Dartmouth College

Computation Center

1 October 1964

BASIC

A Manual for BASIC, the elementary

algebraic language designed for use

with the Dartmouth Time Sharing System.

1 October 1964

©

Copyright 1964 by the Trustees of
Dartmouth College. Reproduction for
non-commercial use is permitted provided
due credit is given to Dartmouth College.

The development of the BASIC Language,
and of this Manual, has been supported

in part by the National Science Foundation
under the terms of Grant NSF GE 3864.

II

ITI

Iv

TABLE OF CONTENTS

What is a Program

A BASIC Primer

2.1 An Example

2.2 Expressions, Numbers, and Variables
2.3 Loops

2.4 Use of the Time Sharing System

2.5 Errors and Debugging

2.6 Summary of Elementary BASIC Statements
More Advanced BASIC

3.1 More About PRINT

3.2 Lists and Tables

3.3 Functions and Subroutines

3.4 Some Ideas for More Advanced Programmers
Card BASIC

4.1 Purpose

4.2 How to Prepare a Deck

4.3 Differences in Operation

4.4 MAT

Appendices

A. Error Stops

B. Limitations on BASIC

C. The 15 BASIC Statements

12
14
21
26
31
31
36
39
43
50
50
50
50
51
53
53
55
56

I

WHAT IS A PROGRAM?

A program is a set of directions, a recipe, that is used to provide
an answer to some problem. It usually consists of a set of instructions to
be performed or carried out in a certain order. It starts with the given
data and parameters as the ingredients, and ends up with a set of answers
as the cake. And, as with ordinary cakes, if you make a mista.k‘é in your

program, you will end up with something else -- perhaps hash!

Any program must fulfill two requirements before it can even be
carried out. The first is that it must be presented in a language that is
understood by the '"computer. ' If the program is a set of instructions for
solving linear equations, and the '"computer' is a person, the program will
be presented in some combination of mathematical notation and English. If
the person solving the equations is a Frenchman, the program must be in
French, If the ""computer' is a high speed digital computer, the program

must be presented in a language the computer can understand.

The second requirement for all programs is that they must be
completely and precisely stated. This requirement is crucial when dealing
with a digital computer, which has no ability to infer what you meant -- it

can act only upon what you actually present to it.

We are of course talking about programs that provide numerical
answers to numerical problems. To present a program in the English
language, while easy on the programmer, poses great difficulties for the

computer because English, or any other spoken language, is rich with

-1-

ambiguities and redundancies, those qualities which make poetry possible
but computing impossible. Instead, you present your program in a language
that resembles ordinary mathematical notation, which has a simple vocabu-
lary and grammar, and which permits a complete and precise specificaticn
of your program. The language that you will use is BASIC (Beginner's Ali
purpose Symbolic Instruction Code) which is at the same time precise,

simple, and easy to understand.

Your first introduction to the BASIC language will be through an ex-
ample. Next you will learn how to use the Dartmouth Time Sharing System
to execute BASIC programs. Finally, you will study the language in more
detail with emphasis on its rules of grammar and on examples that show

the application of computing to a wide variety of problems.

II

A BASIC PRIMER

2.1 An Example

The following example is a complete BASIC program for solving
two simultaneous linear equations in two unknowns with possibly several

different right hand sides. The equations to be solved are

AIX 1+ A2X2= B1

AX)+ A, = By

Since there are only two equations, we may find the solution by the

formulas

(BjAg - BA,) . (A B, - A3B))
1= 2
(AjAy- AzA)) (AjA 4 - Az hp)

=

It is noted that a unique solution does not exist when the denominator
A1A4-A3A2 is equal to zero. Study the example carefully -~ in most cases

the purpose of each line in the program is self-evident.

10 READ Al, A2, A3, A4

15 LET D = Al * A4 - A3 % A2

20 IF D = 0 THEN 65

30 READ Bl, B2

37 LET X1 = (Bl%A4 - B2 * A2) / D
42 LET X2 = (Al * B2 - A3 * B1)/D
55 PRINT X1, X2

60 GO TG 30

65 PRINT '""N@ UNIQUE SQLUTI@N"
70 DATA 1, 2,4

80 DATA 2, -7, 5

85 DATA 1, 3, 4, -7

90 END

We immediately observe several things about the above sample
program. First, all lines in the program start with a line number. These
serve to identify the lines in the program, each ohe. of which is called a
statement; thus, a program is made up of statements, most of which are
instructions to be performed by the computer. These line numbers also
serve to specify the order in which the statements a.ré'to be performed by
the 'c<‘>\mp.ute,r, which mea:is that you could i:jrpe your 'pro'grva.m in any order.
Béfore the pfog’ram is run by the compute§, it .sorts’out and edits the pro-
gram, putting the statements into the order specified by their line numbers.
(This editing process makes extremely simple the correcting and changing

of programs, as will be explained in later sections,)

The second observation is that each statement starts, after its
line number, with an English word. ‘ This word denotes the type of the
statement. There are fifteen types of statements in BASIC, nine of which
are discussed in this chapter. Of these nine, seven appear in the sample

program above.

