Formal Methods for Interactive Systems © Alan Dix 1991
http://www.hiraeth.com/books/formal/

CHAPTER 10

Events and status — mice and
multiple users

10.1 Introduction

If we look back over the models presented in the previous chapters, we find an
imbalance between the interactions from the viewpoints of the computer and the
user. In the PIE model, the user entered a sequence of commands, and the
computer responded with a sequence of displays. At first glance, the formal
models look fairly symmetric between input and output. This impression
changes if we examine the domains of these sequences and their interpretation.

One obvious difference between these two sequences is the small number of
possible user commands compared with the vast number of possible displays.
That is, there is a mismatch in bandwidth between the user’s inputs and the
computer’s responses. Although this feature will not be central to this chapter, it
is an important issue in its own right. The mismatch is reasonable, since it is
quite possible for computer systems to produce displays at a rate of several
million pixels per second whereas typing at such a rate would be hard. Of
course, we will not be able to take in information at that huge rate, but even so,
our ability to gather information from a display is still far greater than our rate of
generation. If we want to allow the user to control the system (rather than vice
versa) we need to design the dialogue carefully so that the computer’s high
output bandwidth can help users increase their effective input bandwidth.

The second difference is one of persistence. Considering the red-PIE model,
although it said nothing about the precise temporal behaviour of the displays and
commands, there were implicit assumptions in the definition of properties. For
instance, the simplest form of predictability was the ability to tell where you are
from the current display. The scenario was: I interact with an application, go
away for a cup of tea (a not infrequent occurrence), then upon returning want to

-239 -

240 Formal Methods for Interactive Systems

know where I've got to. If I use the current display to obtain this information, it
can only be the persistent part. Any beeps or whistles, although very important
to signal errors whilst two-finger or copy typing, would be useless as status
indicators upon my return. Other forms of predictabilty involve exploratory
activity by the user and thus assume the user’s presence. For these forms of
predictability, persistence is not so important. Paradoxically, such exploratory
behaviour does not typically encounter non-persistent parts of an interface.

To distinguish these levels of persistence, we shall talk about status and events.
Status refers to things which always have a value, such as the current display or
the temperature. Events are things that happen at a particular time, for instance
user’s key strokes or the computer’s beeps. In fact, the distinction is nothing like
as clear-cut: events are rarely instantaneous, and may often be regarded as
rapidly changing status. We briefly examine this interplay between the two in
the next section.

Succeeding sections look at how to include status inputs such as mouse
positioning within formal models. We can use these models to classify the way
systems respond to status inputs. In particular, we find there is a close
correspondence between the complexity of the models required to describe a
particular system and the hand—eye coordination required.

Finally, we consider how the distinctions between status and events can help in
the understanding of multi-user systems such as mail or conferencing.

10.2 Events and status — informal analysis

As we have already noted there is an interplay between status and events
which clouds the immediate distinction. The way we classify a particular
phenomenon will be partly subjective, and in particular depends on the temporal
granularity with which we view it.

Consider for example a mechanical alarm clock. If we ignore its inputs (i.e
winding it up, and setting times) and concentrate on its outputs, we have two
distinct channels: its face, which displays the current time, and its bells, which
wake us up in the morning. This seems like a fairly clear example of status and
event. The time displayed varies continuously and is always available, while the
alarm rings at a particular hour of the morning.

Let us look in more detail at the alarm’s bell. If I happen to be rather sleepy,
the clock may ring for a while. That is, it becomes a status output. The
important events then take place when it starts ringing and when I eventually turn
it off. So, if we look at the clock with the granularity of hours in a day, the
ringing of the bell is an event, but if we look at it with a granularity of seconds
(or minutes!), whilst I am actually waking it is a status.

Events and status — mice and multiple users 241

The clock face is even more complex. If, say, the alarm is not set, but I want
to do something at five o’clock. I keep looking at the clock, and when the hands
pass the hour I react. I have interpreted a change in status (through the five
o’clock mark) to be an event. This turns out to be quite a general phenomenon:
any change in status can be regarded as an event. Notice also that in order for the
change in status to become an event, I had to watch the clock. Probably I would
do this periodically, so there would be a slight gap between the objective event of
the clock passing through five o’clock and the subjective event of my noticing it.
Again, these are general phenomena. Frequently, some procedure is carried out
to monitor a status indicator without which changes in status could not become
events. Further, such procedures will typically induce lags between the events
noted by different observers.

Now, if we look closely at the clock face, we notice that the second hand
moves rather jerkily. Inside the clock, several times a second, the spring vibrates
and moves a ratchet which allows the clock gears to move on one notch. This
discrete movement is visible on the second hand, and present but rather hard to
see on the minute and hour hands. In fact, if we look closely at a large
grandfather clock the jerky movement of the minute hand becomes visible, and
the hour hand probably jerks noticeably on Big Ben. That is, at a fine grain, the
change in status of the clock face is due to events — the ticks. Of course, we
could drop another level again and describe the position of the cogs and springs
to yield a status description of the entire workings of the clock.

So, even on something as everyday as an alarm clock, we see quite a subtle
interplay between status and event descriptions. As most digital computers
operate in discrete time steps it would be possible to describe them completely in
terms of the events specifying the changes at each instant. This is very obvious if
we consider a terminal attached to a time-shared system. The changes to the
terminal’s screen are sent character by character down a communications line. In
principle, if users had access to this event information they could reconstruct
what their screens should look like.

From a formal point of view, we could model the display in this way. User
input events give rise to system output events which specify the way the screen is
to change. In fact, this is precisely the view programmers are usually given of
the interface. Even apparently continuous graphics displays are usually the result
of a stream of change requests from the program. This does not describe the way
the user sees the system. Most of the changes happen at timescales well below
the user’s limits of perception, and even when they do not they are often intended
to (shades of the infinitely fast display). So, most of the time it is right to view
the display as status, and any model that treats it as a sequence of change events
will be inadequate for understanding user behaviour.

242 Formal Methods for Interactive Systems

On the other hand, just as the movement of the clock hands through five
o’clock was interpreted as an event, the user may interpret certain changes in the
status of the display as events. So, the user may not regard the individual
characters which are drawn on the screen as events (although the programmer
might). However, if all these changes together mean that a box has appeared in
the middle of the screen with the words "fatal disk error", this is a significant
event. Note that even if the change in status has happened in a very "un-eventy"
way for the program, perhaps by changes to a memory-mapped screen, the user
is still free to interpret the change in status as an event.

The granularity with which we choose to classify events and status depends in
part upon the tasks which we are considering. So, for the alarm clock, if the task
were getting to work on time then the ringing of the alarm clock would be an
event. If, on the other hand, the task were the act of waking and getting out of
bed, a status interpretation would be suitable. Thus if we wish to inform the user
of an event, we must think about the pace of the task to which it contributes. For
highly interactive rapidly paced tasks we would need events that would be
recognisable at fine granularity: a buzzer, for example. If the task is long lived
and low paced, such as the building of a tower block (or cottage), then an event,
say the completion of a phase, would not warrant such an intrusion; a memo
would probably suffice.

So, the distinction between event and status depends on granularity and
interpretation. For the user, it also depends on salience. The appearance of a
message at the top of my screen may be viewed as a status change event
objectively, but it has little value unless I notice it. An event for me is something
that I notice and act upon.

10.3 Examining existing models

We can now examine the models we have already considered in the light of the
status/event distinction. This distinction can also shed light on other dialogue
specification formalisms.

We started the chapter by noting that the PIE model was basically an event-in
status-out model. Most of the other models follow in a fairly similar vein and to
a large extent share this property. The exception is the complementary view
model of Chapter 9, so let us start there.

Events and status — mice and multiple users 243

10.3.1 Updating views — status-in status-out

In Chapter 9 we considered the paradigm whereby the user manipulates a view
of the system. Normally we expect that, as the underlying state of the system
changes, then the view changes along with it. The view-update paradigm
suggests that, in addition, we allow the user to alter the view and have the system
maintain a state consistent with that view. The precise manner by which the user
interacts with the view is not part of this model, and may involve event- or status-
like inputs and outputs. However, at the level at which it describes a system, this
model comes pretty close to a pure status-in status-out model. What is more,
both the user’s status input and the user’s status output are the same thing, i.e. the
view.

Obviously, in this paradigm we can think of the changes of view as events, but
the way that the model emphasises the static relationship between view and state
encourages a status-like interpretation. This is further emphasised if we also
recall the condition of process independence. This condition said that the
changes in the underlying state brought about by a change in the view were
independent of the way in which we performed those changes, and were a
function only of the initial state and the current view. This form of history
independence is not essential for a status-based system. There is no reason why
the current state should not be based on the entire history of user status input.
However, it does very strongly encourage such a viewpoint.

