fewpoints Research Inst

Computer Software

Alan Kay

[First published in Scientific American, issue 251, 09/84]

VPRI Technical Report TR-1984-001

Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761

squeak
Typewritten Text

squeak
Typewritten Text

squeak
Typewritten Text

squeak
Typewritten Text
[First published in Scientific American, issue 251, 09/84]

Computer Software
by ALAN KAY

Presenting a single-topic issue on the concepts and techniques needed
to make the computer do one’s bidding. It is software that
gives form and purpose to a programmable machine,

omputers are Lo computing as in-
C struments are to music. Software
is the score, whose interpretation
amplifies our reach and lifts our spir-
it. Leonardo da Vinci called music “the
shaping of the invisible,” and his phrase
is even more apt as a description of soft-
ware. As in the case ol music, the in-
visibility of software is no more mys-
terious than where your lap goes when
you stand up. The true mystery to be ex-
plored in this issuc of Scientific American
is how so much can be accomplished
with the simplest of materials, given the
right architecture.

The materials of computing are the
tersest of markings, stored by the bil-
lions in computer hardware. In a mu-
sical score the tune is represented in
the hardware of paper and ink; in biol-
ogy the message transmitted from gen-
eration to generation by DNA is held
in the arrangement of the chemical
groups called nucleotides. Just as there
have been many matcerials (from clay to
papyrus to vellum to paper and ink) for
storing the marks of writing, so comput-
er hardware has relied on various physi-
cal systems for storing its marks: rotat-
ing shafts, holes in cards, magnetic flux,
vacuum tubes, transistors and integrat-

ed circuits inscribed on silicon chips.
Marks on clay or paper, in DNA and in
computer memories are equally power-
ful in their ability to represent, but the
only intrinsic meaning of a mark is that
itis there. “Information,” Gregory Bate-
son noted, “is any difference that makes
a difference.” The first difference is the
mark; the second one alludes to the need
for interpretation.

The same notation that specifies ele-
vator music specifies the organ fugues
of Bach. In a computer the same no-
tation can specify actuarial tables or
bring a new world to life. The fact that
the notation for grafliti and for sonnets
can be the same is not new. That this
holds also for computers removes much
of the new technology’'s mystery and
puts thinking about it on firmer ground.

As with most media from which
things are built, whether the thing is a
cathedral, a bacterium, a sonnet, a fugue
or a word processor, architecture domi-
nates matcrial. To understand clay is not
to understand the pot. What a pot is all
about can be appreciated better by un-
derstanding the creators and users of the
pot and their need both to inform the
material with meaning and to extract
meaning from the form.

INTANGIBLE MESSAGE cmbedded in a material medium is the essence of computer soft-
ware. Here the message is made visible in a voltage-contrast image: a scanning-electron micro-
graph of a small part of an Intel 80186 microprocessor. The features of the image are formed
not by the conductors and transistors on the chip but by the signals passing through them. The
trajectory of the sccondary electrons emitted in response to the microscope beam is affected by
electromagnetic fields at the surface of the chip: regions of higher voltage attract electrons,
weakening the image-forming signal. The microscope beam is pulsed on only when the micro-
processor is in a particular electronic state: when certain logic elements are “on.” The colors of
the lines indicate the voltages in metal communications lines leading to logic elements. Where
a signal is traveling along a line there is a region of high voltage. The false-color image has been
processed so that such regions, and thus “messages,” are seen in light blue. Low-voltage regions
are green, intermediate-voltage regions yellow. The red lines are conductors at ground poten-
tial, or zero volts, The micrograph was made by Timothy C. May of the Intel Corporation.

VPRI Technical Report TR-1984-001

much as a sculptor shapes clay

There is a qualitative difference be-
tween the computer as a medium of ex-
pression and clay or paper. Like the ge-
netic apparatus of a living cell, the com-
puter can read, write and follow its own
markings to levels of self-interpretation
whose intellectual limits are still not un-
derstood. Hence the task for someone
who wants to understand software is not
simply to see the pot instead of the clay.
It is to see in pots thrown by beginners
(for all are beginners in the fledgling
profession of computer science) the pos-
sibility of the Chinese porcelain and Li-
moges to come.