 The third observation is that we use only capital letters, and that
the letter "Oh' is distinguished from the numeral ''Zero" by having a diag-
onal slash through the '"Oh". This feature is made necessary by the fact
that in a computer program it is not always possible to tell from the con-
text whether the letter or the number was inténded unless they have a dif-
ferent appearance. This distinction is made automatiqallf by the teletype
machine, which also has a special key for the number "One'" to distinguish

it from the letter ''Eye' or lower case ''L'',

A fourth observation, though perhaps less obvious than the first

three, is that spaces have no significance in BASIC (except in messages

-4-

to be printed out as shown in statement number 65.) Thus, spaces may be
used, or not used, at will to ""pretty up'' a program and make it more read-

able. For instince, statement 15 could have been typed as
1I5LETD=A1*%A4-A2%A3
a fully equivalent though less readable form.

Tur'hing now to the individual statements in thé program, we observe
that the first statement, numbered 10, is a READ statemeérit. When the
'co'mp‘uter encounters a READ statement while executifig your prégram, it
will cause the variables whose names are listed after the READ to bé given
values according to the next available numbers in the DATA statements.
"Thus, in the e_x_a.r_nplé, when statement 10 is first encountered, it will cause
the ‘variable‘Al to be given the vé.lue 1, the variable A2 to be given the value
2, the variable A3 to be given the value 4, and the variable A4 to be given

the valu_e 2.

The next statement, numbered 15, is a LET statement. It causes
the computer to compute the value of the expression AjAy - A3A, ,
and to assign this value to the variable D. The expression computed in a
LET statement can range from the very simple (consisting of only a single
variable) to the very complex. The rules for forming these expressions are
given indetail inthe next section, but for now we point out\ that:

1. Variable names consist of a single capital lettef
possibly followed by a single digit;

2. The symbol * (asterisk) is always used to denote
) mult‘iplica.tiOn;

3. Parentheses may be needed to specify the order of the
computation because the entire expression must appear
on a single line;

4. No subscripts or superscnpts as such are permitted,
also because the expressmn must appear on a single line.
In line 20 the computer asks a questions i'Is D equal to 0?" If the
answer is yes, then the next statement to be executed by the computer is
the one numbered 65. If the answer is no, the computer continues to state-

ment 30, the next higf}ér"tnumberedloneiffaite?t 20.

In line 30 the computer causes the variables Bl and B2 to be given
the values next appearing in the DATA statements elsewhere in the program.
Since the first four data have already been used up, Bl is given the fifth

value -7, and B2 is given the sixth value 5,

The statements numbered 37 and 42 complete the computation of
the solution, X1 and X2. Notice that the denbmin.a.tor ﬁas been previously
evaluated as the variable D. Thus it is not necessary to repeat the formula
given in statement 15. Notice also how parentheses are used to specify that
the numerator of the fraction consists of the entire quantity Bl1*A4 - B2*A2.
If the parenthesesihadbeen omitted by mistake, the expression computed

2%A2
would have been B1*A4 - E—U—- » which is incorrect.

Now that the answers have been computed, they will be prmted out
for you to see when the computer encounters statement 55. Notice that the
comma. is used to separate the individual items in the list of quantities to

be printed out at that time,

Having completed the computation, statement 60 tells the computer
to execute next statement number 30. We observe that the second encounter
of statement 30 will cause the variables Bl and B2 to be given the values

1 and 3, respecti\}ely, ‘the next available ones in the DATA statements.

After completing the computation for the second set of right hand
gides and printing the answers, the computer will give the last values, 4
and -7, ta ,the’varia.ble Bl and B2, compute and print the third set of an-
swars, and then atop, because there is no more data when the READ state-

ment 30 is encountered for the fourth time.

If D, the determinant of the coefficients, is zero, we know that the
set of equations does not have a unique solution. In this case, statement 20
will cause the computer to execute statement 65 next. Statement 65 is again
a PRINT statement, but instead of numerical answers heing printed out, it
will producg the English message

N@ UNIQUE SQLUTI@N

We could have ﬁsed any other recognizable mesaage between the two quota-
tion marks that would have indicated to us that no unique solution was pos-

sible for the given coefficients.