10.3.2 Status outputs and event outputs

Returning now to the PIE model and its derivatives, we first consider the
output domains. As we have noted, several of the properties suggest that the
display component is status-like. It is possible to add event-like components to
the existing model. For instance, we could define the display of a word
processor to be Bell x Screen, where Screen is the screen that is displayed and
Bell is a flag indicating whether the bell rings as the screen is updated. This
display domain could be used to describe the behaviour of the system after an
error, with the Bell component alerting the user to the problem. In fact, the
possible error behaviour rules we considered both in Chapter 2 and when
considering temporal behaviour assumed that some such component exists. If
we have such a display definition, we have to be very careful when applying
predictability rules. Some would require that we limit the display considered in
the rule to the status part only. In particular, if we want the user, upon returning
to the system, to be able to infer anything from the current display, then the
display considered is without any event part.

If we consider more complex event behaviour, the system may produce events
at instants not directly in response to user events. This could, of course, be
captured in the temporal model of Chapter 5. However, the rules developed in

244 Formal Methods for Interactive Systems

that chapter were aimed at status output systems and would require modification
to encompass event outputs. In particular, the main emphasis was on the steady-
state behaviour, that is, the display after the system has settled down. This
assumes that transient behaviour, including event responses, is relatively
unimportant. For example, consider a spoken interface to a directory enquiries
system. If the user prods the system with a speech input, the system then
responds with speech. The steady state would consider the spoken response as
part of the transient, unimportant behaviour. Thus the steady-state functionality,
which is supposed to capture the essence of the system, would be... silence. This
sounds rather like Beckett!

So, with a little stretching, we can begin to apply our models to event-based
outputs. However, the above discussion does warn us that properties that are
appropriate for status-like outputs are not necessarily appropriate for events and
vice versa. It seems wise therefore to distinguish the event and status outputs of
a system within a formal model, even if they appear otherwise identical within
the model. This is rather like the way we distinguished the display and the result
components in the red-PIE model and its derivatives. Looking at the model
alone, the two differed only in their name. However, they differed greatly in the
interpretation we laid on them and in the way they were used in framing
properties.

10.3.3 Status inputs

As one would expect, many of the same warnings apply when we consider
status inputs. The most common form of status input is a mouse position, or
other form of pointer, but if we took as an example a computer-assisted car, we
would also need to consider pedals, steering wheel, etc. Bill Buxton (cc)
suggests that computer interfaces could make use of many more different input
devices, many of which would be continuous status devices. We will consider
properties for status inputs in the next section, so now we will just look at the
way they can be included within our existing frameworks.

The PIE model is very heavily entrenched in an event input world. Even
within its restrictions, we can describe status input to some extent, but not very
convincingly. In the last section we considered the way the screen was updated
by many events. In a similar way we can convert the user’s status input into a
series of events representing changes. For instance, if we were building a red-
PIE model of a mouse-based system, we might have the command set as
Keys + MouseButtons + Moves. Keys and MouseButtons would represent the
events of hitting the keyboard or clicking a mouse button, respectively. Moves
would capture the mouse movement with commands like MouseUp,
MouseDown, etc. This is precisely the way many window managers and
graphics toolkits deal with the mouse.

Events and status — mice and multiple users 245

These mouse movement commands "work" in the sense that we could write
down interpretation functions and display and result maps which would mirror
the behaviour of a system. They do not, however, capture the essence of the
system for the user. When I move a mouse I do not feel that I am entering a
sequence of up, down, left and right commands. What I am doing is moving a
pointer on the screen. Arguably, this is true even for text cursors with cursor
keys. Much of the routine cursor movement is proceduralised: the discrete
commands become unconscious and the effect for a skilled user is a smooth
movement of the cursor about the screen. Again, the level of analysis is all-
important.

One of the intentions in the study of dynamic pointers was to help deal with
mouse-based systems. Do they help us here? By talking about the relationship
between positions on the display and locations in the underlying objects they
give us a vocabulary for relating certain types of status inputs to status outputs.
However, they do not address the specific distinctions between status inputs and
event inputs. Where we considered the form of manipulation in detail we
assumed that the mouse position was interpreted in conjunction with some event-
based command. In fact, we will see that this represents an important subclass of
status input systems.

A more generalised view of status input can be derived by considering the
temporal model, the =-PIE. If we add for each time interval a value for the user’s
status input, we allow system descriptions which include many types of
behaviour, dependent on the precise timings of the user’s status. Whether the full
generality of such responses is a good thing, will be considered in the next
section. For now, let us note that by adding status to each time step, there are no
pure 7 or tick time intervals. Considering event outputs required a radical re-
evaluation of desirable properties. Adding status inputs requires a similar re-
evaluation and, in addition, leaves some of our constructions in need of a
complete overhaul.

10.4 Other models

We now take a quick look at some other dialogue formalisms, and some of the
issues they highlight. Several formalisms make use of process algebras, such as
CSP. Alexander’s SPI, (Alexander 1987b) which has already been mentioned, is
an example of this. By the nature of the underlying formalism such descriptions
are event-in event-out. Status information is typically conveyed by change
events in such descriptions. Most of the formalisms which I classified as of
"psychological" origin tend also to regard the user’s interaction in an event-
driven way. Typically, there is little if any description of the system’s response
either as status or event, the emphasis being on the user’s tasks or goals and their

246 Formal Methods for Interactive Systems

relation to the user’s event inputs.

General computing specification formalisms, presumably because of the
discrete nature of most computing, tend to deal only with event inputs. For
example, specifications of interactive systems in Z, (Sufrin 1982, cd) and in
algebraic formalisms (Ehrig and Mahr 1985), effectively map user events to
individual schema or functions which then act as state transformers. The outputs
tend to be functions of the state, a constantly available status. This situation is
not inherent in these formalisms, which are quite capable of describing status
inputs and event outputs; it is just that the event-in status-out description is often
easiest.

Sufrin and He’s model of interactive processes, (Sufrin and He 1989) which is
defined in Z, blurs somewhat the event/status position of its outputs. It inherits
the display/result distinction (but calls them view and result) and, like the red-
PIE model, describes these as functions on the state. However, unlike the PIE
model, these functions are not continuously available, but are defined only for
certain states. Now, as the display is clearly not meant to black out during the
intermediate states, I take the unavailable states to represent the constancy of the
display, and the available states to represent the display changes. In fact, they
describe the availability of the display and result as "just after" the state change
event. That is, they are very close in nature to status change events. On the other
hand, Sufrin and He define properties similar to predictability properties, which
suggests that at least the display is of a status nature. Also, all the examples used
by Sufrin and He have a display for each user command; the non-display states
seem to be there to allow for internal events and state changes.

Both the Sufrin and He model and the process algebras lead us to consider
whether it is better to deal with the display and the result as event or status.

10.4.1 Display — status or event?

For the display, we have already dealt with something very similar to the
Sufrin and He model when we considered alternative definitions of the PIE using
functions from command history to effect history. The case where the effect
history does not "grow" with the command history is precisely the same as the
unavailable states here.

As we have noted, the distinction between status and event is partly subjective.
A visual display is "always there" and so my preference is to regard it as status. I
would prefer to reserve event outputs for more obvious things such as auditory
feedback. There are in-between cases, such as a flash of the screen (sometimes
used as a silent bell) or the appearance of a dialogue box which marks an
exceptional behaviour.

Events and status — mice and multiple users 247

A preference for a status interpretation of the display does not stop us from
modelling it using status change events, but does influence our perception of
those events. A slightly more profound worry about intermittent display events
is whether we should consider using a model that appears to sanction user
commands with no feedback. Any event-in event-out model should include an
interactivity condition. This would require that each user input event is followed
by at least one system output event.

10.4.2 Result — status or event?

We now turn to the result component. The result has a much more immediate
interpretation as an event. Certainly in the classic example we have used, the
word processor, the result, i.e. the printed document, occurs at some (infrequent)
point in the interaction. We can, of course, ignore here the time it takes to do the
printing. It makes sense therefore to have the result as an event that occurs when
the appropriate print subdialogue is complete. Similar arguments would apply to
a text editor which works on a copy-rewrite basis. The alterations the user has
performed are written to the file system only at the end of the interaction, or at
specific periods when the user asks for the file to be written.

On the other hand, there is frequently an idea of the potential final result. So,
when we use the word processor, we know that there is some document that
would be printed if we issued the appropriate commands. This has a validity at
two levels. On the one hand, there is the internal state of the system, which will
certainly have some component corresponding to this potential result. On the
other hand, from the users’ point of view, at any point in time they will have a
fairly strong idea of what the potential result will be. Thus both from the
system’s and the user’s perspective the result is status-like.

