Formal Methods for Interactive Systems © Alan Dix 1991
http://www.hiraeth.com/books/formal/

CHAPTER 12

Conclusions — mathematics and the
art of abstraction

12.1 Introduction

In Chapter 1 I said that to formalise is to abstract. Although formal
statements are often couched in mathematical notation, the heart of the formal
statement exists independently of the notation and may often be captured just as
well in ordinary English.

Since I first wrote that, several years ago as part of the introduction to my
thesis, I have heard several people define formalism as precisely the
manipulation of notations independent of meaning. That is, a manipulation of
the form only. The proposer of such a view then immediately throws away any
pretension of dealing with real people or real things. Now that sort of statement
immediately sets teeth on edge, but by a dictionary definition I suppose it is
correct. In which case I don’t really want to be a formalist at all!

In retrospect what I should have written was:
In essence, mathematics is to abstract ...

In, short I use formal notation because it is useful, but the mathematics
is not restricted to the formalism ...

The trouble is, if I had been writing about mathematical models of interactive
systems I would probably have frightened off even more readers! However, as
you are all now reading the conclusions I can safely nail my true colours to the
mast and become a card-carrying mathematician.

The interplay between mathematics and formalism is subtle. Although a
mathematical argument may begin with an imaginary inner tube, or something
equally non-formal, it is usually assumed that it will eventually be transformed
into a rigorous formal notation. When applying mathematics we may either

- 307 -

308 Formal Methods for Interactive Systems

formalise our problem and attack it using formal mathematical techniques, or
alternatively "lift" a formal result into the problem domain and apply it at the
informal level. Probably, a mixture of approaches is most common.

Looking at the previous chapter, the first approach, of formalising the problem,
corresponds to the specification of a system and relating the abstract models to
this specification. The second approach, lifting the formalism, corresponds to
the "professional" application of the models as exemplified by the analysis of the
lift (sic) system.

The major problem we are faced with when dealing with a situation
mathematically is precisely what to put into the formal notation. What is the
appropriate abstraction? In Chapter 4, we began the formal discussion by
focusing on windows as having content and identity. We then went on to
produce a model which encompassed these two features. There was
mathematical work needed at both these stages. Choosing the appropriate way to
represent content and identity of windows is not easy; there are many equivalent
representations, and depending on which we choose the statement of various
properties becomes more or less hard. However, I am never too worried about
transformations between equivalent mathematical formalisms, and the most
important step seems to be the identification of content and identity as central
features. That is, a mathematical step of abstraction, which is, at that point,
entirely in the informal domain.

This example shows us that the job of "bridging the formality gap" requires
work on both sides of the divide. We choose to abstract, to look at things from a
particular perspective, on the informal side; and on the formal side, we choose an
appropriate model or notation which matches the abstraction. There are various
heuristics which can be applied to the latter task: identifying entities and
operations, etc. However, the mathematical, but informal, task requires more
creativity. If abstraction is the essence of mathematics, then developing
abstractions is the art of mathematics.

12.2 Abstractions we have used

Let us now look again at some of the issues in the previous chapters focusing
on abstraction. We will begin by looking at abstraction in the sense used in
describing models as abstract. This is, in essence, abstraction by the designer of
multiple systems. First (§12.2.1) we will look at how the abstraction chosen can
limit the domain of our models, that is, the types of statements and systems that
the model supports. Then (§12.2.2) we will see how abstractions introduce a
grain into our analysis. That is, we are led along certain directions by the nature
of the abstraction.

Conclusions — mathematics and the art of abstraction 309

Any particular system can be viewed at various levels of abstraction. This is
considered in §12.2.3. Both the designer and the user will have such abstract
ideas about the system which may or may not coincide. These abstraction are
basically intellectual ones, and in a sense dig into the system away from the
interface. They lose detailed information about the interface and tell us about the
inner functionality.

The views we have of a system are, in a sense, the opposite: they are
abstractions of the system fowards the interface. The most abstract such view is
that of the concrete pixels of the display, and we move inwards towards less
abstract views of the system such as the monotone closure. These abstractions of
state and display are discussed in §12.2.4.

Finally, in this section we look at the ways abstract models are applied to
specific systems (§12.2.5). We see that the most important decision to be made
is the level of abstraction at which to apply our models.

12.2.1 Abstract models — domain

Of course, we have laid great emphasis on the abstract nature of the models
presented. This was to help achieve generality and to focus on the relevant
aspects of the systems. Of course, the generality is never complete and each
model has its own domain of applicability. We started out with the PIE model.
This was claimed to be very general, encompassing nearly all interactive
systems. However, as the book developed we have seen many more models
addressing areas which were inexpressible within the PIE model.

Some of the restrictions in the domain of applicability were because of the
level of abstraction. That is, the PIE model was just too abstract to express
certain important features. For example, we were unable to address adequately
display-mediated interaction and had to look at more architectural models such
as dynamic pointers (Chapter 8). Earlier than that, we developed a model of
windowing (Chapter 4). The original PIE model was an abstraction of this, as
the user’s mouse and keyboard commands could be related to the screen without
explicitly talking about the windows. However, although the PIE model could
describe the external view of such systems, a more refined model was required to
discuss the more detailed properties of windows as entities in their own right.

Now, this limitation due to level is only to be expected: the purpose of
abstraction is to lose some detail and if we later decide we want to talk about that
detail we must clearly use a different (more refined) abstraction. The new
abstraction may be a direct refinement of the original (as with windowing) or
have a more complex relationship (such as dynamic pointers). It may even be
that two completely different abstractions are used to address different aspects of
the system: for instance, we may use an abstract model of interaction whereas

310 Formal Methods for Interactive Systems

someone else may be using an abstract model of system security or safety.

Limitations due to the level of abstraction restrict what we can say about a
system. The other limitation in domain comes about when the model chosen
implicitly restricts the range of possible systems. That is, the model is only
capable of describing a subset of possible systems. If we again start with the PIE
model and then look at the temporal model of Chapter 5, we see that the PIE
model was an abstraction of the +PIE but only under certain circumstances,
when the system admitted a steady-state functionality. Thus not only did the PIE
model abstract away from the detailed interleaving and timing of system inputs
and outputs, but it implicitly limited discussion to systems with a stable steady-
state behaviour. For instance, the PIE model is incapable of describing most
computer games. We see a similar example in Chapter 10: a general model was
given of status input, and then a second model which implicitly required
trajectory independence. In fact, it was this second model that I first wrote down,
and later, when I realised its limitations, I began to frame the concept of
trajectory dependence.

In both cases the formulation of the abstract model limited the range of
systems that could be considered. Whereas the limitations due to level reduce
expressiveness, these limitations of range reduce the generality of the models.
Now since one of the declared purposes of abstract models was to make generic
statements, this loss of generality is rather worrying. The picture is not quite as
bad as it seems; there are good reasons for restricting the range of models.
Abstract models can be simpler because they abstract away some features of the
system; in the same way, models of limited range may be simpler than more
comprehensive models. If we are not interested in the systems that are not
covered by a particular model, then it is more appropriate to use that simpler
limited model than a more complicated but complete one.

A more serious problem is that the limitations in range may not be obvious.
The level of abstraction may hide the limitations and effort may be wasted on a
model that misses the very systems of interest. Further, if the model is used as
an architectural framework for developing the specification of a particular
system, the system will be limited in scope by the assumptions implicit in the
model. Suppose we chose to develop a system using the pipeline architecture
(§7.2.3), where input parsing and display generation are seen as separate
activities. We saw that the architecture does not support display-mediated
interaction (§7.4) and hence the system developed would lack any sense of direct
manipulation. More importantly, this central design decision may never have
been explicitly made; instead, the structure of the model will have led the design
in that direction. This danger of implicit design decisions is a problem not just
of abstract modelling; any design system we use will have such implicit
assumptions. Application generators will usually produce very stereotyped
systems, and interface design methods will only support certain styles of

Conclusions — mathematics and the art of abstraction 311

interaction. Even programming languages will limit the sort of interfaces that
can be produced; for example, they may lack real-time programming facilities.
The important thing is to be aware of the range of the abstract model (or
whatever else) one is using.

Limitations in range can be turned to advantage. If we choose to develop a
system based around a model, we do not have to maintain explicitly the
properties which are implicit in the model. So if we are designing a mouse-
based system and want all commands to be trajectory independent, we can use
the model in Chapter 10 which supports only trajectory-independent systems.
Similarly, we may enforce appropriate steady-state behaviour by designing the
major part of a system using a model (such as the PIE) which does not allow the
expression of more complex real-time behaviour. As a separate stage we can
map this model into a fully temporal one with due regard for the additional
features. This is precisely the design approach suggested at the end of Chapter 5.