After printing the warning message the computer will execute next
statemenf: 90, an END statement, which stops the running of the program.
(The running will also be stopped when a READ statement is encountered
for which therg is not sufficient data.) It is extremely important to remem-
ber that a;ll programs must have an END statement, and that it must always
be the highest numbered statement in the program. The intervening DATA
statements are never executed by the computer; therefore, they may be
placed anywhere in your program. The only requirement is that END be
the highgst numbered statement, including DATA statements, and that
DATA statements are numbered in the order in whieh you wish the data to

be used by the various READ statements in your program.

-7-

2.2. Expressions, Numbers, and Variables

Ekpressiohs in BASIC look like mathematical formulas, and are

formed from ntimbéré, variables, operations, and functions.

A number may contain up to nine digits with or without a decimal
point, and possibly with a minus sign. For example, the following numbers

are a;c.éef)table‘ in BASIC:
5 2.5 123456789 . 123456789 -123456

To extend the range of numbers, a factor of a power of ten may be attach-
ed, using the letter E to stand for ''times ten to the power'. Again, the

following examples are all acceptable forms for the same number in BASIC,
-12.345 . -12345 E-3 -. 12345E2 -12345000E-6 -.00012345E5

It should be noted, however, that the E notation cannot stand alone; 1000
may be written 10E2 or 1E3 but not E3 (which looks like a variable and is
so interpreted in BASIC.) It should also be noted that . 000123456789 is il-

legal, and must be written as, say, . 123456789E-3..

A var1ab1e in BASIC is denoted by any letter, or by any letter fol-

lowed by a d1g1t For 1nsta.nce, these are acceptable variable names:
A X N5 . X0 K9 2%

The difference between 0 and @, and between I and 1 should be observed.
Thus, I0 is a.céepta.ble while any of 19, 1@, and 10 are not (the last one is

the number ten,)

A variable in BASIC stands for a number, 'usually one that is not

- _8-

known to the programmer at the time the program was written. Variables
are given or assigned values by LET and READ statements. The value so
assigned will not change until the next time a LET or READ statement is

encountered that names that variable.

Expressions are formed by combining variables and numbers to-

gether ,wifh é.ﬁthmetic operations and parentheses just as in ordinary mathe-
matical formulas. The symbols

+ | - # / 1
stand for ''plus', '"minus', "times', '"divided by', and ''to the power', (:F)
re'specfively. Pa.renthesés are used in the usual way, a.s in

(Al + X)*(B - ¢

Because expressions must be presented as a single line, parentheses are
often required where théy might not be needed in ordinary mathematical
notation. Thus,

A - is writtenas (A - B)/C
C ’

to show that the entire quantity A - B is to be divided by C. Omitting the

parentheses would leave A - B/C., which is interpreted as A - (B/C)

Another example that arises quite often is

A A/(B%C)
which is written as or
B*C A/B/C

A/B*C will be interpreted the same as (A/B)*C or (A*C)/B

(:F) The operation actually works with the absolute value of the left
argufnent. Thus X Y is interpreted as [Xl T Y . 1f X could be negative

and you want XT*3 , you should write X*X*X or X*X7T 2

The way that expressions are interpreted can be summarized in
terms of several rules, which correspond to standard mathematical nota-
tion, These are: !

1. The expression inside a parentheses pair is computed

before the parenthesized quantity is used in further
computations,

2. Raising to a power is computed before multiply and/or

divide, which in turn are computed before addition and/or
subtraction, in the absence of parentheses.

3. Several multiply~divides, or several addition-subtractions,

are computed from left to right.

The first rule tells us that in (A + B)*C we compute A + B first,
then multiply the result by C, an obvious interpretation. The second rule
tells us that in A + B¥CT D we first compute CTD , then multiply by
B, and finally add to A. An equivalent expressionis A + (B*(C'I\ D)) .
The third rule states that A - B - C is interpreted as (A - B) - C and not
as A - (B - C) . Applied to multiplies and divides, the rule tells us to
interpret A/B/C as (A/B)/C and not as A/(B/C). For raising to a
power, ATBTC means (A{B)/C or, equivalently, AT (B*C) . If you

intend A‘T(BT C) , you must use that form.

In addition to the arithmetic operations, some of the more common
standard functions are available., For example, to compute V1 + X%
you would use SQR(1 + XT 2) . The other standard functions are used in
this same way, that is, the BASIC name of the function followed by the

argument enclosed in parentheses.