Herc I need spend no more time on
computing’s methods for storing
and reading marks than molecular biol-
ogy does on the general properties of
atoms. A large enough storage capacity
for marks and the simplest set of in-
structions are enough to build any fur-
ther representational mechanisms that
are needed, including even the simu-
lation of an entire new computer. Au-
gusta Ada, Countess of Lovelace, the
first computer-software genius, who
programmed the analytical engine that
Charles Babbage had designed, under-
stood well the powers of simulation
of the general-purpose machine. In the
1930’s Alan M. Turing stated the case
more crisply by showing how a remark-
ably simple mechanism can simulate all
mechanisms.

The idea that any computer can simu-
late any existing or future computer is
important philosophically, but it is not
the answer to all computational prob-
lems. Too often a simple computer pre-
tending to be a fancy one gets stuck in
the “Turing tar pit” and is of no use if
results are needed in less than a million
years. In other words, quantitative im-
provements may also be helpful. An in-

4 ALAN KAY

crease in speed may even represent a
qualitative improvement. Consider how
speeding up a film [rom two [rames
per second to 20 (a mere order of mag-
nitude) makes a remarkable difference:
it leads to the subjective perception
of continuous movement. Much of the
“life” of visual and auditory interaction
depends on its pace.

ﬁ children we discovered that clay
can be shaped into any form simply
by shoving both hands into the stuff.
Most of us have learned no such thing
about the computer. [ts material seems
as detached from human experience as a
radioactive ingot being manipulated re-
motely with buttons, tongs and a televi-
sion monitor. What kind of emotional
contact can one make with this new stuff
if the physical access seems so remote?

One feels the clay of computing
through the *‘user interface”: the soft-
ware that mediates between a person
and the programs shaping the computer
into a tool for a specific goal, whether
the goal is designing a bridge or writing
an article. The user interface was once
the last part of a system to be designed.
Now it is the first. It is recognized as
being primary because, to novices and
professionals alike, what is presented

to one’s senses /s one’s computer The
“user illusion,” as my colleagues and
[called it at the Xerox Palo Alto Re-
search Center, is the simplified myth
everyone builds to explain (and make
guesses about) the system'’s actions and
what should be done next.

Many of the principles and devices
developed to enhance the-illusion have
now become commonplace in software
design. Perhaps the mostimportant prin-
ciple is wysiwyg (“What you see is what
you get”): the image on the screen is
always a faithful representation of the
user’s illusion. Manipulating the image
inacertain way immediately does some-
thing predictable to the state of the ma-
chine (as the user imagines that state).
One illusion now in vogue has “win-
dows,” "menus,” “icons” and a pointing
device. The display frames called win-
dows make it possible to present a
number of activities on the screen at
one time. Menus of possible next steps
arc displayed; icons represent objects
as concrete images. A pointing device
{sometimes called a mouse) is pushed
about to move a pointer on the screen
and thereby select particular windows,
menu items or icons.

All of this has given rise to a new gen-
eration of interactive software that capi-

HLL

| |
1950 1956 1961 1966

: |
1872 1978 1983

SOFTWARE GENRES succeed onc another at sporadic intervals, as 1s shown here through the
example of some programming languages. Languages are categorized rather arbitrarily by lev-
¢l, although the levels (colored bands) overlap. There are low-level languages (LLi), high-
level languages (#iLL), very-high-level languages (vHLL) and ultrahigh-level languages (UHLL).
In the evolution of programming languages a genre is established (horizontal wiite lines), then
after a few years an improvement is made (eurved white lines). In time the improved language
is seen to be not merely a “better old thing” but an “alm'ost new thing,” and it leads to the next
stable genre. The language Lisp has changed repeatedly, each time becoming a new genre.

VPRI Technical Report TR-1984-001

talizes on the user illusion. The objective
is to amplify the user's ability to simu-
late. A person exerts the greatest le-
verage when his illusion can be manip-
ulated without appeal to abstract inter-
mediaries such as the hidden programs
needed to put into action even a sim-
ple word processor. What I call direct
leverage is provided when the illusion
acts as a “kit,” or tool, with which to
solve a problem. Indirect leverage will
be attained when the illusion acts as
an “‘agent’: an active cxtension of one's
purpose and goals. In both cases the
software designer’s control of what is
essentially a theatrical context is the key
to creating an illusion and enhancing its
perceived “friendliness.”

he earliest computer programs were

designed by mathematicians and sci-
entists who thought the task should be
straightforward and logical. Software
turned out to be harder to shape than
they had supposed. Computers were
stubborn. They insisted on doing what
was said rather than what the program-
mer meant. As a result a new class of
artisans took over the task. These test
pilots of the binary biplane were often
neither mathematical nor even very sci-
entific, but they were deeply engaged
in a romance with the material—a ro-
mance that is often the precursor of
new arts and sciences alike. Natural sci-
entists are given a universe and seek
to discover its laws. Computer scien-
tists make laws in the form of programs
and the computer brings a new universe
to life.