It is non-determinism which enables abstract models to describe complete
systems whilst ignoring detail. That is, it allows us to increase expressiveness
without too great an increase in complexity. It is not so obvious that we can
increase the range of a model by use of non-determinism. However, this is
precisely what happened towards the end of Chapter 7. We had a linear model of
interaction that was (as we have already noted above) incapable of expressing
mediated interaction. However, we were able to increase its range and generality
by using oracles. So, by adding non-determinism, effectively the same model
could describe not only the original range of systems but also a whole range of
display-mediated ones.

12.2.2 Abstract models — grain

We saw above that models are restricted in domain in terms of both level and
range. We also noted that the most dangerous part of such limitations is when
we are not aware they exist. However, there is a far more subtle way that a
model may influence the sort of systems that are produced. It may be possible to
model a large range of systems within a given framework, but the framework
naturally steers us towards a certain class.

I pick up a piece of wood to smooth with a plane, look along it, perhaps feel it
with my fingers. I try to work it in one direction; the plane sticks, then jumps,
taking an unsightly chip off the surface of the wood. So, I turn the wood around
and begin to plane in the opposite direction; shavings curve gracefully off the
wood and pile as a rich carpet around my feet. I have found the grain of the
wood. Of course, it is possible to plane the wood against the grain, if you are
careful, if the tools are sharp; but it is not easy.

312 Formal Methods for Interactive Systems

Any material, set of tools, or language will have such a grain. It restricts what
can be produced or expressed, not by what can be achieved, but simply by what
is easy. Perhaps there are exceptions, like carving candle-wax, but they are rare.
In particular, of course, the models and concepts presented in this book and
formalisms in general induce a grain into the design process.

There is a much greater awareness of the effects of grain when using physical
materials than with software. Indeed, part of the aesthetics of many crafts is the
way that the intended function of an artifact reflects the inherent dynamics of the
material. A Windsor chair produced out of steel would be both inappropriate and
possibly structurally weak.

If we question the proponents of computer notations or formalisms there is far
less awareness of these issues. We are frequently told that the particular method
is all-embracing and general. If the proponent is of a formal nature, this may
take the form of a proof of Turing completeness. Alternatively, if we suggest a
particular system for which the technique seems ill-suited we get a reply of the
form "ah but — you can get the effect by...". The fact that it is possible to achieve
the desired effect clouds the fact that we would not develop such a system using
the notation. Only recently, I read a remark that we could do without a range of
different programming languages, Cobol, Fortran, Ada etc. because C++ could
do it all. I can only assume that the author had never worked at a data-processing
site!

How is this reflected in the models in this book? In Chapter 10, I said that it
was possible to describe status input behaviour using the PIE or z-PIE models.
These models did not, however, immediately suggest status input, and we would
not tend to design systems with status input if we had these models in mind. So
they have a definite grain to them.

Where does this grain come from? Well, it is partly in the formal expression:
by not separating out status and event inputs in the model, the possibility is not
suggested by the formalism. Also, aspects of the formulation such as the use of
sequences suggest discrete events, and the types of principles stated tend to be
appropriate for events rather than status inputs. Moreover, the examples used
were of event input systems which tended to limit the way we thought of the
system.

In Chapter 8, we can see another example of the way examples influence the
way we think of a model. All the earliest examples of dynamic pointers were of
atomic pointers. Only later in the chapter did we get onto block pointers. Now
partly because of this, and partly because of the connotations of the word pointer,
I have found that readers assume that block pointers are somehow different,
rather then just a special case of dynamic pointers. The formal expression of
pointer spaces with pull maps and projections with their fwd and back maps
apply equally well to the atomic and block cases, but the examples and the
nomenclature bias the reader.

Conclusions — mathematics and the art of abstraction 313

If we were looking for a piece of wood from which to make the prow of a
ship, we could just take any piece and steam-bend it. However, steam-bending
tree trunks is rather hard work. Alternatively, we might look for a piece of wood
(or a tree) that already had the desired shape. Of course, it wouldn’t be exactly
right, but we would be working with the grain of the material, not against it.

We can do the same with interactive systems. We saw that we can deliberately
choose models which constrain a design to have certain features. In a similar
way, we can choose a model or notation so that its grain encourages a style of
design. This happens in various contexts: an interface toolbox may in principle
allow the designer total freedom but actually encourages a particular style of
interaction. Many programming languages are largely sequential in character,
and I have shown elsewhere that this leads to systems where the computer has
excessive control over the dialogue. As a deliberate attempt to counter this, I
showed how a non-sequential computer language could be augmented with
input/output primitives in a non-standard way deliberately to encourage user-
controlled dialogue.

The red-PIE model was always intended to be applied at many different levels
of abstraction, and to various parts of the system. Now although this message
largely got across at the level of overall abstraction, so that people felt
comfortable with the display being a bit-map or simply an abstract description, it
has never really been successful when applied to facets of a system. Other
workers at York were interested in the way that certain parts of a screen and of
the result were salient to the user at different times (Harrison ez al. 1989). They
emphasised this by having functions called display templates and result
templates, which abstracted from the current display and result the features that
were important for a particular task. Now arguably these are unnecessary; we
could just apply the red-PIE model choosing the display and result to be the
appropriate bits, and relate it back to the complete system by way of an
abstraction relation. However, although the templates may not be strictly
necessary in terms of expressiveness, they make explicit a feature of the system
and therefore bring it to attention. That is, they have created a model with a
certain grain which encourages systems where the subdisplays and subresults
corresponding to tasks are well thought-out and discriminated.

Now this issue of grain is interwoven with the concept of structural
correlation that I have talked about previously. One of the most obvious forms
of grain is where the structure of the model influences the structure of the
system. Indeed, the paper I cite above, where a language was designed to
encourage user-controlled dialogue, was written in precisely these terms. The
critical point was the inherent structural correlation between the programs and
the ensuing dialogues, and hence between the programming notations and the
interface. So, when we cross the formality gap between what we feel we want
and formally expressing it, we must be careful that the grain of the formalism

314 Formal Methods for Interactive Systems

flows with us as we produce our description.

12.2.3 Abstractions of the system

The issues we have discussed, the expressiveness and generality of a model,
are about the abstraction of the model. However, we can look at a particular
system at various levels of abstraction. The models may be appropriate at
various levels and may even help us to describe the levels of abstraction within a
system. This is essentially what was going on in Chapter 7. We wanted to view
a system at the physical level and at an inner, logical, application level. These
layers of abstraction were actually represented by a pair of PIEs with functions
between them. That is, we used an abstract model to talk about abstraction!

It is common in both HCI and software engineering to discuss systems at
various levels. In the latter, the levels correspond to layers of the software
system that isolate the true heart of the system from the physical input and
output. In the former, the levels are more interesting as they may correspond to
the way the user construes structure from the interaction. I say may as they may
equally well be a re-expression of the system side; however, to be generous we
should be thinking of levels of abstraction for the user. On the input side
(computer’s input, that is), this ranges from some level of tasks or goals through
various levels to the actual movements of the user’s fingers on a keyboard. On
the output side, this includes the actual seeing of a screen through to the
recognition of the content of the display as pertinent to the user’s intentions.

The user is often unaware of the lower levels of abstraction of the interaction.
Much of the time I am "writing a book", only partly aware that I am also "using a
word processor". I am not thinking that I am "typing at keys" or "reading
characters", and certainly not "moving muscles" or "interpreting light patterns".
In fact, I am probably incapable of even performing these last actions at a
conscious level. The times I become aware of the lower levels of abstraction are
regarded as "breakdown", often an exposure of faults in the system.

There is a general hope that levels of abstraction for the user will correspond
reasonably well to the layers within the system. My understanding of the system
matches what is there. Now in §11.5 we saw that this was in general impossible.
The pragmatics of producing reasonably efficient systems means that the systems
must match structurally the demands of the machine. If the layers understood by
user and system are to agree, then the user must adopt an implementationally
efficient view of the system (or buy a supercomputer). Sadly, this is the state of
much software: the user is taught to interact as a machine.

Happily, the analysis of refinement led us out of this impasse. The
specification of the system can be layered in a way which presents a natural
structure for the user, whilst the implementation of the system may adopt a
different structure. The techniques for managing this structural change are

Conclusions — mathematics and the art of abstraction 315

especially important given that the implementation layers refer to the way the
system is built. In Chapter 7 we saw that the abstraction of a system which we
could regard as the functionality is in general not a component of the system as a
whole, but an abstraction of the system. By appropriate transformation we can
retain this abstraction relationship within the early specification and move to the
constructional relationship as development proceeds.