We can link these two concepts of the result if we have some notion of a
"normal" mechanism for obtaining it. For instance, a word processor may have a
PRINT command, or a text editor a SAVE. We would regard the potential result
of these systems to be the physical result when the appropriate command was
issued. Breakdowns can occur in several ways. There may be more than one
"normal" mechanism for obtaining a result. For instance, the text editor may
have an EXIT which saves the file, but also a QUIT command with no save. In
such cases we have to consider that one method of obtaining a physical result is
more "normal" than the rest. Furthermore, the form of the final result may be
determined intrinsically by the exact dialogue by which it is obtained. The print
subdialogue of many word processors includes the choice of many important
layout parameters such as page length, or multi-columning. In these cases, any
notion of the potential result as status can be only an abstraction of the full event
result.

248 Formal Methods for Interactive Systems

These last two points are to do with an ambiguity over the notion of the
potential result. If the user and the designer differ in their understanding of this
notion, breakdowns in use are likely to occur. Within the limits of the user’s
perception, we can assume that the user and system agree about the current state
of the display. There is no such guarantee for the potential result. We rely on the
display to give appropriate cues for them to synchronise. We recall that a large
part of Chapter 3 concentrated on this issue of what we can tell of the result from
the display. Of course, users do not notice everything on the screen, so that even
if the display has sufficient information on it to perform this synchronisation it
may not be salient. In empirical studies of a reference database system at York,
it was found that a significant class of error could be attributed to a disagreement
between the user’s and system’s idea of the current result. (ce)

So where have we got to? Physically, results tend to be events but
conceptually they are often best described as status. An important issue for any
design is ensuring that the two views are in agreement.

10.5 Status inputs

In this section, we consider different models of status inputs. These models
are related to and express different complexities of interactive behaviour of status
inputs. As the most common status device is a mouse or other pointer device we
concentrate on these, but much of the discussion is valid for any status input
device.

We have already noted that we could include status inputs in the z=PIE
framework simply by adjoining a status to each time period. Let us now expand
on this. At any instant we will assume that there is a current value for the status
device and at most one event input. The event inputs we will take from a set of
commands C and add a tick 7 for the instants when there is no event. This is
exactly as the ~PIE. We then add the status inputs from a set Pos (for position).
Thus the user input at each instant is a pair:

C, x Pos
where
C, = CU{7}

The user’s input history is then a sequence of these:

Hp, = (C, x Pos)

Events and status — mice and multiple users 249

Just as in the =PIE we can define the behaviour either using an interpretation
function over histories, or as a state transition function doit:

Iq: Hp,y — Eg
doity: (C, x Pos) x Egy — Eg

We obtain the display and result component from the minimum state Eg in the
normal way. By interpreting some abstractions of E as event outputs and others
as status we could obtain the complete possibilities of event/status input/output;
however, for the purposes of this section we are interested only in the input side,
and will ignore any distinctions in output.

An additional distinction we need to make on the input side is between those
event commands which are physically connected to the status device and the rest.
We will call these sets of commands Button and Key respectively, because when
we consider the typical mouse and keyboard setup the mouse button events are
clearly more closely connected to the mouse position than the keyboard. Such a
distinction has a degree of subjectivity about it, but is not too difficult to make.
There are awkward cases, as for example when a shift key on the keyboard is
used in combination with a mouse button click. I personally find such combined
keyboard—mouse chords rather abhorrent, but they are certainly common. If a
system must have such events, they would belong in the Button class. The
important thing is that this is a physical connection between the commands and
the status device; there may or may not be a corresponding logical connection.
However, it is precisely the mismatch between physical and logical proximity
that I dislike so much about keyboard—mouse chords and which will be discussed
later.

This model is now capable of expressing virtually any input behaviour. The
properties which we describe in the rest of this section can be framed over this
model. Sometimes, rather than doing this directly, we can develop a more
specific model for a class of behaviours which we can relate back to this general
model of status input. We start with those systems, or parts of systems, which
are least dependent on status information, moving on to more and more complex
status dependence.

10.5.1 Position independence

The simplest thing to do with status information is to ignore it! If the status is
ignored throughout the whole system, we can just use the PIE or =PIE model.
This is the situation for applications boasting "no mouse support", but is not very
interesting.

Typically, some parts of an interface are position independent, in particular the
keyboard inputs. We can make position independence a property of commands,
by simply demanding that the interpretation of the command does not depend on

250 Formal Methods for Interactive Systems

the current value of the status input. In the case of mouse-based systems a
command is position independent if it has the same effect no matter where the
mouse is.

We can express this property using the model described above:

position independence:
Vp,p' €Pos,e €Ey: doity(c, p,e) = doitg(c, p',e)

Within a single application, the same functionality may be obtained using posi-
tion-independent or position-dependent commands. For instance, in Microsoft
Word4, the PRINT option can be selected by a position-independent keyboard
accelerator or by a position-dependent sequence of mouse clicks over menu
options. The latter are position dependent because the interpretation of the
mouse clicks is determined by the menu selection over which the mouse pointer
lies.

As we have noted, if all the commands were position independent the system
would be rather boring (with a few caveats) from a mouse’s perspective.
However, for some commands, and in particular the keyboard commands,
position independence seems positively beneficial. Position-dependent
commands may obviously require quite precise hand—eye coordination. This
coordination of the mouse position with input which is physically remote from it
seems rather questionable. One requirement we may therefore want to make of
status inputs, is that all commands in Key are position independent.

Some windowed systems apply a "click to type" paradigm. In order to select a
window for keyboard input some definite action must be taken, either clicking a
mouse button over a specific part of the window’s border, or just anywhere on the
window. Other systems use instead a "focus under the mouse" paradigm,
whereby the window which is under the current mouse pointer at any moment is
the active one to which all events, including keyboard events, are addressed. In
such systems, every event is effectively position dependent. If we look at the
applications themselves, they frequently apply position independence for the
keyboard, but this property is "spoilt" by the environment. The danger of such
systems is that while the user’s attention is on the keyboard, an inadvertent nudge
against a pile of papers may unintentionally move the mouse and redirect the
input. On the other hand, the movements required are often gross and it appears
a relatively benign form of position dependence. We will see in a while that by
reinterpreting the position status, the model can be adjusted to leave the keyboard
commands themselves position independent. This adjustment will still preserve
an element of warning about the behaviour, but will centre this on the mouse
movement rather than on the keyboard. This seems to correspond to one’s
intuition about the situation, that it is not the application or the keyboard’s
"fault".

Events and status — mice and multiple users 251

10.5.2 Trajectory independence

Now we shift our attention to events that are dependent on the position. An
important subclass of these comprises events which depend only on the most
recent position.

Let us consider a mouse-based word processor. At the top of the screen it has
a line of buttons. Clicking the mouse over these uncovers further menus. As we
move the mouse pointer over menu selections they are highlighted and we make
a choice using a second click. Text is highlighted by depressing a mouse button
over one end of the required portion, dragging the mouse to the other end, and
then releasing the button. The highlighted text is operated on by various of the
menu and keyboard commands. The text entry itself is position independent.

Notice two things from this description:

. As the mouse moves over the menu selections and as the mouse drags out
the text selection, the display varies continuously with the mouse
movement.

. When a menu selection is made, or when the text is selected, it is only the

position of the mouse when the event takes place that is important. The
intermediate mouse positions do not affect the final state.

The second of these says that the final state of the system can be determined by
looking at snapshots of the position at the moments when events occur. If we
define the frajectory of the mouse, as the history of exact movements of the
mouse between events, then the second condition says that the commands in the
word processor are trajectory independent.

Although the trajectory is not important in determining the final state, the first
of the two observations reminds us that it is important for the user. It is the
detailed feedback from the intermediate states which makes the mouse both
usable and enjoyable. Indeed, constant feedback is the very heart of interactivity.

A simple statement of trajectory independence might look something like this:
VpePos,e€Ey: doity(t,p,e) = e

This will not do, however, since the display is determined from Ey. We need to
distinguish the part of the state that is purely to do with feedback from the func-
tional part. We have already made similar distinctions in earlier chapters:

E st = E feedback x E functionality

The trajectory independence condition would then be applied to E scrionaiity
only. We could, of course, "cheat" and choose the E fogp4c1 t0 be everything and
the E 4ctionaliry t0 be empty. This would make the system totally, and vacuously,
trajectory independent. We can protect ourselves from such inadvertent cheating

252 Formal Methods for Interactive Systems

by demanding that E ;,,cionaiiry has at least sufficient information to determine the
result mapping.