Some programmers breathed too
deeply of the heady atmosphere of cre-
ating a private universe. They became
what the eminent designer Robert S.
Barton called *“the high priests of a low
cult.” Most discovered, however, that it
is one thing to be the god of a universe
and another to be able to control it, and
they looked outside their field for design
ideas and inspiration.

A powerful genre can serve as wings
or chains. The most treacherous meta-
phors are the ones that seem to work for
a time, because they can keep more
powerful insights from bubbling up. As
a result progress is slow—but there is
progress. A new genre is established. A
few years later a significant improve-
ment is made. After a few more years
the improvement is perceived as being
not just a “better old thing” but an
“almost new thing” that leads directly
to the next stable genre. Interestingly,
the old things and their improvements
do not disappear. Strong representatives
from each past era thrive today, such
as programming in the 30-year-old lan-
guage known as FORTRAN and even in
the ancient script known as direct ma-
chine code. Some people might look
on such relics as living fossils; others
would point out that even a very old

species might still be filling a particular
ecological niche.

he computer licld has not yet had its
Galileo or Newton, Bach or Beetho-
ven, Shakespeare or Molicre. What it
needs first is a William of Occam, who

{

said “Entities should not be multiplied
unnecessarily.” The idea that it is worth-
while to put considerable effort into
eliminating complexity and establishing
the simple had a lot to do with the rise of
modern science and mathematics, par-
ticularly from the standpoint of creating

Coniputer Software 5

new acsthetics, a vital ingredient of any
growing field. [t is an aesthetic along
the lines of Occam’s razor that is need-
ed both to judge current computer soft-
ware and to inspire future designs. Just
how many concepts are there really?
And how can metaphor, the magical

WV
I —
GENERIC 4 \ ‘ N
| osskct | ISJUSTLIKE (THIS) EXCEPT NEW MESSAGES (_/‘/\/\/ v\\—/\z—\
A DISPLAY ——> L
\ GENEALOGY \ /\IL
' > YOUR MESSAGES? &

RECTANGLE ISJUSTLIKE (THIS) EXCEPT. NEW MESSAGES T T
N BERLAY ——— 5
\ ORIGIN
\ CORNER
N CENTER
N\ BORDER
'} FILL
L'VEWDO“{ J IS JUSTLIKE (THIS | EXCEPT. -NEW MESSAGES e e e —=
N DISPLAY ———=>
TITLE L =
SCROLL BARS
\ MOVE L
N EXPAND |
B S "G =
‘»\ OPEN :
‘l CLOSE
MOUSE BUTTON?
PANED | ISJUSTLIKE [THIS) EXCEPT. NEW MESSAGES
WINDOW | 2R e o — o —J
Y — DISPLAY ——> 4{ - ' : -
= | |
\ PANES 1 S E " -
N - RELATIONS ‘ v
By SOURCE o
x - —
BROWSERS | ARE JUSTLIKE (THIS) EXCEPT. NEW MESSAGES NEEDED TO SPECIALIZE EACH ONE
Bl =3 ————] o =] @i= ——] o]
| =
L (B J- S | |
) | L-ID I =L0 =0 =[aE |
DATA-BASF PLANNING THINGLAB BOOK-READER
BROWSER BROWSER BROWSER BROWSER

INHERITANCE PROGRAMMING shows the power of differen-
tial deseription, A generic “object” (top) is displayed as a cloud. One
can make a rectangle from the undifferentiated object by saying, in
effect, “I want something just like that, except...,” and then specifying
such properties as the location of the origin (the upper left corner),
the width, the height and so on. A further elaboration of the idea is a
“window,” a rectangular area of the display screen that gives a view of
the output of a program. In creating a window one can allow it to “in-

VPRI Technical Report TR-1984-001

herit” applicable properties of the rectangle and add new features
such as scroll bars (to move the window about over the material being
viewed), a title and facilities for changing the window’s size and posi-
tion. A more complex window with panes is made by adding new
display methods to shape the panes and establish communications
among them (colored arrows), Paned windows can be manipulated to
make “browsers”: systems enabling one to retrieve resources without
remembering names. Four examples of browsers are shown (bottom).