Movement between levels may occur not just because of breakdowns: we
intersperse high-level, more abstract, planning with more concrete, less abstract
actions. It is frequently the case that these movements in level are associated
with syntactic units in the grammar of interaction.

Examples abound: in my particular case I decided to edit a particular section
of this book, so I invoked the editor; when I have finished I will exit it. These
shifts in level between the abstract "edit the section" and the more concrete
actual writing are reflected in the interaction, and could easily be found by
anyone with a trace of the dialogue. Within my editing various subtasks occur,
perhaps a global replacement of a habitual misspelling. Again the shift in level is
reflected in the dialogue.

Now the levels of abstraction by which we understand a system need not agree
with the levels by which it is implemented (nor even necessarily specified), so
long as the models are consistent. Of course, the place that this consistency must
be found is in the physical interaction itself. So the system need not interpret the
structure of our interaction in the same way as I do, but it must at least be
consistent with my interpretation. (Or to be precise, I suppose I must be
consistent with it!)

Assuming principles of structural correlation hold and the designer’s model of
the system agrees with the user’s, we can relate the movements in the user’s level
of abstraction to the layering in Chapter 7. The points in the dialogue when the
parse function yields abstract commands correspond to the shifts in level. Other
workers in York have formalised this in the concept of a cycle (Harrison et al.
1989). The whole interaction is looked at as a sequence of cycles. Each cycle
affects the result of the interaction, but no major changes occur within the cycle.
At one level of abstraction, each cycle can be thought of as one abstract
command. This corresponds to the inner level in §7.2.1. The cycles can have
subcycles which themselves can have subcycles. This exactly parallels the
stacking of layers of abstraction within a system. They are particularly interested
in the ways by which the user can tell when a cycle has finished: that is, how the
user and the system synchronise their level of abstraction. They focus on the
clues in the display which are repeated when cycles are complete, such as main
menus or prompts. At this point they can begin to make prescriptive statements
about the necessity of such clues to interaction.

316 Formal Methods for Interactive Systems

To summarise: users and designers must agree statically on the abstractions by
which they understand the system, but they must also agree dynamically as the
interaction proceeds as to which level is current.

12.2.4 Abstractions of the state and display

In several places, particularly in Chapters 3 and 9, we have been interested
primarily in the output side of the system. Arguably, Chapter 9 on views was
about input as well: as we were interested in the way we could update the state
through the view. However, we were concerned not with the dialogue, just the
relationship between the internal state and views of that state. The treatment of
different forms of predictability and observability in Chapter 3 was of a similar
form. There were issues of dialogue hidden within the discussion, in particular
the strategy used by the user to view the system. However, these were effectively
hidden by packaging up this dialogue in the observable effect, a static view of the
system’s state.

In both places the prevailing ethos was of the output as an abstraction of the
state. In user-oriented terms, we could say that the user is aware of an
abstraction of the state of the system at any time, and these models capture this
awareness in different ways.

Note that the "state" that the red-PIE and the views model capture are very
different. In the red-PIE model the state was the entire internal state of the
system. Now it is a truism that the display and results of a system are
abstractions of the internal state, as the state of the system includes all the
memory locations that hold the screen display, etc. The red-PIE discussions
therefore focused on the relationship between various system outputs.

In the views model the basic state we dealt with was very different. We called
it a "database", partly because of the interrelationship with database theory, but
partly because this was not the entire internal state but merely the state of the
"objects of interest". The additional state due to the dialogue, physical display,
etc., was ignored. Note that the very fact we were talking about the user seeing
views of this state was prescriptive, and is an example of a implicit restriction of
the range of the model.

State and monotone closure

Of course, we may look at many abstractions of the internal state of the
system. For instance, the programmer will have access to some of that state, but
may not know about some aspects such as the precise screen bit-map, or partly
buffered user input. From the user’s point of view the monotone closure
introduced in Chapter 2 is particularly important. For any viewpoint, it gives
precisely the most abstract state of the system which is still capable of telling us
everything about the future behaviour from that viewpoint. I know that this

Conclusions — mathematics and the art of abstraction 317

concept has caused difficulty with many people, but it is incredibly useful in
expressing and understanding interface behaviour. So we shall spend a short
time with monotone closure and abstractions of the state before discussing
displays and views in more detail.

Part of the difficulty of the monotone closure is that it does not belong to any
one or any part of the system. The display and result of the system are things
that the user can find out about. In a sense the user has these abstractions.
Similarly, the levels of abstraction in the system belong to the designer, in that
they are explicit parts of the specification. The system itself may also directly
express levels of abstraction, even if these are different from those expressed in
the specification. The monotone closure is different. In general, it is
uncomputable. If this is the case, then it is impossible to look just at a bit of the
system and get it as abstraction. It is there, but inaccessible. The designer may
be able to talk about it, but may not be able to say what is in it. Similarly, it
affects the behaviour of the system as seen from the user’s viewpoint but may not
be directly viewable from that viewpoint. It expresses all the potentiality of the
viewpoint, but no amount of exploration need uncover all that potentiality.
Remember, this is not philosophising, just the outcome of a formal procedure,
but it does perhaps have a message that we can apply to other domains.

Now although mystery is a normal and important part of everday life, it is an
element that we usually try to minimise in interfaces. So, in general it may not
be possible for a designer to elaborate the monotone closure for a particular view
of a system; however, we would expect as a normative requirement that most
systems would be susceptible of such elaboration. That is, we require as a part
of the design process that the monotone closure of each view of the system is
given. At a formal level this sounds a little heavy, but it really comes down to
asking the fairly basic question: "what parts of the state can possibly affect this
viewpoint?". The question is not as easy to answer as it seems because we must
consider all possible future inputs to the system. However, if the designer does
not know the answer to the above question, there is probably some deficiency in
the design.

We would relax this requirement a little for the inner functionality of the
application itself. For instance, we might have a system that took as inputs
triples of numbers, (x,y,z). At the nth input it would print a one or a zero
depending on whether:

Now assuming Fermat’s Last Theorem (Hardy and Wright 1954) is true, the
monotone closure of the state after the second input is void: all future outputs are
zero, thus no state is required. If, however, Fermat’s Last Theorem is false, we
need to keep a count of the number of inputs so we know the value of n to
compute the formula.

318 Formal Methods for Interactive Systems

So, we would look for computable monotone closures for the interaction state
of the system but not necessarily for the application state. Of course, this
distinction is particularly hard to maintain; (cf) to be totally formal we would
have to talk about a non-deterministic system state where the non-determinism
corresponds to the results of the application. In the example above, the truth of
the expression would be regarded as non-deterministic. This, of course, requires
an extension of the definition of monotone closure to the non-deterministic
systems as described in Chapter 6. Such a definition was not given; it is fairly
easy to produce a generalisation for the non-deterministic case, but a little care is
needed. However, I would imagine that total rigour is unnecessary; the formal
analysis has told us what questions to ask, and the designer will have enough wit
to decide which elements of the state are part of the application and unknowable,
and which are the domain of the interaction.

Display and result

We can move on to the display and result as abstractions of the state. Because
they were abstractions of the state, they had corresponding monotone closures
D and R’ (§3.2.3). The result’s closure, Rf, constitutes all we need know about
the state in order to predict the future results of the system. In particular, if we
had an operating system with a "browse" facility for viewing files, while we were
using the browser its internal state would be completely ignored as part of R.
No changes could be made to the result of the system (presumably the file
system) and hence it would not be part of R*. The only thing we would require
would be sufficient state to mimic the exiting of the browser.

From a task point of view, R” could be seen as the important abstraction of the
state, as it predicts exactly the future behaviour of the result. However, the result
may be the endpoint of the task, but does not constitute the whole interactive
task. The monotone closure captures only how the system will behave if the user
enters any particular inputs. Of course, the behaviour of the interaction depends
on which inputs the user enters, and hence on the other outputs the user receives.
This same point was made when we considered window independence in
Chapter 4. This is clear from the browser example: the future behaviour of the
system may not depend on what the user does with the browser, but the future
behaviour of the user will.

The display’s closure, D7, is all we need to know about the system in order to
predict future displays. We are on much safer ground in asserting that this is
precisely the important abstraction of the state for considering the interaction.
The behaviour of the user and computer together is completely determined (from
the computer’s side) by this. Elements that may be in it, but not in R’, include
the state associated with browsing, as above, elements such as clocks or pop-up
calculators, and less desirable features like mistakes in display update.

Conclusions — mathematics and the art of abstraction 319

The closure D is what affects the display, but may in general be inaccessible
to the user. The observable effect (§3.3) was precisely the abstraction that the
user was able to obtain from the system. It is an output abstraction of the state: it
is not an abstraction of the actual outputs at any point in time, but, like the
monotone closure, expresses a form of potentiality. Unlike the closure, which
expresses the potential effects of the system on the user, the observable effect
expresses the user’s potential for finding out about the system. It is thus an
encapsulation of the user’s control over the disclosure of internal details. It
emphasises the user as an active participant rather than as a passive recipient.