This split is similar to the layered design we described in Chapter 7. Here
though, the functionality we wish to capture in the inner state is more than in
E,pj. That was supposed to be the state pertaining to the actual objects of
interest, ignoring their representation. Here we would wish to include features
such as the position of the menu on the screen in order to interpret the mouse
position when a button was pressed. In other words, this is really a further layer
outside the models we were considering there.

Rather than looking at predicates over the general model, we can look at a
simpler model which implicitly captures trajectory independence. This will also
bring us back to something which can be directly related to the models used in
Chapter 7. This model will apply only to systems which are fotally trajectory
independent.

10.5.3 A model for trajectory independence

The crucial property of trajectory independence is that the long-term
behaviour of the system is determined only by the status at the moment when
events occur. So we first look only at those instants. We have an internal state
E; that is updated at each event. The update function makes use of the event
(from C) and the status (from Pos):

doit;: C x Pos x E; — E;
The result is a obtained as a mapping from E;:
result;: E; — R

This differs from the general status input model in that we have dropped the =
events which signified non-events. This is because we are looking only at the
instants when events occur. In fact, so far it is exactly like a red-PIE, with com-
mand set C,; = C x Pos. However, the display component will differ somewhat
from that of the red-PIE.

The first of the two observations we made earlier was that the value of the
status input was constantly reflected in the display. In order to capture this we
make the display a function not only of the current state (from E;;) but also of the
current position (from Pos):

display,: E,; x Pos — D

So, in the case of the word processor above, in the state when the pull-down
menu had appeared, the display would be of the menu (dependent on state) with
the entry under the mouse highlighted (dependent on status).

Events and status — mice and multiple users 253

By separating out the event updates from the status feedback, we implicitly
capture the position independence of the model. It can be related back to the full
status input model by setting:

Eqy = E,; x Pos

(e.p)
(dOitti(c, Pve)’P)

doity(t, p, (e, p'))
dOitst(C’ p’ (ev p,))

displayg = display,

resulty(e, p) = result;(e)

This simply adds the current position as part of the state. However, both the
result and update parts of the model ignore this part of the state. In other words,
it is just a simple way of achieving the split described in the previous subsection.
This relationship between the trajectory-independent model and the full model is
rather like the embedding of steady-state behaviour in the -PIE model.

We have already begun to tie this model in to the red-PIE. We can deal with
the display component in two ways. One is to set the display from the PIE point
of view equal to the function from Pos to D:

Dpg = (Pos = D)
displaypig(e) = Ap display,(e, p)

This is not a totally indefensible position, but talking of the display as a function
may appear a trifle odd. Perhaps a more natural approach is to consider an
abstraction of the display. For example, in the word processor, we can think of
the display with the contents of the menu items displayed, but ignoring the high-
lighting. In order not to lose important information, such as the fact that some-
thing is highlighted, we may need to add a little extra to this abstract display, but
on the whole this would probably correspond to how a user might describe the
display after an event. Again this reminds us of the way we can abstract away
"awkward" real-time parts of the display (such as a clock) in order to obtain a
system with steady-state behaviour.

So, we have not only produced a simplified model which describes trajectory-
independent systems, but we also have the means to fit this class of status input
systems into the layered models of design introduced earlier in the book.

10.5.4 Spatial granularity and regions

We have just considered when positional information might be used. We will
now move on to what part of that information is used. To begin with, let us think
about a simple CAD system. Like the word processor it has pull-down menus,
and perhaps a fixed menu of shapes it can draw as well. Instead of a text window

254 Formal Methods for Interactive Systems

it has a graphical area with points, lines, circles, etc. These shapes are drawn by
selecting the appropriate tool icon and then clicking at the appropriate anchor
points in turn: so to draw a line we would click first at one end and then the
other. We could allow movement and reshaping of existing shapes by depressing
a mouse button over appropriate anchor points and then dragging before
releasing the button.

This could easily be cast into the trajectory-independent framework above.
What we need to concentrate on here, though, are the differences between the
icon selection and the point selection:

. Size — There is an obvious difference in size. The icon is just a bigger tar-
get and therefore requires less fine hand—eye coordination. The problems
with achieving such fine control are often addressed by including grids for
initial plotting and by having zones of attraction around the anchor points
for later selection.

. Semantics — The use of positional input to choose the icon is just a way of
indicating which icon is of interest. The same object could have been
achieved with a keyboard accelerator or by speaking the name of the
shape. With the anchor points, however, their very nature is positional, so
the semantics of the anchor points have a close correspondence to the form
of input.

These two differences are somewhat interlinked. Intrinsically positional parts
of an interface tend to be fine grained, although there are grey areas. Text
selection is just such an area, which is why we switched to CAD as an example!
If we consider only granularity, text selection would lie somewhere between icon
selection and point selection, and we might just regard characters as small icons.
However, the location of characters within a document is intrinsically positional,
and hence we should class it with point selection when we consider semantics.

There are obvious reasons for using the mouse for intrinsically positional
features, but why is it used for less semantically necessary ones? In a CAD
system where the mouse is used extensively for object-level manipulation, it
makes ergonomic sense not to shift the user between input devices. This does
not apply to a word processor, where typing is a major activity. In fact, in many
mouse-based word processors keyboard accelerators are available in order to
short-cut the use of the mouse and menus. In such systems the major reason
given for the use of menus and icons is cognitive: it is easier to recognise than to
remember, thus clicking over an icon that says PRINT (and perhaps has a
suitable picture on it) is easier for the user than remembering whether to type
PRINT or LIST. A further related reason is to increase the effective input
bandwidth. We recall the mismatch in bandwidth between input and output.
Iconic interfaces and menu-based systems are one way of using the output
bandwidth effectively to increase the input bandwidth. This is especially obvious
in a file-system browser, where clicking on a file is an apparently more effortless

Events and status — mice and multiple users 255

task than typing the appropriate filename. This stretching of bandwidth is
connected to the use of context in determining possible user inputs. The
selection of a particular file icon, for example, is made easier because the
directories or folders of interest are displayed. In terms of information flow, this
is a form of clever coding which makes use of the redundancy of the user’s input
language. Non-graphical systems use similar contextual devices such as the idea
of a current directory, current drive or current active file, as well as the use of
"wildcards" in filename specification. Graphical systems extend this by allowing
multiple simultaneous contexts, and by making the "coding" more easily
discernible.

Whatever the reasons for the use of position dependence, if the granularity of
the target is quite large then the hand—eye coordination required is far easier. For
parts of the system, such as icons and menus, where the mouse can be anywhere
in an area of the screen, we can factor the dependence of the system on the
position by defining a region mapping:

region: Pos — Reg

For a particular programming environment, the elements of region might include
menu buttons "File", "Edit", "Options" but also all-embracing things like "Pro-
gram window". Having defined such a mapping we can distinguish those com-
mands which are merely region dependent, like menu selection, from those
which require fine grain positioning, like anchor point plotting:

region dependence:
Yp,p' €Pos: region(p) = region(p')
= doity(c, p,e) = doit;(c,p',e)

A comparison of the numbers of region-dependent and fine-grained commands
could form a good measure of the motor control required for an application. One
could not use such a measure blindly, however, as one should look at the
semantics of the commands and whether fine-grain control is appropriate
because the feature is intrinsically positional. Again, one can cheat. One could
say that every pixel in a graphics window was an individual region. This would
fail the semantics test, as the pixels, although discrete, represent an intrinsically
positional world. For the same reason, although it might be appropriate to factor
text positions (possibly using back maps from the pointer space projection), they
are an intrinsically positional attribute and should not be regarded as lots of
screen regions.

In the examples given above, the intrinsically positional elements have all been
at the application object level whereas the region elements have been interface
objects. This is not always the case. Application objects frequently contain
discrete subobjects which may be referred to by screen region. Also there are
positional interface objects such as a scroll bar.

256 Formal Methods for Interactive Systems

10.5.5 Trajectory dependence

We now move on to the final category of status input behaviour, trajectory
dependence. This is where the outcome of an interaction depends on the precise
path of the status device between events. The most obvious example of
trajectory dependence is in freehand drawing or spray cans in graphics packages.
In some ways this is more than an example and is archetypical of trajectory
dependence in the same way that point plotting is archetypical of fine-grain
position dependence. Freehand drawing is trajectory dependent not because a
designer thought that it was a good idea, but because its semantics demand a
trajectory approach. Non-trajectory-dependent forms of freehand drawing would
be obscure to say the least.

It is frequently the case that drawing or painting is activated only whilst a
mouse button is depressed. Thus the period for which fine hand-eye
coordination is required is marked for the user by the conscious act of holding
down a button. Furthermore, the button is on the device which requires the
control: that is, the physical and logical proximity coincide. This "pen-down"
paradigm is often used elsewhere, both in other trajectory-dependent situations,
such as gesture based input, and also in trajectory-independent contexts such as
window movement. To describe such situations, it is easiest to regard the
holding down of the mouse button as another status input with a simple on/off
value. We can then ask for trajectory independence when the button is up.

