

	hypothesis testing	
	the ubiquitous p	
itatistics fo	Dr HCI – CHI 2022 – Alan Dix	

significance test

hypotheses:

 H_1 – what want to show H_0 – null hypothesis (to disprove)

idea (when experiment/study successful)

if H_0 were true then observed effect is very unlikely *therefore* H_1 is (likely to be) true

Statistics for HCI – CHI 2022 – Alan Dix

13

5% significance level?

it says:

if H₀ were true then probability observed effect happening by chance is less than 1 in 20 (5%)

Statistics for HCI – CHI 2022 – Alan Dix

14

.

confidence interval

bound on true value - same theory as p values

e.g. mean of data is 0.3 95% confidence interval is [-0.7,1.3]

says if the real value not in the range [-0.7,1.3] probability of seeing observed data is less than 5%

Statistics for HCI – CHI 2022 – Alan Dix

21

counterfactuals

95% confidence interval is [-0.7,1.3]

does <u>not</u> say: there is 95% probability that the real mean is in the range [–0.7,1.3]

it either is or it isn't!

<u>all</u> it says: probability of seeing the observed data if real value outside the range is less than 5%

Statistics for HCI – CHI 2022 – Alan Dix

22

proven ... what?

H₀: no difference (real mean is zero)

experimental result:mean is 0.3significance test:n.s. at 5% - so what?95% confidence interval:[-0.7,1.3]

? is 1.3 is an important difference

Statistics for HCI – CHI 2022 – Alan Dix

23

... and don't forget ...

you still need to say

what test/distribution – e.g. Student's T how many – degrees of freedom

it is still uncertain

the real value could be outside the interval

Statistics for HCI – CHI 2022 – Alan Dix

Bayesi	an statistics
putting	a number on it
Statistics for HCI – CHI 2022 – Alan Dix	

33

sometimes

actual estimate of probability e.g. patient with symptoms

more often

encoding **belief** as probability

phenomena is either true or not

Statistics for HCI – CHI 2022 – Alan Dix

34

can re-apply iteratively problems with interactions

internecine warfare

traditionalists and Bayesians often fight ;)

Statistics for HCI – CHI 2022 – Alan Dix

calculations – six coins

given coin is fair: probability six heads = $1/2^6$ = 1/64probability six tails = $1/2^6$ = 1/64probability either = $2/64 \sim 3\%$

 H_0 – coin is fair

 H_1 – coin is not-fair

likelihood (HHHHHH or TTTTTT | H_0) < 5%

Statistics for HCI – CHI 2022 – Alan Dix

46

your experiment

toss 6 coins record how many heads or tails

if HHHHHH or TTTTTTT you can reject H_0 with p< 5%

see how many times you do it before you get 6 in a row

Statistics for HCI – CHI 2022 – Alan Dix

47

the file drawer effect

you can only publish positive results – the non-sig results go in the file drawer!

solutions

pre-registration – say what and how reviewing method before resuts

Statistics for HCI – CHI 2022 – Alan Dix

seduced by numbers

dichotomous reasoning

– 5% sig. is not true/false

- levels of evidence

significance level is not probability

Bayesian posterior is not probability

Statistics for HCI – CHI 2022 – Alan Dix

53

54