It is precisely because the potential expressed in the observable effect captures
the user’s control, that we sought to have principles that showed that those
features that might affect the user were observable from it. Predictability and
observability properties assert the user’s mastery over the system.

In practical design we would not want to take a system and then try to prove
properties about it. Instead, we would look at the system and seek to make it
satisfy the predictability properties. We have already thought about how the
designer can ask about which parts of the system may effect the user. Having
done this, the next stage is to ask: "how can the user know about this component
of the state?". The display and command repertoire can then be designed (or
altered if this is post hoc) to allow the user access to the relevant parts of the
state. Of course, in designing this display and dialogue more components of
system state will have been added, requiring further analysis...

The above discussion talks about the display and result. In fact, the display
and result depend on the level of detail at which the system is viewed. For
instance, at the operating system level, the result might be the file system and the
display an entire workstation bit-map. If we consider an editor used within that
operating system, the result is a single file and the display one window within the
screen. At an even greater level of detail, we may look at the specification of
search/replace strings. The result is the strings themselves, and the display
perhaps a dialogue box within the editor window.

The red-PIE model can be applied individually to these cases; however, as
mentioned above (§12.2.2), other workers at York have found it useful to apply
additional abstraction functions to the display and result. The display D and
result R are then chosen to be maximal for the range of tasks of interest, and then
for particular subtasks different functions template, and templatey are chosen to
capture what the user is focused on in both domains:

320 Formal Methods for Interactive Systems

R

result template p

display templatep

D

Note the similarity to the perception functions § and p in the WYSIWYG model in
§1.5. It is appropriate to add these additional abstraction functions because they
make explicit within the model the additional levels of abstraction from these
domains.

Views

We noted that the state that we considered in Chapter 9 was already an
abstraction of the full internal state and represented the objects of interest within
the system. In particular, we ignored the interaction state. In fact, the process of
producing complementary views and update strategies was part of the process of
constructing such an interaction. Thus this process sits logically before the
analysis of display and state, although some of the insights have been applied to
a PIE-like model by Michael Harrison and myself (Harrison and Dix 1990).

The views are simple functional abstractions of the underlying database, but
the sorts of properties that arise give some insight into more complex forms of
abstraction. For example, the search for a complementary view is a particular
example of the general problem of framing: knowing the unchanging context
against which we are to set the additional information we are given. Framing
problems occur in many different contexts and functional views are surely one of
the simplest.

When we move from the views themselves to the problems of update and
complementarity between updates to the view and database, we are extending
our abstractions to be abstractions of the dynamics of the system. This is
somewhat like the situation in Chapter 7 of layered systems, except there the
abstraction was away from the physical system as the user experiences it inwards

Conclusions — mathematics and the art of abstraction 321

towards the system. The abstraction of the system given by views is one where
the abstraction is outwards, from the system towards the user. The abstraction is
capturing the fact that the user does not see all of the system.

The contrast between views in general and product databases as a special case
is a second reminder of the distinction between components and abstractions.
There is often a tendency for users of formalisms to miss this distinction and
make assumptions based on a component-wise view, when the practical reality is
a far more rich abstraction. The change in perspective between a product
database with constraints and a totally view-based approach is not simple. They
are equivalent, but have a very different feel. When constraints are few, the
product formulation is often easiest, and even where views of interest do not fall
out as simple components, they are likely to be expressed as functions of
components. The major "extra" given by product databases is that the
complement to choose for a particular component is obvious. There may be
many complements that we can choose, but the fact that a Cartesian product
formulation is used implicitly encourages us to assume that unnamed
components are unchanged. This is a form of meta-framing principle, and,
thinking back to the previous discussion (§12.2.2), represents a grain to the
product database model.

12.2.5 Using abstract models

If we want to apply existing abstract models to a particular system, how do we
proceed? There are several decisions to be made: which models to use, which
principles should hold for this system. The choice of model depends partly on
the sort of system we have and partly on the sort of things we want to say about
it. So, if we have a windowed system we would instantly think of the model
from Chapter 4, but if we are interested only in the temporal behaviour of the
system we may not need to talk about the windows explicitly and may be able to
use a model such as that in Chapter 5 directly. Of course, we may want to know
about both. We could use a model encompassing both windowing and temporal
aspects, but most likely we would apply each model to a different abstraction of
the entire system. When we apply the windowing model we would be
considering the steady-state behaviour (assuming it exists!), ignoring detailed
timing, and when we applied the temporal model we would consider the relation
between steady-state and full temporal behaviour ignoring windows.

So, in general we proceed by associating a model with an abstraction of the
system in which we are interested. Each element of the model must be
associated with an element of the abstracted system. For instance, if we consider
the PIE model and a syntax tree editor, we may want to look at an abstraction
that ignores the bit-map display but instead regards the command set C as
including operations like "delete subtree", and the display D to be the raw syntax
tree. Alternatively, we may want to look at the physical level and talk about the

322 Formal Methods for Interactive Systems

command set C as mouse clicks and keystrokes, the display being lighted and
unlit pixels.

Typically, any model may be applied in several different ways to the same
system. Part of the purpose of the discussion of layered systems in Chapter 7
was to capture these simultaneous abstractions within the modelling process.
However, the choice of abstraction and the mapping between model and system
are not in themselves formalised. Further, for each application of the models we
may want different principles to apply. These design choices represent the
formality gap in reverse, moving from an abstract formal statement back to the
real world. The movement over this gap is not, and cannot be, part of the formal
process itself, but is a step that must be accomplished for any formalism to be
useful. Throughout this book, with each model and especially in Chapter 11, are
examples of applying models to various situations. There are heuristics and
guidelines, but the final step is always one of creativity.

For an example of this in another domain, we look at simple mechanics. In
principle, given the moduli of elasticity of a material it is possible to calculate its
deformity under various loads. One standard problem is to predict the
displacement of a bar when a small load is applied to its end. I remember in
school struggling for a long time with this calculation, but in vain, as the
equations I generated had no easy solution. My problem lay in the
approximations I had made. For small peturbations there are many different
equivalent ways of describing the system, and only by selecting the correct one
does the solution fall out easily. That is, the solution is obtained by applying the
formal model of elasticity to the right abstraction of the system.

As I said at the introduction, developing general abstractions is an art, perhaps
the art of mathematics, and it is by this means we develop formal understanding.
The corresponding art of applying mathematics in general, and abstract models
in particular, is choosing the correct abstraction to which to apply this formal
understanding.

12.3 About abstraction

Abstractions can be tricky things. The further we get from the concrete, the
easier it is to make silly mistakes, but there again the more powerful the things
we can say. We have seen how abstraction is a common theme running through
this book, and so in this (nearly) final section, we shall look at some of the
misunderstandings and dangers of abstraction and formalism.

As well as being central to mathematics, abstraction is central to all language,
both natural and esoteric. We can only communicate by abstractions, ignoring
what is irrelevant in order to talk about what is relevant.

Conclusions — mathematics and the art of abstraction 323

So, although abstraction and formalism have problems, they are often
problems shared by more "informal" approaches. On the other hand,
abstractions, both in language and in formalisms, have the potential of richness
and power.

We begin by looking at the belief that mathematics and formalisms are precise
and therefore form a useful means of communication. Both beliefs are seen to be
false: formalism is by its nature ambiguous and, unless that ambiguity is
addressed, may block communication.

We then go on to look at problems due to an uncritical acceptance of
abstractions and formalisms. Both are powerful and useful in developing our
understanding of the world, but must be used with due consideration for their
limitations.

Finally, we look at relationships and analogies. We see that some of the
richest uses of formalism are when the formal model is seen as an analogy of the
real world, rather than drawing out the precise formal relationship.

Before moving on here is a short story: its relevance will become clear further
on. Read it through once and see if you can answer the question at the end. The
correct answer is given later, but be careful as you read — don’t be distracted by
irrelevant details.

Tom Tipper the tipper truck driver went out one day, delivering sand. In the
back of his tipper truck were six piles of sand. He stopped first at Miss Jones’
house, where she was building a barn to house her collection of vintage leeks.
She had ordered three piles of sand, but decided she really needed an extra one as
well. Tom shovelled out four piles of sand and went on to old Mr Cobble who
wanted one pile of sand to make concrete gnomes with. After that Tom called
back at the yard to pick up another four piles of sand as his tipper truck was
looking a bit empty.