Freehand drawing and the like are not the only examples of trajectory
dependence. We have already mentioned gesture input but there is a further class
of trajectory-dependent situations based around revealing screen objects. A
plethora of menus, scroll bars, icons, etc. may soon clutter up a screen, leaving
little room for "real" information. Many designers choose to conserve screen
space by hiding various features which appear only after some user intervention.
Sometimes this intervention is of a trajectory-independent nature, perhaps
clicking on a menu bar which makes a pull-down menu appear. However,
sometimes it is trajectory dependent. For example, some window managers
uncover any window over which the mouse moves.

Line drawing intrinsically requires trajectory dependence. These other
features do not. The intention is presumably to make the user’s job "easier" by
not requiring an explicit mouse event. This is a very dubious practice and
requires careful consideration. It is a problem firstly because of the extreme
level of hand-eye coordination required. Position-dependent commands require
fine control for only the fraction of a second that it takes to depress or click a
button. Trajectory dependence requires consistent control over some period.
Secondly, the problem is further exacerbated by the lack of proportionality which
is typical of trajectory dependence.

Events and status — mice and multiple users 257

There are several forms of proportionality, and here I am thinking of the
ability to undo erroneous inputs. We have dealt with various types of undo
properties, and the ability to undo easily is regarded as an important feature of
direct manipulation systems. (Shneiderman 1982) Not only should users’ actions
be undoable, but as a general rule there should be some proportionality between
the complexity of an action and the complexity required to undo that action. Any
true measure of complexity requires psychological insight, but a rather crude
interpretation is all that is needed here.

Consider a trajectory-independent system. Imagine the user is moving the
mouse and no other events occur. The user wishes to move to a position p but
gets to p’ instead. All the user needs to do to correct the situation is to move the
mouse back to p. Because the intermediate positions are not important for the
long-term development of the system, the mistakes in positioning have no long-
term effects. Note that mouse movement is sufficient to undo mouse movement,
and that small positional errors (from p to p + 6 p) can be recovered using small
movements (0 p).

10.5.6 Some trajectory-dependent systems

With a little understanding of the problems of trajectory dependence, we can
go on to look at a few examples. Several windowed systems have "walking
menus". Some options in a menu have submenus associated with them. Instead
of having to select the relevant menu item to make the submenu appear, the user
has simply to slide the mouse off the side of the item. The system is position
dependent, as the same screen position may be associated with several submenus
depending on which main menu item the user moved off. However, if the user
slides into a submenu unintentionally then the mouse can be slid back again to
regain the main menu. Thus, even though the system is trajectory dependent it
still retains the proportionality properties that mouse movement can undo
movement errors, and that small errors have small corrections. Further, the
corrections are the opposites of the movements that caused the problem, so there
is a further naturalness about the situation.

The Xerox InterLisp windows (cf) make use of appearing scroll bars. This is
a deliberate policy of reducing screen space usage. With menus there is little
alternative. It would not be possible (let alone desirable) to have all the menu
options permanently visible and the issue is purely the appropriate method of
revealing them. However, it is perfectly feasible, and in fact quite common, to
have scroll bars permanently associated with each text window. The mechanism
used by InterLisp windows is as follows. If the mouse moves off the left-hand
edge of a text window a scroll bar appears under the mouse, beside the left edge
of the window. If the user continues to move to the left and moves off the edge
of the scroll bar (or in fact, anywhere off the scroll bar), it disappears again.
How does this measure up to the proportionality tests?

258 Formal Methods for Interactive Systems

There are several classes of problems so let us consider just a few. One
mistake a user might make is to slip off the left-hand edge of a window by
accident. The scroll bar appears, but a movement right again back into the
window corrects this. Again, the recovery is with the mouse, proportional to the
error and in a natural inverse direction. If, on the other hand, the mouse was in
the scroll bar and slipped out to the left, the scroll bar would disappear. In order
to recover the user would have to move a longer distance to the right to get back
over the window, then move left to recover the scroll bar. The recovery is still
purely by mouse movement, but the complexity of the correction has grown
somewhat, and the movements are less natural. A similar scenario occurs if the
mouse is accidentally moved to the right over the left border of a window.
Trying to correct by moving the mouse back the way it came would then make
the scroll bar appear, incidentally covering up what was probably the focus of
attention. Again recovery could eventually be made using mouse movement
alone, but the correction is complex and an attempt at a natural recovery leads to
further complications.

In the case of InterLisp, the complications arising from trajectory dependence
obviously require extra care and fine motor control to avoid mistakes. However,
the property of movement as recovery for movement is preserved, and perhaps
the sort of mistakes noted are rare. The advantage is that by making the scroll
bars appear, they can afford to be larger and thus require less fine hand-eye
coordination. There appears to be a trade-off between the two. The appropriate
design choice is not obvious from formal arguments alone. What we have done
is focus on possible problem areas.

Our final example of trajectory dependence comes from a version of the Gem
environment. (cg) The system displays a menu bar along the top of the screen.
Instead of requiring the user to depress a button over the desired option to obtain
the pull-down menu, the system "saves" the user the bother of pressing the button
by making the pull-down menu appear as soon as the mouse enters the region of
the menu bar. The user can then move the mouse over the desired selection and
click on it to make their choice. This is somewhat similar to the previous
examples, and might be thought to be no more and no less a problem. If we
begin to consider errors and their correction, however, it is seen to have distinct
problems.

When the pull-down menus appear, they do not disappear until either one of
the menu items has been selected or the mouse is clicked elsewhere. So, if the
mouse is accidentally moved over a menu bar title, the mistake cannot be
corrected without an event input. Further, the mouse must often be moved quite
a way to get it somewhere where extraneous mouse clicks do no harm. That is, it
disobeys virtually all the proportionality properties we have mentioned. Is this
just a rather extreme example which rarely occurs in practice? I have certainly
observed this as a problem myself, and have also watched both children and

Events and status — mice and multiple users 259

novice users becoming stuck with a pull-down menu they do not know how to
get rid of.

So what did the designers gain by this decision? Apparently they saved the
user from pressing a mouse button, and perhaps made their interface slightly
more distinctive from similar products. It is fairly obvious as soon as one
considers trajectory dependence that this is a potential problem area. By taking
this into account, this confusing design error could have been avoided.

10.5.7 Region change events

Just as position dependence can be simplified to region dependence, a similar
simplification may occur with trajectory-dependent commands. Both of the
examples from the InterLisp and Gem interfaces were dependent only on the
regions through which the mouse moved. In the InterLisp case these regions
were windows and scroll bars, and in the Gem case they were the menu bar and
pull-down menu options. We could capture this form of region—trajectory
dependence using the full model something like this:

Yh,h' €Hp, if hand h' are "region equivalent"
then Iy(h) = Iy(h')

where two histories are region equivalent if they are the same length and agree
exactly at the events and have the same regions at other times:

h region equivalent to /" if:

@) h = h = null
(i1) h = (c,p)ik
h' = (¢,p): Kk
and & and k' are region equivalent
(i) & = (np)k
n = (np):k
region(p) = region(p')

and k and k' are region equivalent

In both examples, the regions change during the interaction, complicating
matters further; the region mapping must take into account the current state of
the system. We could go back and add this into the above definition. There is,
however, a better way to go about it.

We recall that changes in status are often interpreted as events. The clock
hands pass 6 o’clock and I turn on the radio for the news. A continuous, status
output of the clock becomes an event for me. In a similar fashion, the continuous
movement of a mouse, or the change of any status input, can give rise to system
events. In the InterLisp example, as the mouse moves over the window

260 Formal Methods for Interactive Systems

boundary, we can interpret that as an "uncover scroll-bar" event. Similarly, we
can regard the movement of the mouse over the Gem menu-bar as a "pull menu"
event. The events occur when the mouse moves between regions, and instead of
looking at region—trajectory dependence with its obscure definition, we can talk
about region change events.

These events lie somewhere between the status input device itself and fully
fledged user event commands. By regarding these changes in status as events we
can discuss the behaviour of systems such as InterLisp and Gem in an "eventy"
rather than a status fashion. We do want to retain the distinction between these
events and more explicit user events such as keypresses and mouse button clicks.
The proportionality properties discussed above become reachability
requirements on the subdialogues involving region change events, and in general
we may want to impose more stringent properties on this class of event. In
addition, the regions typically depend on the current state, so the region change
events will necessarily have a language, whereas the explicit events are more
likely to be unconstrained.