=

6 ALAN KAY

process of finding similarity and even
identity in diverse structures, be put to
work to reduce complexity?

The French mathematician Jacques S.
Hadamard found, in a study of 100 lead-
ing mathematicians, that the majority of
them claimed to make no use of symbols
in their thinking but were instead pri-
marily visual in their approach. Some,
including Einstein, reached further back
into their childhood to depend on *sen-
sations of a Kinesthetic or muscular
type.” The older parts of the brain know
what to say; the newer parts know how
to say it. The world of the symbolic can
be dealt with effectively only when the
repetitious aggregation of concrete in-
stances becomes boring enough to moti-
vate exchanging them for a single ab-
stract insight,

In algebra the concept of the varia-
ble, which allows an infinity of instan-
ces to be represented and dealt with as
one idea, was a staggering advance. Met-
aphor in language usually accentuates
the similarities of quite different things
as though they were alike. It was a tri-
umph of mathematical thinking to real-
ize that various kinds of self-compari-

DYNAMIC SPREADSHEET is a simulation kit: an aggregate of
software objects called cells that can get values from one another.
The window selects a rectangular part of the sheet for display. Each
cell can be imagined as having several layers behind the sheet that
compute the cell’s value and determine the format of the presenta-

VPRI Technical Report TR-1984-001

son could be even more powerful. The
differential calculus of Newton and
Leibniz represents complex ideas by
finding ways to say “This part of the idea
is like that part, except for....” The
designers of computing systems have
learned to do the same thing with dif-
ferential models, for example with pro-
gramming methods that have the prop-
erty called inheritance. In recent 'years
models based on the idea of recursion
have been formulated in which some of
the parts actually are the whole: a de-
scription of the entire model is needed to
generate the representation of a part. An
example is the fractal geometry of Be-
noit B. Mandelbrot, where each subpart
of a structure is similar to every other
part. Chaos is captured in law.
Designing the parts to have the same
power as the whole i1s a fundamental
technique in contemporary software.
One of the most effective applications of
the technique is object-oriented design.
The computer is divided (conceptually,
by capitalizing on its powers of simula-
tion) into & number of smaller comput-
ers, or objects, each of which can be giv-
en a role like that of an actor in a play.

‘The move to object-oriented design rep-
resents a real change in point of view—a
change of paradigm—that brings with
it an enormous increase in expressive
power. There was a similar change when
molecular chains floating randomly in
a prebiological ocean had their eflicien-
cy, robustness and energetic possibilities
boosted a billionfold when they were
first enclosed within a cell membrane.

The early applications of software
objects were attempted in the context
of the old metaphor of sequential pro-
gramming languages, and the objects
functioned like colonies of cooperat-
ing unicellular organisms. If cells are a
good idea, however, they really start to
make things happen when the coopera-
tion is close enough for the cells to ag-
gregate into supercells: tissues and or-
gans. Can the endlessly malleable fab-
ric of computer stuff be designed to
form a “'superobject”?

The dynamic spreadsheet is a good ex-
ample of such a tissuelike superob-
ject. It is a simulation kit, and it provides
a remarkable degree of direct leverage.
Spreadsheets at their best combine the

SHEET

CELL

NAME

VALUE RULE

VALUE

FORMAT RULE

IMAGE

WINDOW

DISPLAY

tion. The cell’s name can be typed into an adjoining cell. Each cell has
a value rule, which can be the value itself or a way to compute it; the
value can also be conditional on the state of cells in other parts of the
sheet. The format rule converts the value into a form suitable for
display. The image is the formatted value as displayed in the sheet.

genres established in the 1970's (objects.
windows, what-you-see-is-what-you-get
editing and goal-seeking retrieval) into a
“better old thing™ that is likely to be one
of the “almost new things” for the main-
stream designs of the next few years.