Tom Tipper had a quick sandwich and drove out along the bumpy track to
Farmer Field who was making a new patio for her husband. Tom shovelled out
three piles of sand for her and then went for his final call of the day. "I really
wanted five piles of sand for my new cell," said Mr Plod, "but I’ll just take what
you’ve got." So Tom tipped out the rest of the sand and went home for his
kippers and ice cream.

How many piles of sand did Mr Plod have to build his new prison cell with?
Remember your answer for later.

324 Formal Methods for Interactive Systems

12.3.1 Ambiguity and precision — the myth of formalism

If you asked a software engineer who was "into" formal methods to list their
advantages, the list would probably include a statement like: formal methods
provide a precise means of describing systems and communicating to others.
Although there is some truth in this, it is deceptive, and potentially dangerous —
formal descriptions are inherently ambiguous.

Some readers may have already thought through these issues and may find this
fact self-evident; I think many will not. To the convinced formalist it may seem
almost heretical, and to others plainly false: surely the whole nature of
mathematics is precision. It is one reason why many with a background in the
"soft" sciences or the humanities dislike formalism: there is too much precision
to allow for the complexities of real life.

However, mathematics is ambiguous precisely because it is founded on
abstraction. The nature of abstraction is to ignore detail, to focus on one aspect
of the world at the expense of others. So it trades total precision about some
aspects at the cost of utter ambiguity of others. This is no bad thing — it is the
power and strength of mathematics — but it is a wise thing to bear in mind when
you use it.

Consider the simplest form of mathematics. You have two oranges and get

one more orange. You now have three oranges. You have two apples and get one
more apple. You now have three apples. Abstract:

2+1=3

We now know something general that can be applied to all sorts of things:
oranges, apples, atoms of hydrogen, sheep, greater-spotted aardvarks, bank bal-
ances, piles of sand... oh yes, piles of sand.

If you have forgotten your answer to Tom Tipper’s quiz, you could have a
quick look back now.

Conclusions — mathematics and the art of abstraction 325

How many piles of sand did Mr. Plod get? Two? The correct answer is one.
Tom Tipper tipped out the remaining sand. It fell, of course, in one (big) pile.

It’s Christmas day, there are two plates, on one are two roast parsnips and on
the other, three. Tom Tipper likes roast parsnips a lot, which plate do you give
him? I hope you are prepared now, it depends how big the parsnips are.

The laws of arithmetic depend on the items being regarded as "units" which
retain their identity and are each to some degree equivalent. But two piles of
sand may become one pile of sand, and one roast parsnip may be bigger than
another. All oranges are created equal...

It is not just the mathematics which causes problems, even terms like "roast
parsnip" and "orange" are themselves abstractions. The use of numbers helped
to steer us away from the reality of the precise parsnips involved, but as soon as
we said "parsnip" the actual golden steaming roots on the plate were lost. To be
utterly precise we must be rooted in the individual items and moments of
existence, but that rules out all communication and understanding.

So if we want to communicate we need to use words like "orange". The word
"orange" is ambiguous. There are many different oranges, of different sizes,
shapes and tastes. But when I say "orange" it means something to you. In a
book I cannot gesture at my fruit bowl. My understanding of, and ability to
discuss, oranges in general inevitably carry the possibility of misunderstanding
about precise oranges. Abstraction and ambiguity go hand in hand.

To go from parsnips to programs, we are bound to lose something as soon as
we move from the precise system to talking about systems in general. Indeed,
even to talk about the system without regard to a single use in an explicit
environment is an abstraction. Some workers in HCI would take precisely this
view, that interactive systems cannot be discussed in general but must be
experienced in context. In the light of the above discussion, this is undoubtedly
true, but I’ll bet they add up their change in the supermarket.

The level to which we abstract depends partly on the situation, partly on our
individual temperament. One thing that we must be aware of is that we always
abstract, and that we are always ambiguous. What is essential is to know that the
ambiguity is there, to know just what is being abstracted away, and what the
limits to that abstraction are.

Neither formalist nor non-formalist can be smug on this point. We all abstract
and we all forget at times that we have done so. The special danger for
formalists and for those listening to them is when either side believes the bald
statement "mathematics is precise".

This brings us back to communication. We need abstractions to communicate,
but forgetting about the inherent ambiguity can destroy that communication
entirely. It has frequently been the case, even when working relatively closely
with colleagues, that a new model has caused considerable trouble. Take the

326 Formal Methods for Interactive Systems

windowing model from Chapter 4. When I first showed this to a colleague I
wrote down the formal model, the sets and mappings, and then started to discuss
formulation of principles. As the discussion proceeded there was obviously a
growing level of misunderstanding. We agreed about the formal model, it was
written there before us. But we differed on the interpretation of that model. To
me, the "handles" in the model were merely place-holders to denote the identity
of the windows. My colleague was interpreting them as functions which
extracted the contents of the windows (like the views in Chapter 4). The
difference was not important for the static properties of the windows, but (as we
saw at the end of Chapter 4) it became so when we wanted to consider dynamic
properties.

Now if we were engaged in Pure Mathematics this might not have mattered.
We could both have seen the correctness (or agreed about the errors) of the
formulation. Internal consistency would have been sufficient. (In fact, this is
rather a caricature, even of Pure Mathematics.) However, as soon as we start to
say things like "this would be a good principle" or "an obvious extension of the
model would be...", things become more complicated. What makes a good
principle depends on meaning. External consistency is paramount. The formal
model captured denotation but lacked connotation. Although there are limits to
shared understanding, we must have some level of common meaning to the
words we use.

Now if we were talking in everyday English, we would perhaps have been
more prepared for problems of language. It is well known that many arguments
boil down to a different interpretation of words. The problem with the formal
description was not that the ambiguity occurred, but that the myth of formal
precision made us unprepared for such misunderstandings.

On the other hand, common knowledge of the ambiguity of language does not
seem to stop it being a problem in many situations. One advantage that formal
models seem to have is that the ambiguity, once we realise it is there, is more
easy to pin down.

The problem my colleague and I faced could also be described as meta-
aliasing. Simple aliasing happens when two things (windows, views, parts of
documents) look the same but are different: or, in the language of Chapter 4,
content does not determine identity. Here we have a similar problem, but at the
level of talking about systems. Two abstractions of the system have the same
formal expression, but are different. In common with other types of aliasing, the
similarity will break down sooner or later.

So formalisms capture some properties of interest, but divorce themselves so
much from the things they represent that ambiguity arises, not just ambiguity
about what is ignored, but even ambiguity about which abstraction is being used.
This is very similar to the sort of problems we had with views in Chapter 9:

Conclusions — mathematics and the art of abstraction 327

Aliasing
which view - which abstraction

Complementary views
what don’t we see - what is abstracted away

Views deal with abstractions at the concrete level of what the user can see of a
system. Formal models are abstractions at the level of talking about systems.
Both share many properties and, having seen the problems at the concrete level
first, we have been perhaps a bit better prepared for distinguishing and discussing
them here.

If formal notations can lead so easily into misunderstanding, why do some
people claim to find them such useful tools for communication? My guess is that
in all the situations where this is claimed the notation is shared by a closely knit
design team. The meanings of each part are known by all, as the formal
language is built in a community. Similarly at York, although there may have
been problems as described above, once a common understanding has been
gained the models form a rich common language. However, I deeply doubt the
scenario painted by some software engineers, of a formal analyst producing
formal specifications which are signed over to some lowly programmer to
implement.

Unfortunately, you, the reader, were not part of this group wherein the
common understanding of these models has grown. How have you managed to
get this far in a book littered with formal models? Of course, if I wanted to learn
Urdu I would not just grab a few books written in Urdu and stare at them
hopefully. I would want either to see Urdu juxtaposed with English, or to hear it
spoken in context. Just so when we deal with formal notations: the model or
specification must be developed in context; meaning must be attached to the
formal symbols.

Although many formal notations pay lip service to well-documented
specifications, as far as I am aware only Z has included this as part of the
standard language. A Z specification is always part of a document which mirrors
in natural language the progress of the formal specification. So formal notation
and meaning are acquired in parallel.

With specifications of concrete systems, the natural language descriptions are
concerned chiefly with explaining complex formulae. The basic symbols often
inherit their names from the real systems that are described. So if we have a
specification that talks about a screen being an array of 80 x 25 characters and a
cursor being a pair of integers, we will probably know what is meant by these
symbols with little further explanation.

328 Formal Methods for Interactive Systems

The more abstract the formal description is, the less easy it is to attach
meaning to the symbols. Even if we know what is referred to by a term such as
"window", we do not know what level and way it is abstracted. Any sort of
communication of formal models must therefore be full of examples and textual
or verbal description.