With status change events in mind, we can look again at those windowing
systems which direct keyboard input at whatever window the mouse is in. We
noted at the time that this makes all commands, both from the mouse buttons and
the keyboard, region dependent. This is unfortunate as it means that although the
keyboard commands may be completely position independent for each
application individually, this independence is lost when looking at the system as
a whole. If we now regard the movement of the mouse over window boundaries
as a "select this window" event, the state of the system then changes in response
to the event and the keyboard becomes again position independent. This outlook
agrees with our intuition about the system: any oddness is not the "fault" of the
keyboard commands, but is because of moving the mouse. Our focus is shifted
from the keys towards the region changes, where it belongs.

So, if our focus is on region change events, what questions should we ask
about them? One obvious thing to ask is, did the user mean it? The problem
with directing keyboard input "at the mouse" is that attention may not be on the
mouse, and any movement, and consequent region change event, may be
unintentional. Of course, we cannot guard totally against accidents: it is as easy
to hit the wrong key as to bump the mouse. However, we can look at a status
change event in its expected context of use and ask where the user’s attention is
likely to be, and thus how often to expect accidents.

Another way to look at this type of error is as a mismatch between the
perception of events by the user and the system. If I hit a key, the action of
striking it forms an event for me and the reception of that character is an event
for the system. On the other hand, if I happen to move my mouse over the pixel
at coordinate (237,513) which is totally unmarked, I will not regard this as an

Events and status — mice and multiple users 261

event; if the system does so, then a breakdown will occur. The situation is worse
if I merely joggle the mouse with my elbow!

In summary, region change events are helpful in describing some types of
behaviour. This is recognised at an implementation level in that many window
managers will generate events for the programmer when the mouse moves
between certain types of screen region. It has also become clear that region
change events are a source of potential user problems and should be scrutinised
closely during design. In particular, when region change events are contemplated
we should ask ourselves whether the events that are recognised by the system
agree with the events which are salient for the user.

10.5.8 Complexity and control

We have discussed several classes of model for dealing with different types of
positional input system. The complexities of the models correspond to various
degrees of hand—eye coordination. The various types of event are summarised
below (fig. 10.1), set against the degree of control required of the user.

Event class Motor control required

Position independent Ability to strike correct keys,
possibly touch typing

Region dependent Ability to retain mouse within
target

Position dependent Fine positioning for duration of
"click"

Region change events Ability to move mouse over target
boundaries

Button-down trajectory dependence | Fine positioning for controlled
periods

Full trajectory dependence Continuous fine control

Time—position dependence

figure 10.1 control required for event classes

An additional category has been added of time—position dependence. This is
to cover those systems that depend not only on where the mouse has moved, but
on how long it has stayed there. There are probably few examples of this with
mouse-based systems outside the games world, but it is more common in other
systems. The accelerator pedal of a car has this property: where you get to and
how fast depends on how far and for how long the pedal is held down. The same

262 Formal Methods for Interactive Systems

is true for the steering wheel and many other controls.

On the other hand, more complex forms of positional inputs can be used to
obtain special and useful effects. The formal distinctions between these classes
of systems can be used to warn about possible complexities in the interface, but it
is a matter of judgement and perhaps empirical testing how to make the trade-off.

Also, although fine control can be a problem in an interface it can also be an
enjoyable feature. Perhaps many people find mouse-based systems more
enjoyable to use precisely because of the demands on their skills. Whereas
event-based systems have a clerical nature, status input gives more a sense of
hand-craft.

10.6 Communication and messages

Virtually all our discussion has been about single-user systems. The models of
multiple windows drew on an analogy with multiple users, and this led on to
recognising interference between users as one of the sources of non-determinism
discussed in Chapter 6; however, this was a minor thrust in both chapters. The
emphasis, such as it was, dealt with how to avoid such interference between
users. This approach is appropriate in a multi-user system with shared resources
but in which each user works independently. For shared or cooperative work a
different perspective is required.

There is, of course, a lot one could say about cooperative computing systems
and it is one of the current growth areas in HCI research. For the rest of this
chapter we deal briefly with some specific aspects which relate to the concepts of
event and status.

To begin with, let us think about two contrasting communication mechanisms.
First, there is a traditional email system. Each user has a "mailbox". Other users
can send messages which should eventually, via various networks, find their way
into the recipient’s mailbox. When the users look at their own mailbox they find
any messages that have been sent to them. Additional facilities offered typically
include distribution groups and aliases (as the addressing systems are far from
clear) to help send messages, and various forms of visible or audible indicators
when mail arrives.

The second type of system to consider is where the model is of a shared
information base. At the simplest, users of a shared file system can use this as a
communication mechanism. Perhaps two researchers working on a shared paper
will read each other’s contributions simply by looking at the appropriate files.
Other systems have been designed specifically to encourage information
exchange and cooperation. Some are based on hypertext techniques, such as for
instance KMS (Yoder et al. 1989). The whiteboard (blackboard, chalkboard)

Events and status — mice and multiple users 263

metaphor has also been used (Donahue and Widom 1986, Stefik ef al. 1987), and
also simple screen sharing. (ch)

These two extremes represent two styles of communication:
. Messaging
. Shared information

The astute reader will have already guessed how these relate to the theme of
this chapter, but before discussing this we will examine a few other features of
this distinction.

10.6.1 System and user cross-implementation

What a system provides and what users do with those facilities are, of course,
very different. Most communication systems are built on top of an underlying
messaging protocol between the users’ computers. Even where the users share a
single file system, their workstations will typically communicate with the file
server by network messages. This level of implementation is usually hidden
from the users. The network messages may be used to implement an apparently
shared data space, and even where the user level model is of messaging this will
be built on top of the underlying network in a non-trivial manner. In a similar
manner, users are proficient at producing social mechanisms for "implementing"
one protocol upon another.

Think about two chess players swapping moves by post. The postal system is
a messaging system, but is used to keep their respective boards consistent. That
is, they maintain a shared information space. The transfer of files by email is a
similar situation. The users want to share the information contained in their
respective filing systems and use the email messages to implement this. It is
interesting that even where users share a common file system they may still use
email for this purpose. This is presumably because of the difficulty of giving the
appropriate permissions or specifying the file names.

Social implementation techniques work the other way too. Users of shared
information systems make use of drop areas: they set aside parts of the
information space for each user and simply add their messages to this area. (ci)
This mechanism is a direct parallel to the way that many systems implement
internal email. Also, bulletin boards may contain a permanent record of all
transactions but many users will read only the most recent entries and never
consult old entries. (cj) They thus become simple broadcast message systems.
Again, personal columns in newspapers are messages between individuals which
make use of a widely shared information base (the newspaper).

Even though users are quite capable of shifting the communication paradigm
supplied by their system, these examples do suggest that support for the actual
tasks performed may be beneficial. On the one hand, we may ask whether drop

264 Formal Methods for Interactive Systems

areas in a shared information system form an adequate message system. On the
other, it is clear that if we want to transfer information, such as files or more
complicated structures, sending messages is not the way to do it.

10.6.2 Attributes of messages

If we want to know how to design communication systems that meet users’
needs, we should consider some of the different attributes of messages and
shared data. Not all systems need be as polarised as the examples we have given,
and the way users implement different social protocols can make it hard to
distinguish the crucial attributes that make a system suitable for a task or not.
Attempting to uncover the central attributes that differentiate these mechanisms
can help us understand this suitability.

If we contrast direct speech with, say, a book or filing cabinet, we see an
obvious difference in persistence. The spoken message is ephemeral: its
permanent effect is in the way it has affected the users’ actions and their
memory. The shared information in the book and the filing cabinet is much more
long lived. This difference in persistence between messages and shared data
seems to be fairly characteristic. Email messages tend to be read once only, as
compared to a shared database that is intended to be a perpetual resource.
However, the distinction is not as clear-cut as all that: both electronic and paper
messages are frequently filed permanently, and spoken meetings are made
permanent by the use of minutes or notes. In fact, it is a general feature of
formal bodies that ephemeral messages become permanent corporate
information.

There are two major reasons for recording messages. The first is that they
may contain information that is required on a long-term basis. Arguably, if that
is the case, then that part of the message was partly a sharing of information that
is implemented by the message. A second reason is as a record of a
conversation, either to re-establish context when new messages are received, or
to serve as a legal or official record in case of dispute. In the former case only
the last few messages are required, so the messages are still ephemeral. In the
latter case, we have a meta-communication goal, and it is not surprising that it
has strange characteristics; the medium through which we communicate has
become the object of higher-level tasks.

