 0) {
y = f(x);
/* lots more statements */

......
/* finished all the hard work now */
} /* end if */

By examining the locality of change the parser/compiler can realise that the sub-
expression x > 0 and the main group of statements have been unchanged, and
thus retains the old syntax tree for them, just reparsing the token if and the
statement brackets "{}".

Where the grammar is ambiguous this approach may yield the non-preferred
interpretation and thus the syntax tree may need slight jiggering. Alternatively,
ev en though the sub-expression is still the same, it may be the case that there is
no proper parsing based on the assumption of the sub-tree being the correct
parsing for its text fragment; this would force one to reanalyse more (unchanged)
text. Again, it depends on the grammar whether this is likely or even possible.
In the second case, there may be no correct parsing because of a syntax error.
Working on the assumption that the previously parsable section is correct, one
may be able to make far better error reports (and perhaps intelligent suggestions)
than normal. In either case, even where there is no error, the change in meaning
of the sub-expression may be intentional, but there is a good chance that it is
accidental and warnings could be given. For example, consider the "dangling
else" problem, a classic example where the syntax tree might need jiggering.
The programmer starts off with the following fragment:

if (x != 0)
y = f(x);

else
y = 1;

Then, realising that f(x) causes an overflow if the global variable z is zero, the
programmer amends it to leavey unchanged in this case:

if (x != 0)
if (z != 0)

y = f(x);
else

y = 1;

Dynamic pointers: an abstraction for indicative manipulation 205

The original parse tree would have the following form:

if else

x != 0 y = f(x) y = 1

Only the text corresponding to the then arm would have been altered, so the
amended tree would be:

if else

x != 0 if

z != 0 y = f(x)

y = 1

However, the analyser would realise that this was taking the wrong rule for dis-
ambiguating the danglingelse and it should be bound to the innermostif. The
tree would finally read:

206 Formal Methods for Interactive Systems

if

x != 0 if else

z != 0 y = f(x) y = 1

At this stage it would be worth giving a warning, as although this change in the
form of the syntax tree might have been just what was intended (and a good rea-
son for using text editing rather than syntactic operations), it could easily have
been a mistake. In this example, the reparsing was of course wrong with respect
to the programmer’s intentions and the warning would have been appreciated.

8.6 Discussion

We hav e seen in this chapter how dynamic pointers can be given a clean
semantic definition in terms of pointer spaces. The pull function that is
associated with any operation provides a natural and consistent way to update the
state of an editor or application. In order to understand the mapping between
display and application and layered design in general, we considered relations
between pointer spaces called projections, and the composition of these.

The translation of block pointers was found to be quite complex and this is
evidenced by the various inconsistent ways atomic and block pointers are
updated in existing systems. Using dynamic pointers to discuss these issues
outside of a particular system helps us to form an understanding of the issues,
ev en if no single answer can be found.

We hav e discussed how some of the more detailed analysis of dynamic
pointers using sub-object projections and locality information about projections
and operations can help us to express interface properties and can be used for
system optimisations.

Dynamic pointers: an abstraction for indicative manipulation 207

Finally, we considered many examples of how dynamic pointers are and could
be used. Clearly, one could go on thinking of such uses. Some of those
suggested can be implemented now under existing environments, but many rely
on the pointers being an integral part of the environment. I believe that advanced
interactive environments will contain entities similar to dynamic pointers, and if
they are not recognised as a single unifying concept they will instead be
implemented in diverse incompatible ways, yielding a clumsy and unpredictable
interface.

208 Formal Methods for Interactive Systems