Looking back over this section, it all seems almost too obvious to bother
writing. However, the myth of formal precision persists and so some reminder is
obviously necessary.

12.3.2 Uncritical dependence on abstraction

We have already seen how some problems can arise if we forget about the
ambiguity inherent in abstraction, but there are other problems associated with
abstraction and with formalisation. Many of the problems can be recognised
both in the application of formal methods to interaction and in everyday life.
Perhaps recognising problems in the relatively simple world of formal models
may help us to understand more complex issues.

One of the reasons for introducing abstract models was to generalise, to state
properties of whole classes of interactive systems (§1.2). This means we can
recognise a property in a particular situation, see how this is represented in the
abstract model, and then apply this generalised property to all the systems
described by the model.

The obvious potential danger is, of course, overgeneralisation. For example,
many problems in older text editors are due to modes: the same keystroke has a
different meaning dependent on the current editor mode. From this we might
conclude that modiness is a bad thing, and frame principles of mode freedom in
the abstract model. Menu and mouse-based systems are incredibly mode-ridden:
virtually everything we do depends on what is being displayed. If we blindly
applied principles of mode freedom, our mouse-based systems would become
very boring indeed.

Why then did the generalisation fail? Well, even in the process of describing
modes above, I began to abstract. I talked about the problem as one of different
meanings at different times. The problem is more rooted in the particular
situation than that. Modes are a problem, partly because the user may not know
the current mode, partly because of remembering different meanings. In the
menu or mouse-based system, the user’s attention is on a screen which indicates
clearly (sometimes) what the meaning of a mouse click or a particular key will
be. The presence of visual cues removes ambiguity and prompts recall. In
retrospect, we should have talked about the need for visually distinct modes, the
user’s focus of attention, etc. By framing the problem in terms of meaning of
keystrokes, the range of appropriate generalisation is limited to those systems for
which these other factors are similar.

Conclusions — mathematics and the art of abstraction 329

Now I hope it has always been clear that the various properties and principles
framed throughout this book are putative properties that we may want to demand
of a particular system. By the nature of abstraction, these principles ignore
factors which are abstracted away, When the principles are applied, these
additional facets need to be brought into account.

Note also that the grain of the abstraction we are using will tend to make us
view a problem or property of a system in a particular way. We are driven by the
abstraction to look at certain classes of problems. Choosing an abstraction
colours irrevocably what we can say and think. This is at least part of the
problem of prejudice: as soon as we decide to use colour, sex or race as the
principal attributes by which we describe people, we inevitably use them to
discriminate. Alternative abstractions, such as friendliness or generosity,
generate completely different world views. Of course, any abstraction tends to
hide the individual.

Another related problem is "nothing but"-ism: we use an abstraction to make
sense of the world, but then forget that it is an abstraction. Part of my reticence
in including the user explicitly in models stems from this. We could describe the
user as a non-deterministic function from displays to keystrokes. This would
make clear the feedback nature of an interactive system, whilst making no
assumptions about the user’s behaviour. It does not worry me too much if
someone should mistake the PIE model as saying that an interactive system is
nothing but a function from inputs to outputs. However, I am loath to allow even
the suggestion that a user is nothing but a non-deterministic function from
displays to keystrokes. Nothing but-ism abounds in everyday life. The sun is
nothing but a ball of hydrogen and helium plasma — but it is also a God-given
sustainer of life. A factory’s future is determined solely (or on nothing but)
economic grounds — but it is also a sense of community, the livelihoods of
workers. Abstractions encourage nothing but-ism, by focusing on certain aspects
and ignoring others. When we use abstractions, whether formal or informal, we
must make a compensating effort to look at the world beyond the abstraction.

12.3.3 Uncritical dependence on formalism

When I print rough drafts of chapters for this book, they are always typeset on
a laser printer. The quality of the earliest copies will be very similar to the
finished book. It is amazing how strong an aura of authority well-printed text
has, no matter how bad or good the content. The same text printed on a dot-
matrix printer (or in my hand-writing!) would carry far less weight. Now formal
notations can give a similar appearance of weight and credibility whilst not
necessarily adding anything in terms of content.

330 Formal Methods for Interactive Systems

It is all too common (more so in software engineering than HCI) to see papers
where a "formal bit" is included which adds little to the content and amounts to
using the notation of sets and functions to carry the same meaning as a box
diagram. If the authors had used the equivalent box diagram the text would have
been clearer and just as rigorous. Of course, the presence of the equations
(especially the odd A and special symbols) makes the paper look very formal and
impressive. The authors probably worked hard to get the correct formal syntax,
but if you look closer you find deeper problems. A common mistake is that the
functions are not really functions: vital parameters are left out. With a box
diagram, this sort of imprecision is accepted, and the use of such a diagram
would have been more rigorous and accurate. There is clearly no intention to
fool the reader, just a half-hearted attempt to use formalism. At the best this
merely wastes a little of the author’s time and effort, but at the worst can hide the
fact that the author has not really developed an understanding of the domain.

Not only can formal notations be convincing in print, an incorrect formal
argument may be believed, however much it conflicts with reality. The belief
that, once something is in mathematics it is correct, is common even in
academia.

Some years ago I used to work on the mathematical modelling of
electrostatically charged sprays. The basic equations were easy enough to write
down, but under most conditions the only way to solve them was by computer
simulation. In such cases it is always useful to have analytic solutions to simple
cases, as these give one a far better "feel" for the general behaviour, especially
when there are lots of different variables affecting the solution.

One obvious special case is to look at spray eminating from the centre of a
circle or sphere, with the circumference held at some constant voltage. This
would be a good approximation to the centre of a cone of spray. One day, I came
upon some papers written by two Japanese physicists who gave solutions for
precisely these cases. I was interested; I had got stuck each time I had tried to
solve these particular situations, and they had even used more complex forms for
air drag on the spray. I tried to work out how they had got their solution, but
could not reconstruct it. This bugged me for some time, then one day I looked at
the sort of results they were obtaining. Some of the outputs from their equations
seemed wrong. If you had designed the equivalent physical experiment they
would have been inputs. So the mathematical results did not correspond to
physical reality. Having noted that something was wrong I went back over the
calculations, looking for an error. Sure enough, you could obtain their results if
you made a standard school-book mistake.

Now, the mistakes were not complex: I am sure the authors were quite capable
of understanding that level of mathematics. Why then did these physicists not
notice that their results were unphysical, whereas I, a mathematician, could see
this? (remember I did not spot the mistake from the mathematics alone). The

Conclusions — mathematics and the art of abstraction 331

answer is that once they had set out their problem mathematically they trusted
the mathematics totally and threw away their physical understanding of the
system. Even if they had noticed some problem with the results, they would not
have dreamt of doubting the mathematics.

Now computers generate the same sort of awe in many people. The
combination of formal methods in computing can leave many simply dazed. On
the other hand, the opposite attitude of complete distrust of computers and
formalism (or of formalism by computer scientists) is equally unhelpful. If
formalisms are to be useful one must develop a respectful, but not irrational,
distrust of the results. If you used a calculator to add up a supermarket bill and
got an answer of £2,073.50, you would guess that something was wrong. Formal
models must similarly be constantly checked against one’s intuitions about the
system. If they differ, both the formal reasoning and intuition can be reassessed.
I frequently make mistakes in both realms.

12.3.4 Abstraction and analogy — mathematics and poetry

We have been concentrating on abstraction, both as a unifying theme for the
models in this book, and because of its central role in mathematics. However, in
any mathematical study there is a stage before full formal abstraction which
gives a pointer towards the meaningful application of formalisms.

Earlier, we went through the first stages of developing addition: two oranges
and another orange, two apples and another apple... Then apparently the magic
step: 2 + 1 = 3. How did this abstraction arise? We saw there was a similarity
between the situations we encountered in concrete. The two oranges were
similar in a way to the two apples, the extra orange was similar to the extra
apple, the resulting piles of fruit were similar. Some things were different in the
two scenarios: one talked about oranges, the other talked about apples. The
appropriate abstraction is therefore one which abstracts away the points of
difference and retains the similarity of structure. Our earlier discussion would
also remind us that the abstraction will usually have side conditions attached to
it; in this case the distinctness of the objects (no piles of sand) and their
equivalence (all parsnips are equal).

The jump from recognising this similarity to developing the abstraction is not
usually immediate: in many branches of mathematics this has taken hundreds of
years. Usually the development of an appropriate abstraction is closely linked to
the development of a suitable notation, although this may be misleading as the
individuals may have used an abstraction, but not have been able to record the
fact. In natural language we also see that the naming of a concept is closely
linked to the understanding of it. Although it is possible to see similar situations
and grasp those situations somehow as one, it is the naming of that new concept

332 Formal Methods for Interactive Systems

which marks a watershed. Naming allows communication and is traditionally
associated with power.