Other attributes that can help distinguish messages from shared data are
ownership and identity. Shared data tend to remain the property of the originator
or may have some sort of common ownership. The same data object is available
to all. Messages tend to be transferred between parties, and the recipient either
gets a copy of the original item, or the sender loses their copy. The typical
example of this is the letter. The sender can retain a copy or send a copy, but the
letter itself changes hands. Similarly, email messages become the property of the

Events and status — mice and multiple users 265

recipient. Again there are exceptions, for instance, if I make lots of photocopies
of this chapter to pass to my colleagues to review, but this is a typical example of
implementing shared information using messaging.

We can lay out these attributes in a matrix, placing messaging and shared data
in it:

persistence
ephemeral permanent
transferred message (a)
ownership
shared (b) shared data

There are two gaps in the matrix, but are there any situations that fit in these
gaps? Let us look first at gap (a), that is, transfer of long-lived information.
Obvious examples of this in the real world are legal transactions, where the
transfer of some written document carries with it the ownership of some asset.
This could be seen to be a little stretched because of the link with physical
objects. One example of a "pure" information transfer within this category is the
passing on of a job. All the relevant information, both electronic and paper, is
passed on to the new post-holder. Both these examples seem closer to a data-
oriented view of communication. Any messaging that would be associated with
the transactions would appear to be additional, even if sometimes within the
same enclosure.

The other gap, at (b), is for ephemeral data in some form of shared or common
ownership. This is a more difficult gap to fill. One could imagine information in
a shared database with limited lifetime, for instance, a meeting announcement.
However, the ephemeral nature of this information is related to real time and is
very different from the ephemeral nature of messages. Messages are ephemeral
because they are no longer needed once they have been read: that is, their
timescales are subjective. The only examples of shared data with a subjective
timescale that I can think of are items like electronic voting forms, or data items
which are "ticked" off when they are read and are removed when ticked by
everyone. The former have a quite complex dialogue associated with them, but
are essentially message-like. The latter appear to be an example of shared data
being used to implement broadcast messaging. A physical example of the latter
would be the university lecture, but of course this would lack the guarantee of
universal attention.

If anything, the permanence axis seems more characteristic than the ownership
one, but all the off-diagonal options are rare or expose failings in the underlying
transport mechanisms. Of course, a good shared information store would
support many different types of ownership and ownership transfer. Further, it is
easier to make permanent data ephemeral than vice versa, so the shared data

266 Formal Methods for Interactive Systems

view seems to include messaging as a subcase. This is borne out to some extent
by the experience that in shared data systems, the attempts at establishing
messaging via drop areas seem more successful than the attempts to establish
shared information using email.

So, is that all we need to know about messaging? Should we concentrate on
producing effective shared information systems, as these can be configured to
include all forms of communication? In fact, there is a vital element missing,
and we need to return to the subject of this chapter, events and status.

10.6.3 Messages as events

As we noted earlier, the reader may well have noticed a similarity between the
event/status distinction and messages and shared information. Messages happen,
information is there. This is exactly the distinction between event and status.
The message is ephemeral, because its effect is achieved once it has been
received.

One day someone comes into my office and puts a paper to be read on a pile at
the back of my desk. It effectively passes into my ownership and my personal
workspace. However, let us elaborate on this in two alternative scenarios. In the
first, I am away. The paper is left on the pile with a note on top inviting
comments. Assuming I notice it there upon my return I will discard the note, but
I may not notice it for a while. In the second scenario I am there: "here’s a paper
you may like to read" ... the paper is flung onto the pile.

In the first scenario, the "message" part of the transaction was ephemeral and
transferred ownership, but it failed in its purpose. Because it did not achieve
sufficient salience for me, the event of my receiving it was delayed, possibly
indefinitely. The difference between the spoken message and the written note is
immaterial: if the note had been placed silently on my desk because I was on the
phone, it would still have achieved salience and would still have achieved its
purpose as a message. To make matters really extreme we could contrast, on the
one hand, the note being slipped silently onto my desk while I was in the room
but with my back turned, with, on the other hand, it being put there just as
silently but in full view. A snapshot of the room just before and just after would
be identical, but in the latter case an event would have occurred and a message
would have been passed.

10.6.4 Why send messages?

Why is the salience and event of reception so important? We must look at the
reasons for the sending of messages.

Events and status — mice and multiple users 267

The first reason is imperative. The knock on the door and cry "Fire!", and the
Poll Tax demand are both intended to prompt action. The salience is necessary if
we want the action to occur in time; however, the immediacy required in the two
cases is different. Putting a letter through the door with the word "Fire!" on it
would not be appropriate, neither would knocking at the door and shouting "Poll

Tax".

Often, combined with this desire for action is a more subtle reason. If you
know that your message was salient, you know that the recipient has read it. In
addition, the recipient knows that you know, etc. That is, it achieves its effect by
creating and transferring meta-knowledge. Examples of where this is important
would include informing interested parties about a decision even when they have
no opportunity of affecting it.

When combined, messages may achieve quite complex social purposes. For
instance, not only does the Poll Tax demand prompt you to pay, but the fact that
you have received the demand and have not paid makes you liable to prosecution.
Letters sent to those who do not hold television licences which request
confirmation of receipt have a similar legal entrapment function.

Speech-act theory (ck) treats a conversation rather like a game, with various
moves open to the participants at different stages. Breakdowns can occur during
face-to-face conversation due to misunderstandings, but remote conversations
open up further possibilities. If I make a move in the conversation game and the
other participant does not know about the move, then she may make a move
which is perfectly valid from her view of the conversation but may be confusing
or meaningless from my point of view. Thus the salience of my messages forms
an important role in synchronising our conversation.

10.6.5 Appropriate events and user salience

Thus messages must give rise to events salient to the recipient. There are
various ways by which users perceive events:

(i) Anevent-type system output, e.g. a beep or sudden flash of the screen.
(il)) An indicator on the display, e.g. a mail ready flag.

(iii)) A change in the display, e.g. a mailbox size increase.

(iv) An indicator which is uncovered during subsequent interaction.

(v) A change in status which is uncovered during subsequent interaction.

Notice that (iii) and (v) are both cases where a change in status is interpreted as
an event. There is, of course, the possibility that such status change events are
never noticed by the user: perhaps by the time the user’s attention is on the
appropriate part of the display or database, they have forgotten what the previous
state was. The eye is very good at noticing changes, so display changes will be
noticed as long as they occur reasonably close to the user’s focus of attention.

268 Formal Methods for Interactive Systems

However, changes that are not immediately visible are very likely to be missed
and so it would seem good policy always to have some persistent indicator rather
than to rely solely on status change.

The same is true for the event outputs of class (i). These have the greatest
immediate salience but, once missed, will never be noticed. Again, a permanent
indicator will usually be required. These requirements for status records of
events were discussed earlier in this chapter. A good example of an event
indicator which combines both immediate salience with persistence is the Mac
"Alert". These dialogue boxes disable the system entirely until they are
responded to, hence they cannot be missed, yet they remain on the screen if the
user is not present. They have other less fortunate properties, however. They
interrupt other work, but the same could be said for a fire alarm. More seriously,
they often demand that the user takes some action such as a decision before
allowing the user to continue. Thus their purpose as an event, and a connected
requirement for user intervention are conflated.

Status indicators of classes (ii) and (iv) only become events when the user
notices them. Again, as we discussed early in this chapter, they may require
some pattern of use to be sure of being noticed. For instance, my workstation
has a flag on the mailbox which is raised when new mail has arrived (class ii).
Periodically I look at the flag to see if there is any mail. If the flag were not there
I would periodically have to use a mail command to examine the contents of the
mailbox (class iv).

If the sender of a message wants to know that the message will be received
then something must be known about the way the arrival of the message is
signalled, and possibly about the habits of the recipient. If I know that someone
looks at their mailbox only once a day when they log on to the system, I would
not use email to ask them whether they can meet over lunch. When we discussed
this issue earlier we noted that the granularity of events would be related to the
pace of the task. Then we were thinking of automated tasks with a single user.
A similar observation holds here though, that the pace of the conversation will
influence the acceptable granularity of perceived events. This is why it is
unacceptable to put a letter through the door warning of fire, whereas the task of
paying taxes is measured in weeks (at least!), and therefore my infrequent checks
on my doorstep are sufficient to make the letter an appropriate message.

We see then that in order to deal with a range of types of communication, we
must not only be able to deal with information transfer and associated issues of
ownership and persistence, but must also account for events. This is the key
feature which mail systems possess but shared information lacks. Where users
implement messaging using shared data they have to develop protocols for
examining the appropriate parts of the data space. Adding features to a shared
data model to raise appropriate events would be a major step towards producing
a common framework for communication.

Events and status — mice and multiple users 269

10.6.6 User status and system status

Finally, after considering the central role of events in communication, we
return to status. The shared information entered by users as part of their
communication is part of the system. A crucial part of face-to-face
communication is the status of the other participants: whether they are attending,
whether they want to speak, etc. Without such information it can be hard to
establish effective communication. Once users are separated by a computer
system they may not even know whether the other participants are at their
terminals, let alone whether they are attending.