A spreadsheet is an aggregate of con-
currently active objects, usually orga-
nized into a rectangular array of cells
similar to the paper spreadsheet used
by an accountant. Each cell has a “'val-
ue rule” specifying how its value is to
be determined. Every time a value is
changed anywhere in the spreadshect,
all values dependent on it are recom-
puted instantly and the new values are
displayed. A spreadsheet is a simulated
pocket universe that continuously main-
tains its fabric; it is a kit for a surprising
range of applications. Here the user il-
lusion is simple, direct and powerful.
There are few mystifying surprises be-
cause the only way a cell can get a val-
ue is by having the cell’s own value rule
put it there.

Dynamic spreadsheets were invented
by Daniel Bricklin and Robert Frank-
ston as a reaction to the frustration
Bricklin felt when he had to work with
the old ruled-paper versions in busi-
ness school. They were surprised by
the success of the idea and by the fact
that most people who bought the first
spreadsheet program (VisiCalc) exploit-
ed it to forecast the future rather than
to account for the past. Seeking to de-
velop a “smart editor,” they had creat-
ed a simulation tool.

Getting a spreadsheet to do one’s bid-
ding is simplicity itself. The visual meta-
phor amplifies one’s recognition of situ-
ations and strategies. The easy transition
from the visual metaphor to the sym-
bolic value rule brings the full power
of abstract models to bear almost with-
out notice. One powerful property is
the ability to make a solution generic by
“painting” arule in many dozens of cells
at once without requiring users to gener-
alize from their original concrete level
of thinking.

The simplest kind of value rule makes
a cell a static object such as a number
or a piece of text. A more complex rule
might be an arithmetic combination of
other cells’ values, derived from their
relative or absolute positions or (much
better) from names assigned to them. A
value rule can test a condition and set its
own value according to the result. Ad-
vanced versions allow a cell’s value to
be retrieved by heuristic goal seeking,
so that problems for which there is no
straightforward method of solution can
still be solved by a search process.

he strongest test of any system is not
how well its features conform to an-
ticipated needs but how well it performs
when one wants to do something the de-
signer did not foresee. It is a question
less of possibility than of perspicuity:
VPRI Technical Report TR-1984-001

Can the user see what is to be done and
simply go do it?

Suppose one wants to display data as
a set of vertical bars whose height is nor-
malized to that of the largest value, and
suppose such a bar-chart feature was
not programmed into the system. It calls
for a messy program cven in a high-lev-
el programming language: in a spread-
sheet it is easy. Cells serve as the “pix-
els™ (picture clements) of the display:
a stack of cells constitutes a bar. In a
bar displaying one-third of the maxi-
mum value, cells in the lowest third of
the stack are black and cells in the up-
per two-thirds are white. Each cell has
to decide whether it should be black or
white according to its position in the
bar: *I'll show black if where [am in
the bar is less than the data [am trying
to display: otherwise I'll show white™
[see illustration on nexr page).

Another spreadsheet example 1s a so-
phisticated interactive “browser,” a sys-
tem originally designed by Lawrence G.
Tesler, then at the Xerox Palo Alto Re-
search Center. Browsing is a pleasant
way to access a hierarchically organized
data base by pointing to successive lists.
The name of the data base is typed into
the first pane of the display, causing the
subject areas constituting its immediate
branches to be retrieved and displayed
in the cells below the name. One of the
subject areas can be chosen by pointing
to it with a mouse; the chosen arca is
thereby entered at the head of the next
column, causing its branches in turn
to be retrieved. So it goes until the de-
sired information 1s reached [see illus-
tration on page 9]. Remarkably, the en-
tire browser can be programmed in the
spreadsheet with just three rules.

The intent of these examples is not to
geteveryone to drop all programming in
favor of spreadsheets. Current spread-
sheets are not up to it; nor, perhaps, is
the spreadsheet metaphor itself. If pro-
gramming means writing step-by-step
recipes as has been done for the past 40
years, however, then for most people it
never was relevant and is surely obso-
lete. Spreadsheets, and particularly ex-
tensions to them of the kind I have sug-
gested, give strong hints that much more
powerful styles are in the offing for nov-
ices and experts alike. Does this mean
that what might be called a driver-edu-
cation approach to computer literacy is
all most people will ever need—that one
need only learn how to “drive” applica-
tions programs and need never learn to
program? Certainly not. Users must be
able to tailor a system to their wants.
Anything less would be as absurd as re-
quiring essays to be formed out of para-
graphs that have already been written.