However, it is a mistake in searching for an understanding of a class of
systems to jump into an abstraction prematurely. We have seen that there are
many dangers associated with abstraction, and these are obviously heightened if
we choose the wrong abstraction to start with. A better way to begin is to
immerse oneself in the individual examples and look for the similarities. If
something is a problem in one situation, rather than trying to generalise too soon
it is often better to look at similar situations and ask what is the equivalent to the
problem there. Looking at similar situations is a common experience: if we are
faced with some new problem we will instantly think, "something happened just
like that the other day". The analogy helps us to understand the new situation in
terms of the old.

Abstraction and analogy can go hand in hand. If I say "the steel tube was as as
cold as ice", the reference to "cold" tells us that it is the coldness (an abstraction)
of the steel and the ice that is important; I would not expect there to be any
similarity concerning the roundness of the tube or the wetness of the ice. In
Chapter 6, the use of non-determinism helped us to see similarities between
disparate types of problem. It focused us on certain aspects and thus acted as an
abstraction of the different domains (sharing, real-time, uncertainty). The
abstracted situations were not identical, but by losing some of the detail we were
able to see that there were similar problems and thus similar strategies for
dealing with them.

Analogies differ in their precision. Some are so precise that we can draw
inferences about one situation from the analogous one. For instance, suppose I
have two piles, one of oranges, the other of baked bean tins. I find I can draw a
one-to-one correspondence between them perhaps by lining them up opposite
each other; or possibly by painting coloured spots on them: one purple spotted
orange, one purple spotted tin. I then take away one orange and one tin, and
count the tins. If I have 57 baked bean tins left, I know I also have exactly 57
oranges.

Any similarity which is going to give rise to a formal abstraction has to be this
precise. Mathematics is littered with words which describe such
correspondences: translations, equivalences, congruences and morphisms of all
hues (automorphisms, homeomorphisms, endo-, epi- and isomorphisms).
Computing formalisms have added a few of their own, including bisimulation
and observational equivalence. In music too (often allied with mathematics) we
find transposition and counterpoint; however, the interest is often in the way that
some theme is repeated in a similar, but not quite identical form.

Such looser similarities turn up in mathematics as well. Two mathematical
structures may have a roughly similar structure, but differ in details. If some
property is known to be true of the first structure, it is natural to wonder whether

Conclusions — mathematics and the art of abstraction 333

a similar property holds for the latter. We may even try to follow the proof of the
first in proving the other; these will differ from each other, and at some stage the
analogy will break down and a different and more complex procedure will be
required. However, we often find a similarity in gross structure.

This latter form of analogy is much more like the analogies found in literature
and poetry. Simile and metaphor are some of the principal means by which poets
convey meaning to their readers. Sometimes these can be pinned down, in a
fairly tight manner, but sometimes are more suggestive. Let us look at probably
the most well-known poem in the English language. Wordsworth says of the
daffodils along the lake shore: (Hutchinson 1926)

Continuous as the stars that shine
And twinkle on the milky way,
They stretched in never-ending line
Along the margin of the bay:

Notice the level of detail in this simile. The milky way is continuous yet
composed of distinct stars. The daffodils will similarly give the simultaneous
appearance of a continuous mass and yet be composed of distinct flowers. The
distinctiveness is especially obvious in their movement (they are "Fluttering and
dancing in the breeze") and this is mirrored by the twinkling of the stars. Even
the sweep of the milky way suggests the curvature of the bay. Of course, there is
far more in such an analogy, subtle nuances, the cosmic nature of the milky way
suffused with the magnificence of the panorama, but it is not too dissimilar to a
mathematical analogy.

Of course, the PIE morphisms in §2.10 and the layered models of Chapter 7
are mathematical-style relationships in the context of particular models. When
applying models, the most obvious "formal" method, direct refinement, is
equally strong. We take a system, draw up a precise mapping to the model (this
data type is the result R, this one the display D, these are the possible commands
C, etc.) and then apply principles defined over the model to the system by direct
translation.

In other places, we have dealt with slightly less precise analogies, more like
the weaker mathematical analogies and perhaps the sort of simile above. We use
the reader’s understanding to draw relations between things that are not 100%
precise, but yet which carry an obvious meaning. The reason that we went into
so much detail about the simple PIE model in Chapter 2 was to perform various
analyses on this simple model, so that they would not need to be repeated later.
The implication was that although the models were slightly different there would
be a roughly similar behaviour. For instance, consider the definition and
construction of the monotone closure (§2.5). This cannot be applied directly to
the windowing model, or the non-deterministic PIE, but something like it would
apply. We would certainly require a more complex definition in each of these
cases, but would retain the general notion of a state which captures just what

334 Formal Methods for Interactive Systems

affects the user, but no more. Further, the formal definitions would be very like
the definition for the PIE, but have extra bits and small differences.

In Chapter 6, we developed a non-deterministic version of the PIE model. It is
fairly clear that this process could be applied to other models. Similarly, we have
seen properties of different models labelled as forms of predictability,
observability or reachability, and aliasing has cropped up in different forms. In
each of these cases the analogy is not quite precise, but allows us to organise and
understand the relevant formal models.

Think back to the lift example in §11.2. The analysis there could be seen as
completely formal: the command set is the lift buttons, the display consists of the
various lights inside, etc. However, my initial analysis was more one of simile.
It was the "likeness" to the model rather than the precise relationship which
sprung to mind. Indeed, to complete the formal analysis of the lift system I
would have needed a model which dealt adequately with the external aspects of
the system such as the actual movement of the lift and other passengers. Note
then that I was able to draw the formal relationship only because I had first seen
the informal analogy.

Let’s go back to the poem. It begins:
I wandered lonely as a cloud
That floats on high o’er vales and hills,

At first sight this is like the "cold as ice" analogy. We are comparing
Wordsworth to a cloud and it is the abstraction of loneliness which is of interest.
However, a moment’s thought and we realise that clouds are not lonely. The
cloud is alone surely, but lonely? It is only by personifying clouds that the
analogy makes sense. We see Wordsworth in the cloud, then feel the feelings he
would feel. The second line unfolds this a little. The cloud floats high above the
earth; Wordsworth, although physically upon the ground; is wandering and
abstracted. The cloud’s floating is like the floating of a lonely person, like
Wordsworth himself. The simile tells us as much about clouds as it does about
Wordsworth.

A moment later Wordsworth sees

A host of golden daffodils;

This is terse metaphor. We could read it as a very precise analogy: a "crowd of
daffodils" means a lot of daffodils close together. However, because Wordsworth
was lonely and alone, the word crowd evokes all sorts of additional feelings:
companionship, togetherness. The contrast is especially pertinent when we
compare the floating clouds that do not touch the ground, to the daffodils which
are gaily rooted and part of the lakeland landscape. Again, the analogy has a
richness far beyond the simple matching of attributes.

Conclusions — mathematics and the art of abstraction 335

Let’s look again at abstract modelling. In Chapter 6, we developed a non-
deterministic model to help us deal with some formal properties of systems. We
wondered what this signified in the real world. Now some of the implications
were direct formal analogies between the models and the real systems they
denoted. For instance, non-determinism due to timing corresponds exactly to the
non-determinism that arises in the formal model. However, the discussion
ranged far wider than that. The analogy between formal models and interactive
systems had a richness, which although by no means as beautiful is not so
dissimilar from the poetic analogy.

The discussion of events and status in Chapter 10, although rooted at various
places in formal models, ranged far wider than these models. Formal and
informal concepts were counterpoised, and, like Wordsworth and the cloud, we
ended up knowing more about both.

This stretching of understanding generated by the use of formal models is
possibly their greatest benefit. The application by strict refinement is necessary
and perhaps desirable in many situations, but is rather utilitarian compared to
rich and exciting formal metaphors. Not only can I do more, I know more.
Nowadays when I see a system, one of the things I look for is aliasing. Note I do
not match the system to a model and then look for aliasing via the model.
Aliasing has become part of my understanding. The same could be said for other
properties I have mentioned, such as predictability, dynamism and structural
change.

I am not sure how many authors would admit it, but I believe that many uses
of formalism are of this analogous nature. We have already discussed the way
that formal statements often serve much the same purpose as box diagrams, and
often less clearly. There are circumstances, especially where temporal reasoning
and change is involved, where diagrams are not so useful. In these cases a
formal model may be enlightening even if it is not an accurate reflection of the
real system. This is because it serves as an analogy. Problems arise if the author
mistakenly believes that the formal statement is in precise mathematical
correspondence rather than analogous to the real system. There is nothing wrong
in telling a reader exactly what are the limits of a particular statement, but go on
to use it to guide an analysis of a wider class. However, to go on in ignorance
may be dangerous.