In Chapter 4 we considered techniques for capturing user task knowledge
about the interdependence of windows. There is a similar issue here. Obviously,
only information within the system can be presented to the user. However, the
crucial status is about the users themselves: their attention, attitude, presence,
etc. This is not immediately available to the system and cannot therefore be
passed on to the other users. There are several possible ways of dealing with this
problem.

First, we might ask the users to tell us what they are doing. This is likely to be
an imposition and may be neglected. Still, if users know that the information
they supply will be useful to other participants in a conversation, they may
cooperate.

Alternatively, there may be information within the system which gives a
reasonable indicator of the user’s status. For instance, if the user has been typing
recently then it is reasonable to assume that the user will be attentive to new
messages, especially if they are accompanied by an audible or strong visual
signal. Screen-savers work on precisely this principle, and thus the relevant
mechanism may already exist on the system. A similar indicator is a screen lock,
which implies that the user is away, but will return. These are both partial
indicators of the user’s status: the user may leave the screen locked (or turn the
machine off) whilst still in the office. Similarly, the user may be attending to the
screen but not actually typing.

It is possible to go further. Not only can existing system information be used,
but also dialogues can be deliberately designed which expose aspects of the
user’s status. For example, in an experiment at York, each participant was
required to select windows as part of their normal use of the system. These
selections were designed to reveal information about the user’s current activity.
This information was then made available to the other participants.

270 Formal Methods for Interactive Systems

10.7 Discussion

I have discussed status and events in many detailed circumstances, and it is
time to recap on some of the properties that have been encountered. However,
before I do that I would like to reflect on one last facet.

10.7.1 Events and dynamism

When we consider status it is (almost by definition) about static properties. It
can be derived from a snapshot of the system at a particular moment.
Furthermore, if we look at a time when there is no event, the status a little before
and a little after is likely to be very similar. Hence status also emphasises
continuity. Events, on the other hand, are at moments of change: they punctuate
the dialogue, marking discontinuity and dynamism.

We can see intimations of this in previous chapters. The distinction between
static and dynamic invariants has a similar feel. Static invariants relate various
aspects of the status of a system. Dynamic invariants still talk about status, but
limit the change in status when events occur. However, dynamic invariants do
not tell us about what will happen at specific events, but provide only general
restrictions on the sort of thing that can happen.

Both pointer spaces and complementary views told us something about the
dynamism associated with particular events, but in rather different ways. For
complementary views, the concentration on process-independent updates meant
that we virtually ignored the method of change at an event, and instead looked
only at what change occurred. This simplified matters considerably in what was
still a tricky area; however, when we got to the end of the chapter and took a
quick look at dynamic views a different perspective was required. We discovered
that different sequences of updates could take the underlying data-base from the
same start point to the same final value, and yet a different view was required.
That is, the method of change became crucial. This led us to see the similarities
with dynamic pointers and pointer spaces.

The pull function in a pointer space is a rich construct as it focuses on the
manner of change. We went on to mention the concept of change information in
general, of which the pull function and locality blocks were examples. Unlike
the result and the display, which are status information, this information is
associated with the event itself.

It is easy when thinking about concrete interfaces to concentrate on static
aspects: at the surface level, screen mockups and perhaps at the semantic level,
data structures. Dynamics are difficult to describe, both in written language and
in the visual language of screen dumps. It is, however, the dynamics that are
often crucial to the feel and effectiveness of a system. One of the points made in
the pointer spaces chapter was that the dynamics of positional information are

Events and status — mice and multiple users 271

typically not considered carefully enough in design. For instance, it would be
easy to approach the design of a novel graphical hypertext with beautiful screen
displays and subtle representations but not discover the problems of updating the
links until it was implemented.

Events are obviously regarded as important in design and, in particular,
dialogue descriptions are almost purely event oriented. It is, however, in linking
the worlds of events and status that we are likely to come unstuck. The common
approach is to look at the event as a state transition. That is, we reduce the event
to its effect on status, rather than looking at it as important in its own right.
Bornat and Thimbleby (1986), in their editor ded, went to great lengths to make
the manner in which the screen is updated emphasise the direction of movement
through the text. This is possible on character terminals which frequently have
fast methods of scrolling upwards and downwards. Unfortunately, these insights
have been all but lost in bit-mapped systems. Bit-map scrolling is often far too
slow and the tendency is simply to repaint the screen. So, even at the raw
interface, the event of movement is reduced to a change in status. This loss of
dynamics is sad, and it is particularly unfortunate that an apparent improvement
in technology should lead to a reduction in other aspects of interface quality.

10.7.2 Summary - properties of events and status

We shall now briefly review the various properties of status and events. The
fundamental distinction is perhaps that events happen whereas status simply is.
This was exactly the same distinction that we noted between messages and
shared data, and the same issues tended to arise in both the single-user and multi-
user cases.

Granularity and context

The way in which we regarded the ringing of the alarm at the beginning of this
chapter depended on the timescale with which we looked at it. If we look at the
ringing at a fine timescale it is a status, yet at a coarse timescale it is an event.
The appropriate granularity depends on the task and the context: hence we must
establish a contextual framework for statements about status and events. In a
similar way, the context of communication determines what would be regarded
as an effective message.

Status change

An important way in which events and status interact is that changes in status
may be perceived as events. Just as events, when looked at closely, can often be
interpreted as status, so can apparently continuously changing status, when
examined, be seen as many change events. More important, however, even at the
scale whereby the individual changes are not salient, certain changes of status

272 Formal Methods for Interactive Systems

through critical values become, for the recipient, events. Examples of this
include the hands of a clock passing a certain time, a mouse moving over a
window and seeing a postcard appear on a noticeboard.

Salience

The "may" at the beginning of the previous paragraph was essential: changes
in status are interpreted as events only when and if the recipient notices them.
Similarly, objective events become subjective events for the user (or the system)
only when they are noticed. Thus, in determining what are to be seen as salient
events, we must have regard to the focus of attention of the recipient (and grab
that attention if necessary). Further, for status change events it is often necessary
that the recipient engages in some periodic procedure to scan the appropriate
status. Sending an effective message requires not only that it should arrive, but
also that the recipient will notice that it has arrived and thus act upon it.

Synchronisation

As events are partly subjective, there is the possibility that different partners in
an interaction, whether a system and a user, or people in a conversation, will
differ in their interpretation of an event. It is crucial that a message I send is not
only an event for me, but that it becomes an event for you also. Our individual
perception of the state of our conversation depends on mutual recognition of
events; without this, we may diverge in our respective interpretations of where
we are. This is especially important when silence is interpreted as a speech act,
or where a message is intended to terminate a conversation. Synchronisation was
also important when we discussed the way that the system may regard some
changes in mouse position as events which the user considers inconsequential.

Dynamism

Finally, we have only just discussed the role of events in injecting a sense of
dynamism. Talking via a pin-board is a far cry from a face-to-face conversation.

10.7.3 Conclusions

We have examined the role of status and events both in single-user interaction,
and in the form of messages and shared data for multi-user cooperation. It is not
surprising that similar features arise in the two areas, as we can, of course, regard
the single-user case as that of a user in cooperation with the machine. In fact, it
was a consideration of the parity between the two which began this chapter.

The most interesting thing about status and events is the interplay between the
two. Unfortunately, it is hard to find models which adequately describe both. As
we have noted, the models in this book largely fail in this respect, as do other
formal models of interaction. This failing is not confined to HCI; similar

Events and status — mice and multiple users 273

problems are apparent in general computing. For instance, models of
concurrency tend to be totally event-based, ignoring status completely. On the
practical side, database systems are almost entirely status-based and this is a
major shortcoming when they are considered as vehicles for cooperative work.
The only computing paradigm that could handle both to any extent would be
access-oriented programming. (cm)

This lack of allowance for the range of status and event behaviours seems
particularly unfortunate since our real-life interactions are typically mixed. An
office worker will respond to memos and phone calls, consult paper files and
databases, have conversations and smell lunch cooking in the canteen. A cyclist
must be aware of road signs and road markings, traffic lights, the movements of
other road users, and car horns. In addition, the cyclist will control the cycle’s
road position, use hand signals, and perhaps a bell. A factory controller will
watch various status indicators, temperatures, pressures, and stock levels, whilst
being ready for breakdowns, the arrival of bulk deliveries and knocking-off time.

In order to comprehend the complexities of the world, it is often necessary to
simplify. However, this wealth of variety suggests that there is much to be
gained from a richer understanding of event and status in interactive systems
design.

274 Formal Methods for Interactive Systems