-10-

Function name Purpose

SIN(X) sine of X
' _ X must be expressed
COs(X) ’ cosine of X in radian measure.
TAN(X) o tangent of X
ATN(X) R arctangent (in radians) of X
EXP(X) | natural exponential of X, eX
ABS(X) absolute value of X, |X|
LOG(X) natural logarithm of 'Xl
SQR(X) o square root of x|

(Two other functions, RND(X) and INT(X), are explained in section 3. 3)
The argument of a function may be any expression, no matter how compli-
cated. For example

SQR(B#f 2 - 4%*A*C) - 17

Z - EXP(X1+ L@G(. A/X1)) * TAN(A)

SQR(SIN(Q)f 2+ C@s(Qf 2)

are all acceptable in BASIC,

The use of the LGG and SQR functions requires a word of caution.
In each case the argument is méde positive before applying the function,
since neither fuﬁction is défined for negative arguments., Many times,
though not always, an attempt to have the computer extract the square
root of a negative number implies a fundamental error in the program. The
user should be forewarned that such occasions, hopefully rare, may there-

fore be unnoticed.

The user may define new functions using the DEF statement, which

is discussed in section 3.3,

-11-

2.3 LooEs

Pérhapé thé singlke‘ most important programmifxg idea is that of a
loop. While we can write useful programs in which each _sfa.tement is per-
formed only once, such a restriction plac;es a substantial limitation on the
power of the computer. Therefore, we prepare programs that have portions
which are performed not once but many times, perhaps with slight changes
each time. This "looping bacl;” is present in the first program, which can be
used to solve not one but many sets of simultaneous linear equations having

the same left hand sides.

‘Making tablés of, say, square roots is another example where a loop
is necessary. Suppose that we wish to have the computer print a table of
the first hundred whole numbers and their square roots. Without loops, one
can easily see that a program would requife 101 lines, all but the last hav-
ing the form:

17 PRINT 17, SQR(17)
And if one wished to go not to 100 but to SQ only, a new program would be
required, Finally, if one Wa;nted to go to 10, 000 the program would be ab-

surd even if someone could be found to write it all down.

We notice that the basic computation, in this case a very simple
printing, is practically the same in all cases -- only the number to be print-
ed changes. The following program makes use of a loop."

10 LET X =0

20 LET X=X+1

30 PRINT X, SQR(X)

40 IF X <=100 THEN 20
50 END

Statement 10, which gives to X the value 0, is the initialization of the loop.

Statement 20, which increases the value of X by unity, is the statement that

k12

insures that the loop is not merely repeting exactly the same thing -- an
infinite loop! Statement 30 is the bodyv of the loop, the computation in which
we are intéfested. And sté.tement 40 provides an‘ exit from the loop after
the de.aired cofripixta,tion has béen c§rﬁplet§d. All loops contain these four
characteristics: initialiéa.i:ion, modification each time through the loop, the

body of the loop, and a way to get .out.

Because loops are so important, and because loops of the type shown
in the example arise so often, BASIC provides two statements to enable one
to specify such a loop much more concisely, They are the FOR and the
NEXT statemerits, and would be used as follows in the example above:

10 FOR X = 1 T® 100

20 PRINT X, SQR(X)

30 NEXT X

40 END
Statement 10. contains both the initial and final values of X. Statement 30
specifies that X be increased to its next value. In this case, the value by
which X is increased each time is implied to be unity. If instead we wished
to print the square roots of the first 50 even numbers, we would have used

10 FOR X =2 TQ 100 STEP 2

20 PRINT X, SQR(X)

30 NEXT X

40 END

Omitting the STEP part is the same as assuming the step-size to be unity.

To print the squé,r.e roots of the multiples of 7 that are less than
100, one might use for line number 10
.10 FQRX =7 TQ® 100 STEP 7
The loop will be performed for all values of X that are less than or equal

to 100, in this case, for X equalto 7, 14, ... , 91, 98.

=13~

2.4 Use of the Time Sharing System

The Dar'tmouth Tirﬁe »Sha‘i.'ing System consists‘of a large ce’ptral -
computer With .a}’ nﬁfhber of input-‘output' stations (currently, model 35 tele’-‘
type machfin‘ésv.,.‘)r fndividuals using the input-oﬁtput'.;statiohs are able to |
""share'' the use of the é&r'nput’er ‘w'ivtbh' éach other in such a way as to sugge.s.t
that they each have sole use of the cAonr"iputer'. The teletype machines are

the devices thi'ough which-the user communicates with the computer.