In discussing this most protean of me-
dia I have tried to show how efTective-
ly design confers leverage, particularly
when the medium is to be shaped as
a tool for direct leverage. It is clear

Computer Software 7

that in shaping software kits the limita-
tions on design are those of the creator
and the user, not those of the medium.
The question of software's limitations
is brought front and center, however,
by my contention that in the future a
stronger kind of indirect leverage will
be provided by personal agents: exten-
sions of the user's will and purposes,
shaped from and embedded in the stutf
of the computer. Can material give rise
to mentality? Certainly there scems to
be nothing mindlike in a mark. How
can any combination of marks, even dy-
namic and reflexive marks, possibly
show any properties of mentality?

toms also scem quite innocent. Yet
biology demonstrates that simple
materials can be formed into exceeding-
ly complex organizations that can inter-
pret themselves and change themselves
dvnamically. Some of them even appear
to think! It is therefore hard to deny cer-
tain mental possibilities to computer
material, since software’s strong suit is
similarly the Kinetic structuring of sim-
ple components. Computers “can only
do what they are programmed to do,”
but the same is true of a fertilized egg
trying to become a baby. Still, the diffi-
culty of discovering an architecture that
generates mentality cannot be overstat-
ed. The study of biology had been under
way some hundreds of years before the
properties of DNA and the mechanisms
of its expression were elucidated, reveal-
ing the living cell to be an architecture in
process. Moreover, molecular biology
has the advantage of studying a system
already put together and working; for
the composer of software the computer
is like a bottle of atoms waiting to be
shaped by an architecture he must in-
vent and then impress from the outside.
To pursue the biological analogy,
evolution can tell the genes very little
about the world and the genes can tell
the developing brain still less. All levels
of mental competence are found in the
more than one and a half million surviv-
ing species. The range is from behavior
so totally hard-wired that learning is nei-
ther needed nor possible, to templates
that are elaborated by experience, to a
spectrum of capabilities so fluid that
they require a stable social organiza-
tion—a culture—if full adult potential
is to be realized. (In other words, the
gene’s way to get a cat to catch mice is
to program the cat to play—and let the
mice teach the rest.) Workers in artifi-
cial intelligence have generally content-
ed themselves with attempting to mintic
only the first, hard-wired kind of behav-
ior. The results are often called expert
systems, but in a sense they are the de-
signer jeans of computer science. It is
not that their inventors are being dis-
honest; few of them claim for a system
more than it can do. Yet the label “ex-
pert” calls up a vision that leads to dis

e TS

e —

1

8 ALAN KAY

illusionment when it turns out the sys
tems miss much of what expert (or cven
competent) behavior is and how it gets
that way.

Three developments have very low
probabilitics for the near future. The

4’_1
T
oty :

W @ |||

first 1s that a human adult mentality can
be constructed. The second is that the
mentality of a human infant can be
constructed and then “brought up™ in
an environment capable of turning it
into an adult mentality. The third is

BAR: Value rule for each cell is
"Show black if (11 - vertical lo-
cation) % pixel height is less
than data [horizontal location]
else show white.”

DATA: Value rule for each cell is
gither the number itself or a number
fetched from some other part of

the sheet.

PIXEL HEIGHT:Maximum datum - 10

g 1 [2 [3] 4[5]
3 R :
4 T v :
5 &
- - B

2
e ;

P T

VI T
v

I i

/.""I,-‘/;.‘
5
6 |7
7
77}
9 2
10 |22

N
—t
(5]
-+
[#5]
[

I

125

P AIA A
%7

ik

£
(LA A L
WELLTTL
77
LSS LA AR 2

Ll
VTR VT
v

VIR

754

Ty iy ¢
R
2

s s

FLS LI
/8

L,

i
V.
VIR
s

BAR CHART can be constructed out of the standard materials of a spreadsheet. A bar is a col-
umn of cells, where each cell serves as a pixel, or picture element. One cell associated with each
column holds the datum, or value, to be represented by the height of the corresponding bar.
Within a bar all the cells are governed by the same rule. The quantity represented by the height
of a single pixel is the maximum datum divided by the number of pixels in the longest bar; in
chart @ there are 10 pixels per bar and each pixel represents 25 units. Each cell shows black if
its vertical position in the bar multiplied by the number of units per pixel is less than the datum
for that bar; otherwise it shows white. When a new datum is entered in a column (5), a new bar
appears in that column (¢). If a new datum is larger than the previous maximum (d), the set of
bars is replotted (¢) on the basis of the new number of units per pixel, which in this case is 36.7.