Of course, this discussion of poetic analogy and formal analogy is an analogy
in itself. It would be unwise to be too precise in looking for a correspondence
between Wordsworth’s poems and abstract models. However, as a looser, more
poetic analogy itself, it suggests some of the richness that we can gain through
analogous use of formalisms.

336 Formal Methods for Interactive Systems

12.4 Other themes

This chapter has been concentrating on abstraction as a unifying theme.
However, a few other concepts have repeatedly arisen during its course which
deserve reminders.

Some of the earliest properties we discussed concerned the predictability and
reachability of the system; or to put it in other words, what you can see and what
you can do. Similar properties have recurred in subsequent chapters, especially
various forms of predictability. For instance, in Chapter 5 we wanted to be able
to observe the current state of systems liable to delayed responses or buffered
inputs. Later, in Chapter 9, we were particularly interested in predicting the
effect of view updates and whether or not an attempted view update would
succeed. The ability to know what is and will happen is an obviously desirable
property of a system. Chapter 6 reminded us that what is or is not predictable
depends on who you are. Some response may be predictable to the program’s
designer, but not to the user; to the expert, but not the novice. If we detect such
non-determinism, we can begin to think about ways of making such a system
more predictable.

The way predictability was defined for PIEs in Chapter 2 emphasised the
possible future interactions with the user. In Chapter 3, we found that
predictability and observability properties were expressed most easily as
functions denoting what could be deduced from one view about another. The
fullest form of predictability was when we could tell the whole current state from
the display or collection of displays. It was important that this state was not the
explicit internal state, but the monotone closure, the state as it may affect the
user. This same insistence on not looking at the explicit state as given by the
implementation arose again in Chapter 4. It was important there that any
definition of sharing or interference dealt with the implicit linkage as perceived
by the user, rather than any explicit data model.

Connected to, or perhaps a special case of, predictability was the issue of
aliasing. This has cropped up already in this chapter, and we saw examples of
aliasing in Chapter 1, where the concept was first introduced, Chapter 4, where
we considered aliasing of windows, and Chapter 9, when we asked whether users
were aware of what views they were seeing. Aliasing is an important special
case of predictability because it is easy to overlook. When assessing a design,
we will more easily notice that certain attributes of an object are not visible, than
that the objects are not themselves uniquely identifiable.

In several places there has been a stress on dynamism. This was most obvious
in Chapter 8, where we discussed dynamic pointers as compared to their static
counterparts. Also it was a key feature in the distinction between status and
events in Chapter 10. Indeed, the relationship between events and dynamism

Conclusions — mathematics and the art of abstraction 337

was the focus of part of the summing up of that chapter. Because of the major
differences between static and dynamic properties of an interface, Chapters 6 and
7 attempted to divide the consistency properties into static and dynamic
invariants. However, this was mainly in order to emphasise the special role of
static invariants which are applied before the dynamic ones. This seems to
contradict the stress on dynamism, but in fact highlights a nice counterpoint
between the two. Static properties tend to be what make an interface correct,
whereas dynamic ones tend to make it interesting.

One form of dynamism which is particularly important is structural change.
This underlies the requirement for dynamic pointers; if the data structures were
structurally static the pointers to them could be, and hence we would require no
pull functions, and everything would be a lot simpler (but less fun). Although
we discussed some properties of windowed systems when windows were being
created and destroyed (§4.8), the required properties are far less obvious.
Similarly, when we thought about dynamic views at the end of Chapter 9, these
clearly had much more complex properties than the static case. Note, we had
several levels of dynamism going on here. The simplest case would be simple
structurally static views: the views are simply what we see and we never try to do
anything through them. The chapter was principally about updating through
views. We were thus interested in an aspect of dynamism: the contents of the
database changed. However, in so far as it affected the view we assumed that the
database was structurally static. We then considered the case where the views
"moved" when the database was altered. We noted how dynamic block pointers
could form a descriptive or implementation mechanism, underlying the
importance of dynamic pointers. The final case, which we considered only
briefly was when we wanted to update the fundamental structure of the data
through views. Each level of dynamism added complexity. In the introduction
to Chapter 5, we noted how the temporal properties of interfaces are often poorly
specified and documented. One simple reason for this is that it is easy to draw a
sketch of a snapshot of a system, but more difficult to describe its evolution.
Precisely because it is easy to overlook and complex to handle, we must be
especially vigilant when considering aspects of structural change.

Having talked about structural change we move on to structural correlation.
Precisely because structural change is difficult to handle we want to avoid it in
the design process. As far as possible we want the design notations, models and
specifications to match the designer’s intuitions. There is an obvious tendency to
specify systems in an easily implementable fashion. This is correct up to a point:
it is no good designing a wonderful interface only to find that it is totally
impractical. However, this process of checking the realisability of a specification
should not dominate the structure. As I pointed out right at the beginning of this
book, the greatest barrier to a successful interface is the formality gap. Our
major effort in design must go towards narrowing that gap as much as possible.

338 Formal Methods for Interactive Systems

This might mean defining new models or notations which match the domain, or
simply choosing appropriate structures within the notations we have. Structural
transformation within the formal domain might be a bit of a pain, but is
fundamentally manageable. Indeed, we saw how interface drift allowed us to
perform structural transformation even in the presence of conflicting goals.

12.5 Ongoing work and future directions

The work described in this book is not static. I will now describe briefly some
more recent related work and possible future avenues for development.

I have shied away rather from making the user an explicit part of the model,
preferring the psychological insight to be in the choice of level of abstraction. I
have given some reasons for this reticence above (§12.3.2), but within these
constraints there is room to make the cognitive elements more precise. I have
already noted the work on display and result templates (Harrison et al. 1989).
These try to add a more psychological perspective to the display and result by
adding an idea of focus. This still leaves the defining of such areas of focus to
the human factors expert or to experiment, and therefore does not run the risk of
reducing the user to a model. Perhaps other cognitive aspects could be included
explicitly into models without compromising the user’s humanity.

Another feature of these studies is the way that they developed a specific
model, the cycle model, to capture aspects of a particular system. They were
studying a specific bibliographic database system, but found it useful to abstract
away from the specifics of the system in order to understand it better. This
model was not as wide in its generality as say the PIE model, but was better able
to express specific properties of interest, in the same way as the model in Chapter
4 addressed windowed systems. This process of finding domain-specific
interaction models has been promoted to a specific design and analysis heuristic.

Most of the models in this book are largely declarative in nature. They are
intended to describe systems in such a way as to make it easy to define properties
but not to determine how those systems work. This is the correct first step: the
discussion of the formality gap told us that we must concentrate first and
foremost on what we want to be true of the interface. However, we saw in §11.5
that we cannot expect the structure of such a model to match the structure of the
implemented system. More important, the definitional models need not even be
of suitable structure for the specification. The models address specific issues,
and ignore others, but a complete interface specification must cover all areas.
There is thus a need for parallel constructive methods which are tied into the
individual methods. We could just take an existing specification notation and
map the model into it, but this would not be too successful without some sort of
methodological guide; the gap is too big. The specification in §11.4 used layered

Conclusions — mathematics and the art of abstraction 339

models and pointer spaces to generate an architectural plan. These two
formulations are themselves examples of intermediate formalisms. I regard
dynamic pointers as a central area for study and experiment, partly because they
crop up so often, and partly because they are useful in implementation as well as
definition. Sufrin and He’s (1989) interactive processes and Abowd’s (1990)
agent architectures are also aimed at this gap.

The big gain from developing generic architectures is that a lot of the work of
checking properties can be done as general proofs at the abstract level; specific
uses of the architecture would only require the verification of simpler properties.
In practice, however, I think that the complexity of real systems means that more
domain-specific models are often required. These are able to have more of the
usability prepackaged, and come with simple rules for building, but are limited in
their scope.

In the spirit of this chapter, I don’t want to finish on the formal application of
formal systems. Some while ago Harold Thimbleby and I were discussing
consistency in interfaces. Metaphors like the desktop were clearly very useful,
but tended to break down when pushed. In general, we concluded, you could not
expect powerful complex systems to be expressed entirely by simple direct-
manipulation interfaces. However, we began to use the analogy of differential
geometry (the underlying mathematics of Einstein’s General Relativity). We
imagined systems which were too complex to be represented by a single simple
interface but which were composed of simple overlapping parts; where each part
had a direct manipulation interface and where the boundaries between these parts
were consistent. I don’t vouch for the practicality of the idea, but we found that
the formalism was a tool for thinking, a spark for the imagination, and fun.

340 Formal Methods for Interactive Systems