» Teleﬁyﬁe mé.chines :;ré like ofdina."ry typewriters, with certain mod-
ifica.tioris. to ma.ke'them suitable fdr traﬁsmittihg.messages over telephone
lines. V‘The}y have. a heariy standard keyboard for letters and numbers, the
most notable differences being that all »Iet.ters are capitals and that the
numeral one is not the same as the letter L. In addition there are several
special characters which can be typed using either of the two "SHIFT" keys;

these include the following special symbols that are used in BASIC programs:

There is a "CTRL' key that is related to standard teletype communications,
but all the control symbols are ignored by BASIC. A layout of the keyboard
is shown on the following page. It should be studied until the locations of

these symbols are familiar.
There are three special keys that the user must know about.

"RETURN", which is located at the right hand end of the third
- ~row of keys, is the ordinary carriage return. More

importantly, the computer ignores all typed lines
until this key is pressed. It must be used after each
line in a BASIC program, and after each line which

-14-

HOLOOOOOOOOO
HEIOINIGICIOICINIOIAICICN

000@0@@@00@0@
00000@00@0@@

INDGEONVYEY QUVOEAAN S¢ PU® €€ STACOR

is a communication to the system,

e, which is located on the letter '""Oh'" key while the
"SHIFT'" key is depressed, erases the last character
typed. If the user notices that he has just mistyped
a letter or a symbol, he pushes this key, which tells
the computer to ignore the previously typed character.
Pushing the backwards arrow more than once will
delete the same number of characters, but only to the
start of the line, For example, the sequence

ABCWT&SDE will appear as ABCDE
while
100 LET-¢¢eees200 LET X =Y
will appear as
200 LET X=Y
"ALT MODE", located at the left hand end of the third row of keys,
is pressed to delete an entire typed line. It may be
used at any time before a.""RETURN' is.used. .
Besides the keyboard itself, there are four buttons that are needed

to operate the teletype machine,

BUTTON - FUNCTION
"ORIG'" the leftmost Turns on the teletype machine.

of six small
buttons on the
right.

"CLR" next to "ORIG." Turns off the teletype.

"LOC LF", to the left of Feeds the paper to permit tearing off.
the space bar.

"BUZ-RLS" , rightmost Turns 'off the buzzer, which goes on
of the six small when the paper supply is low.
buttons.

All other buttons and gadgets, including the telephone dial, are not con-~

nected,

-16-

e

Wheén you sit down at a teletype machine, you must start by
typing

HELLQ®
followed, as always, by a "RETURN"., This starts the so-called HELLG®
sequence, a short series of questions and answers that serve to tell the

computer who you'are and what you wish to do .

Each user must have a user number. For students it is the six
digit student ID number. The user number for any other person consists
of a certain letter followed by five digits, and is assigned to the user by
the Computation Center. When the computer asks for your user number,

type it. (Don't forget the "RETURN!",)

The next information you must supply is the name of the system or

language; in this case it will be BASIC,

When the computer asks about NEW or QLD, you type NEW unless

you wish to retrieve an QLD program in order to continue working on it.

’ Finally; the computer asks for the name of your problem. You
type any six letters, digits, or characters that you wish. If you are retriev-
ing an QLD program, you must be careful to type the problem name exactly

as you typed it originally.

The computer types READY, and is now ready for you to type in
the new program, to add or change statements in an old program, or to
command the computer to do somgthing with your program. You must be
careful to begin each statement in your program with a line number. These
line numbers should:

-- contain no more than five digits,

-17-

~- contain no spaces or non-digit characters,
-- start at the very beginning of the line.
After completely typing the program, you type

RUN
The computer will now analyze and run your program, It will then print
a line that contains your user number, the problem name, the date, and
the time of day. If there are no errors of form in the program, next will
be pri’nted the a.nyswersbaccording to the PRINT statements within the program.
(If thé program runs for a long time, the teletype machine will periodical-
ly ma.ke iittle grinding noises,‘ wﬂich indica‘te‘ that no output has yet been
produced. On the other hahd, if a program is fairly short but produces
lots of output, you may notice that the printing mé.y break off after a while
and commence somewhat later. During that interval, the computer is doing
the computing necessary to produce the next batch of output.) Finally, a
time statement is printed showing the total computing time used by the
run, (In man}? cases it will show 0 seco-ndvs, indicating that the entire run

required less than 0.5 seconds.)

A corhplete history of a successful run of the linear equation solver

presented earlier is shown on the following page.

Besides HELL® and RUN, there are several extremely useful
commands that may be given to the computer by typing at the start of a
new line the command followed by pressing the "RETURN" key.