VPRI Technical Report TR-1984-001

that current artificial-intelligence tech
niques contain the seeds of an architec-
ture from which one might construct
some kind of mentality that is genuine-
ly able to learn competence. The fact
that the probabilities are low emphati-
cally does not mean the task is impossi-
ble. The third development is likely to
be achicved first. Even before it is there
will be systems that look and act some-
what intelligent, and some of them will
actually be useful.

‘X?hat will agents be like in the next
few years? The idea of an agent
originated with John McCarthy in the
mid-1950's, and the term was coined
by Oliver G. Sellridge a few years later,
when they were both at the Massachu-
sctts Institute of Technology. They had
in view a system that, when given a goal,
could carry out the details of the appro-
priate computer operations and could
ask for and receive advice, offered in
human terms, when it was stuck. An
agent would be a “solt robot” living
and doing its business within the com-
puter's world.

What might such an agent do? Hun-
dreds of data-retrieval systems are now
made available through computer net-
works. Knowing every system's arcane
access procedures is almost impossible.
Once access has been gained, browsing
can handle no more than perhaps 5,000
entries. An agent acting as a librarian is
needed to deal with the sheer magnitude
of choices. It might serve as a kind of
pilot, threading its way [rom data base
to data base. Even better would be an
agent that could present all systems to
the user as a single large system, but that
is a remarkably hard problem. A persis-
tent “go-fer” that for 24 hours a day
looks for things it knows a user is inter-
ested in and presents them as a person-
al magazine would be most welcome.

Agents are almost inescapably an-
thropomorphic, but they will not be hu-
man, nor will they be very competent
for some time. They violate many of the
principles defining a good user interface,
most notably the idea of maintaining the
user illusion. Surely users will be dis-
appointed if the projected illusion is
that of intelligence but the reality falls
far short. This is the main reason for
the failure so far of dialogues conduct-
ed in ordinary English, except when
the context of the dialogue is severe-
ly constrained to lessen the possibility
ol ambiguity.

Context is the key, of course. The user
illusion is theater, the ultimate mirror.
[t is the audience (the user) that is in-
telligent and can be directed into a par-
ticular context. Giving the audience
the appropriate cues is the essence of
user-interface design. Windows, menus,
spreadsheets and so on provide a con-
text that allows the user’s intelligence to
keep choosing the appropriate next step.

An agent-based system will have to do
the same thing, but the creation ol an
interface with some semblance of hu-
man mentality will call {or a considera-
bly subtler approach.

A\y medium powerful enough to ex-
tend man's reach s powerlul
enough to topple his world. To get the
medium’s magic to work for one's aims
rather than against them 15 to attain lit-
eracy. Atits simplest, literacy means flu-
ency. Familiarity (knowing the “gram-
mar’') is not enough. People who can
recognize a book and its words, a type-
writer and its keyboard or a computer
and its input-output devices are not lit-
erate unless they can spend most of their
time dealing with content rather than
with the mechanics of form.

Is the computer a car to be driven or
an essay to be written? Most of the con-
fusion comes from trying to resolve the
question at this level. The protcan na-
ture ol the computer is th that it can
act like a machine or like a language to
be shaped and exploited. It is a medi-
um that can dynamically simulate the
details of any other medium, including
media that cannot exist physically. It is
not a tool, although it can act like many
tools. It is the first metamedium, and as
such it has degrees of freedom for repre-
sentation and expression never before
encountered and as yet barely investi-
gated. Even more important, it is fun,
and therefore intrinsically worth doing.

If computers can be cars, then cer-
tainly computer literacy at the level of
driver-education courses 1s desirable.
Indeed, the attempt is now being made
to design user interfaces giving access
to the computer’'s power by way of inter-
actions even easier to learn than driv-
ing a car. Integrated programs for word
processing, g dphics, simulation, infor-
mation retrieval and person-to-person
communication will be the paper and
pencil of the near future. The driver-cd-
ucation level of paper-and-pencil litera-
cy is taught, however, in kindergarten
and first grade, implying that what can
be called mark-making literacy in com-
puters should be attained as early as
possible; children should not be made to
wait until they can get in a halfl year of
it just before they graduate from high
school, as recent reports by educational
commissions suggest. Children need in-
formational shoes, bicycles, cars and
airplanes from the moment they start
to explore the universe of knowledge.

