

two horse races

toss 20 coins

add the heads to one row the tails to a second

the winner is the first row to 10

nderstanding Statistics for HCI and Related Disciplines – Alan Dix

before you start: what do you think will happen?

Quick (and dirty!) Tip [1]

estimate variation of survey data (for categories with small response)

- survey 1000 people on favourite colour
- say 10% of sample say it is blue

derstanding Statistics for HCI and Related Disciplines – Alan Dix

- this represents 100 people
- variation is roughly 2 x square root of 100
- that is about +/- 20 people, or +/- 2%

Quick (and dirty!) Tip [2]

For response nearer top end the same, but use the number who did not answer

- Say 85% of sample of 200 say colour is green
- 15% = 30 people did not say green
- variation is roughly 2 x square root of 30
- that is about +/- 11 people, or +/- 5.5%
- real value anything from 80 to 90 %

standing Statistics for HCI and Related Disciplines – Alan Dix

Quick (and dirty!) Tip [3]

If nearer 50:50 (e.g. presidential election!) then this is a little over estimate, use 1.5 instead

- Say 50% of sample of 2000 say yes to question
- 50% = 1000 people did not say green
- variation is roughly 1.5 x square root of 1000
- that is about +/- 50 people, or +/- 2.5%

N.B exact formula variance ~ n p (1-p)

... but really

far more important: the fairness of the sample self-selection for surveys the phrasing of the question

standing Statistics for HCI and Related Disciplines – Alan Dis

bias

systematic effects

that skew results one way or other e.g. choice of LinkedIn vs. Snapchat survey WEIRD (Western, Educated, Industrialized, Rich, and Democratic)

bias persists no matter your sample size but can sometimes be corrected

e.g. sample variance ... hence the n-1

derstanding Statistics for HCI and Related Disciplines – Alan Dix

independence

different kinds of independence:

- measurements (normal kind)
- factor effects
- sample prevalence

non-independence often increases variability ... but may cause bias too

Understanding Statistics for HCI and Related Disciplines - Alan Dix

independence – factor effects

Relationships and correlations between things you are measuring (or failing to measure)

can confuse causality

e.g. death rates often higher in specialist hospitals ... because more sick people sent there

even reverse effects

... Simpson Paradox

Simpson's Paradox

You run a course with some full-time and some part-time students

You calculate:

- average FT student marks increase each year
- average PT student marks also increase each year

University complains your marks are going down

Who is right?

Simpson's paradox – you both are! 90 2016 80 av. FT mark 80 70 av. PT mark 55 60 nos FT 30 60 av. FT mark nos P 90 50 av mark 40 -av. PT mar 30 av mark FT students getting 20 higher marks 10 0 2015 2016 number of PT students increased

independence – sample

the way you obtain your sample

internal - subjects related to each other

e.g. snowball sampling if not external – increases variance

rstanding Statistics for HCI and Related Disciplines – Alan Dix

external – subject choice related to topic e.g. measuring age based on mobile app survey may create bias

what kind of data

continuous:

e.g. time to complete task (12.73 secs)

discrete ...

arithmetic: e.g. number of errors (average makes some sense) ordered/ordinal:

.g. satisfaction rating (?average rating?)

nominal/categorical:

nderstanding Statistics for HCI and Related Disciplines – Alan Dix

e.g. menu item chosen ((File+Font)/2 = Flml ?)

finite or unbounded number of heads in 6 tosses discrete, finite

number of heads until first tail discrete, unbounded

wait before next bus

continuous, bounded below (zero), ... but not above!

difference between heights

continuous, (sort of) unbounded

standing Statistics for HCI and Related Disciplines – Alan Di

05/02/20