STQP - causes the computer to stop whatever it is doihg with
the program. STQP may be used even with the computer
- is typing out; in this case it responds to your simply
typing the letter S even without a "RETURN".
LIST will type out a complete listing of the progré,m as it is,

including all the corrections that have been made. To stop

-18-~

HELL®C

USER NUMBER--99999%
SYSTEM--BASIC

NEW @R @LD--NEW

NEW PROBLEM NAME--LINEAR
READY.

10 READ Al, A2, A3, A4

15 LET D = Al * A4 - A3 * A2

20 IF D = 0 THEN &5

30 READ Bl, B2

37 LET X1 = (Bl*%A4 - B2 *x A2) / D
42 LET X2 = (Al * B2 - A3 * Bl1)/D
55 PRINT X1, X2

60 Ge To 30

65 PRINT "N@& UNIQUE S@LUTIGN"

70 DATA 1, 2,4

80 DATA 2. -1, 5

85 DATA l, 3, 4, -7

90 END ,

RUN

USER NO@. 999999 PROBLEM NAME: LINEAR 6 SEPT. 1964 TIME: 22:33

4 =5.5
+8686687 « 166667
-3 .,66667 3.83333

TIMEs ! SECS.

-19-

listing after it has started but before it is completed, type S.

LIST - -XXXXX will type out a listing of the program starting at line number

SAVE

UNSAVE

CATALQG

NEW

@LD

SCRATCH

RENAME

XXXXX and continuingtothe end or until the S key is pressed.
For instance, LIST--70 in the linear equations problem will
start listing at line 70, permitting the user to inspect the
DATA statements without waiting for the early part of the
program to be listed.

If the user is done working with a program at the moment
and wishes to return to it at a later time, he should save
it. For instance, if the user must leave the teletype and is
only half finished with the original typing, he types SAVE.
Later on, he retrieves exactly what he saved by typing
OLD. He may then continue with the typing as if nothmg
had happened

If a user has finished with a program that he has saved at
some earlier time, he types UNSAVE. This action destroys
the saved program, making room for other saved programs.
All users are urgently requested to UNSAVE all programs
for which they no longer have need.

In case a user is working with several different programs
and forgets what names he gave them, typing CATALOG re-
quests the computer to list the names of all programs cur-
rently being saved by that user.

Typing NEW will permit the programmer to start a new
problem. This command may be given at any time, and has
the effect of erasing the previous program (unless it was
saved.) The computer will ask for the name of the new
problem.

This command is similar to NEW, but retrieves the named
saved program, which may then be added to. Either QLD

or NEW must be used in connection with the HELLQ® sequence,
but either may be also used at any later time as well. Re-
peated use of QLD does not affect the saved program; it re-
mains saved until it is unsaved, or until a new version is
saved in place of it.

This command is very close to NEW in that it erases the
previous work and presents a clean slate. It differs by
retaining the name of the previous problem instead of ask-
ing for a new name.

serves to supply a new problem name for the current work
without erasing it. It is useful if one wishes to save two
similar versions of a program. Save the first, use RENAME,
make the desired modifications, and then save or run the
modified version.

-20-

When the user is finished with a session at the teletype, it is neces-
sary only to leave the machine. The user should plan his session at the
teletype to avoid long trances. If such happens, the user should save his

work, and leave the machine for someone else to use, Remember the

motto,
TYPING IS NO SUBSTITUTE FOR THINKING.
2.5 Errors and Debugging

It may occasionally happen that the first run of a new problem will
be error-free and give the correct answers, But it is much more common
that errors vwill be p‘res‘ent and have to be corrected. Errors are of two
types: Errors of form, ior’ grammatic_a.l errors, that prevent even the run-
ning of the program; Logi;:a.l errors in the program which cause wrong an-

swers or even no answers to be printed.

Errors of form will cause error messages to be printed out instead
of the expected answers. These messages give the nature of the error, and
the line number in which the error occurred. Logical errors are often much
harder to uncover, particularly when the program appears to give nearly
correct ansWers. But after careful analysis and when the incorrect state-
ment or statements are disco(rered, the correction is made by retyping the
incorrect line or lines, by inserting new lines, or by deleting existing lines.

These three kinds of corrections are made as follows:

Changing a line Type it correctly with the same line
number.
Inserting a line Type it with a line number between

those of the two ‘existing lines.

Deleting a line Type the line number only.

-21-

Notice that being able to insert a line requires that the original line
numbers not be consecutive numbers, For this reason, most users will
start out using line numbers that are multiples of five or ten, but that is

up to them.