Paper-and-pencil literacy does not
stop, moreover, when children know
how to manipulate a pencil to make cer-
tain kinds of marks on paper. One rea-
son to teach reading and writing is cer-
tainly that people need these skills to gel
through daily life in the 20th century,
but there are grander and more critical
goals. By reading we hope not only to
absorb the facts of our civilization and

VPRI Technical Report TR-1984-001

[PANE of Browser has

Compuiter Software 9

47
48
49
50
(st ;

b
50
Sl
52
53 | :Fishes
54 fMommu!ﬁ}'"

55 | ‘Reptiles

56 | ‘Marsupials

57 | :Amphibians:

e

47
18

54 |viMammals N

LATCH CELLS notice
mouse pointer in ad-
jacent list cell and
latch by showing a
check mark.

a HEAD CELL,
LATCH CELLS
and LIST CELLS.

| ‘19 (\(((((\(\K\((((\(C(C(h((h(({{».{\((((({\"(’ AL GRS (\’({\{\1{(((({ 153

50 |- :Silver Fux o ;
51 <\<(<\<\<.(((<<\(<(\ f<{<\ .\«(\ “(.“«(\'(\ \\\<\~.<<\“\-<\<\ ‘\' \\<(< <\<’<<(\<(<<<{<(({\\
52| :Birds :Red Fox EA Silver Fox is a colar phase

53 | :Fishes “Blue Fox

35 | :Reptiles iArtic Fox
56 CKitFox i

)|]
57 {Hurnans ‘Grey Fox 1

o8 |29 HEERU LK R B R R

AL

L LA A L LK

LIST CELLS look at
name in head cell
and retrieve corre-
sponding
subcategories.

HEAD CELL (except
the first one) looks
for latched cell in
preceding list and
copies it.

DATA-BASE BROWSER allows one to gain access to a hierarchically organized data base by
simply pointing to items in successive lists, To learn about the silver fox one types “animals”
into the first pane («). Subject areas of the “animals” data base appear in the pane (). Selection

of “mammals”

causes that subcategory to appear in the next pane (¢); selection of “foxes”

brings up a list of foxes (d), and eventually the description of the silver fox is retrieved (o).

of those before us but also to encounter
the very structure and style of thought
and imagination. Writing gets us out of
the bleachers and onto the playing field;
old and new knowledge becomes truly
ours as we shape it directly.

In short, we act as though learning
to read and write will help people to
think better and differently. We assume
that starting with centuries’ worth of
other people’s knowledge is more effi-
cient than starting from scratch and
will provide a launch pad for new ideas.
We assume that expressing and shap-
ing ideas through metaphor and other
forms of rhetoric makes the ideas more
fully our own and amplifies our abili-
ty to learn from others in turn. (Oliver
Wendell Holmes said, “The mind, once
expanded to the dimensions of larger
ideas, never returns to its original size. ")
We hold all of this to be important eve
though reading and writing seem to bc

quite hard and take years to master. Our
society declares that this Kind of literacy
is not a privilege but a right, not an op-
tion but a duty.

What then is computer literacy? It
is not learning to manipulate a word
processor, a spreadsheet or a modern
user interface; those are p'ipm -and-pen-
cil skills. Computer literacy is not even
learning to program. That can always be
learned, in ways no more uplifting than
learning grammar instead of writing.

Computer literacy is a contact with
the activity of computing deep enough
to make the computational equivalent
of reading and writing fluent and enjoy-
able. As in all the arts, a romance with
the material must be well under way. If
we value the lifelong learning of arts
and letters as a springboard for personal
and societal growth, should any less ef-
fort be spent to make computing a part
of our lives?

	1209-Kyoce844p1.jpg
	1209-Kyoce844p2.jpg
	1209-Kyoce844p3.jpg
	1209-Kyoce844p4.jpg
	1209-Kyoce844p5.jpg
	1209-Kyoce844p6.jpg
	1209-Kyoce844p7.jpg
	1209-Kyoce844p8.jpg