These corrections can be made at any tifrie, either before or after
a run, They may even be made in an earlier part 6f the program while you
are typing the later lines. Simply retype the offefiding line with its original

line number, and then continue typing the rest of the program

The whole process of locating errors or '"debugging' a program is
illustrated by a case history which starts on the next page. It takes us
from the HELLQ® sequence to the final successful printing of the correct
answers., The circled numbers refer to comments, which start below. For
convenience, the portions typed by the computer are underlined or margin-

lined, although no underlining is used on the actual computer.

The problem is to locate the maximum point on the sine curve be-
tween 0 and 3 by searching along the x-axis. The searching will be done
three times, first with a spacing of 0.1, then with spacings of 0. 01, and
0.001. In each case will be printed the location of the maximum, the maxi-

mum, and the spacing. The program as first written down on paper was:

10 READ D

20 LET X0 =0

30 FORX =0 TQ3STEPD
40 1F SIN(X) <= M THEN 100
50 LET X0 = X ,
60 LET M = SIN(XO)

70 PRINT X0, X, D

80 NEXT X0

90 GQ TQ® 20

100 DATA .1, .01, .00l
110 END

-22-

HELLEG

USER NUMBER--9999959
SYSTEM--BASIC

NEW PR @LD--NEW

NEW PROBLEM NAME--MAXSIN

READY,

10 READ D

20 LWR X0 = 0

30 FBR X = 0 T@ 3 STR«EP D

40 IF SINE«(X) <= M THEN 100 <& 0

50 LET X0 = X

60 LET M = SINCX)

70 PRINT X2, X, D

20 NEXT XO

90 G¢ T¢ 20

20 LET X0 = 0 <& ©
LOO«««100 DATA .1, .0!, .00l <« (:)
110 END

RUN

USER NZ. 999999 PRUBLEM NAME: MAXSIN § SEPT. 1964 TIME: 21337

ILLEGAL FZRMULA IN 70 < (Ei)
NGT MATCHED WITH FOR IN 80
FER WITHOUT NEXT ;)<;—“"“““‘---—~—(:>

TIME: 0 SECs,

I
70 PRINT XO, X, D <;‘_‘_________________{::)

40 IF SINC(X) <= ¥ THEN 80

80 NEXT X - (:)

RUN

USER N@. 9599995 PRUBLEM NAME: MAXSIN 6 SEPT. 1964 TIME: 21:38

STEP < *{Z)

READY,

~23~

p

TUSER NJ. 99999¢ PROBLEM NAME: MAXSIN § SEPT. 1964 - TIME: 21242

02 .2

¥ - \CD

® [[] L
— et et s

'USER V2. 999999 PRZBLEM NAME: MAXSIN 6§ SEPT. 1964 TIME:s 21243

1.6 . 999574 o

1.6 « 995574 ol

1.6 « 99 -3
SToP.
90 Gg Td 10
5 PRINT "X VALUE"™, "SINE2«", RESOLUTION" & jki)
RUN '

USER N@. 999999 PRZBLEM NAME: MAXSIN 6 SEPT. 1964 TIME: 21:44

INCPRRECT FgRMAT IN 5 £ @

TIME: 1 SECS,.

-24-

5 PRINT "X VALUE®, "SINE", "RESOLUTION" < -_1C::)
RUN

USER N@. 999999 -PROBLEM NAME: MAXSIN 6 SEPT. 1964 TIME: 21:46

X VALUE SINE RESOLUTION
1.6 .999574 1
1.57 . .01

1.571 1. . 001 (E)

TIME: 1 MINS. O SECS,

st L (12

USER NZ. 999999 PRUBLEM NAME: MAXSIN 6 SEPT. 1964 TIME: 211248
p) PRINT "X VALUE", "SINE", "RESOLUTI@N"

10 READ D
20 LET ¥ = -1 : _
30 FOR X = 0 T@ 3 STEP D

40 IF SINCX) <= M THEN 80
50 LET X0 = X

60 LET M = SINCX)

g0 NEXT X

g5 PRINT X0, M, D

50 G¢ T@ 10

100 DATA .1, .01, .00l

110 END

SAVE £ : (ZE:>

READY.

-25-

10.
11,
12,

13,

2.6

Notice the use of the backwards arrow to correct mistakes as you
go along.

The user notices at this point that he had mistyped the word LET
earlier, and corrects it.

An inspection of statement 70 shows that a variable X@ is used,
which is illegal, when X0 was intended. The line is retyped cor-
rectly.

The variable in the NEXT statement should have been X instead of
X0, and the change is made.

By chance, the user notices that originally the IF-THEN statement
pointed to a DATA statement, and the correction is made.

The problem runs for a long time without any output. Since we ex-
pect output almost immediately, we suspect something is wrong. It
must be that the PRINT statement is forever bypassed. This could
happen only if M were so large that the IF-THEN statement was
always satisfied. We then observe that we forgot to initialize M to
some value less than the maximum value on the sine curve, so we
choose -1.

At last we get printed output, but it appears that the printing is tak-
ing place each time through the loop rather than at the end of the
loop. We move the print statement from before to after the NEXT
statement, and incidentally change it to print M rather than X as
the second term.

Ugh. Still not correct. We seem to be doing the first case over and
over again. An infinite loop! This is corrected by going back to
statement 10 instead of statement 20.

While we are at it, we put in labels to identify each column in the
printed output.

Forgot the opening "' for the third label.
We finally obtain the desired answers.
The final corrected version of the program is listed.

The program is saved for later use. (This should not be done unless
future use is necessary.) :

Summary of Elementary BASIC Statements

This section gives a short and concise but complete description of
/

each of the nine types of BASIC statements discussed earlier in this chapter.

-26-

The notation (...} is used to denote a particular unspecified instance

of the type of thing referred to inside the {). Thus, <line number) is

used to stand for any particular line number. (variable) refers to any

variable, which is a single letter pdssibly followed by a single digit,

{expressiony stands for any particular expression, no matter how com-

plicated, so long as it follows the rules for forming expressions given in

section 2.2 . <number> stands for any constant or data number.

2,6.1 LET

Form:

Example:

Comment:

& line number) LET <variabley) = <Iexpression>
100 LET X=X+ 1
259 LET W7 = (W - X4/ 3)%(Z - Al1/(A - B)) - 17

The LET statement is not a statement of algebraic
equality, but is rather 2 command to the computer to
perform certain computations and to assign the answer
to a certain variable. Thus, the first example tells the
computer to take the current value of X, add 1 to it, and
assign the answer to the variable X. In other words, X
is increased by unity.

2.6.2 READ and DATA

Form:
Example:
Form:
Example:

Comment:

Comment:

< line number> READ Qist of va.ria.bles>
150 READ X, Y, Z, X1, Y2, Z(K+I,J)
< line number> DATA <list of numb"er§>
300 DATA 4, 2, 1.5, 0,6734E-2, 174, 321
A READ statement causes the variables listed in it to
be given in order the next available numbers in the col-
le¢tion of DATA statements.
Before the program is run, the computer takes all the

DATA statements in the order in which they appear and
creates a large data block. Each time a READ state-

" ment is encountered anywhere in the program, the data

block supplies the next available number or numbers. If
the data block runs out of data, with a READ statement
still asking for more, the program is assumed to be
done.

-27-

2.6.3 PRINT

Form: { line number)> PRINT dlist of expressions to be
printed>

Example: 100 PRINT X, Y, Z, B*B - 4%A%C, EXP(LOG(17)
Form: <line numbery PRINT " any string of characters) '
Example: 200 PRINT '"THIS PRGGRAM IS N@® GG@D. "

150 PRINT "CQMPUTES X + Y = 2" |

Comment: The numerical quantities printed need not be simple
variables, they may be any expressions. The expression
is first evaluated, then printed. There may be any number
of expressions separated by commas, but they will be
printed five to a line,

Example: 150 PRINT IIXH’ HYII’ ||Zl|

Comment: Several messages may be included in the list separated
by commas. The effect is to print the letter X in the
first column, the letter Y in the 16th column, and the
letter Z in the 31st column.

Example: 200 PRINT "X =", X, "Y=", Y

Comment: Labels and expressions may appear in the same print
' statement.

Comment: Much more variety is permitted in PRINT statements

than is shown here. The additional flexibility is ex-
plained in section 3. 1.

2.6.4 GQ TQ and IF-THEN

Form: <line number> GO TQ <line numbe1>

Example: 150 GQTQ® 75
240 GO TQ 850

Comment: Sometimes called an unconditional go to, G@ TQ is
used to interrupt the normal sequence of executing

statements in the increasing order of their line numbers,

Form: <line number> IF <ex ression> <;-ela.tior>
{expression> THEN (line number>

Example: 140 IF X > Y + Z THEN 200

85 IF X * SIN(X) >= 1 THEN 100

-28-

Comment: Sometimes called a conditional go to, the IF-THEN
: statement provides a way to select one of two sequences
in the program depending on the results of some previous
computation. If the condition is met, the implied go to
is performed; if the condition is not met, the next
statement in sequence is performed.,

Any of the six standard relations may be used.

Symbol Me an}ing
< less than
<= less than or equal
= equal

greater than or equal

greater than

NN NV

> not equal

2.6.5 FOR and NEXT
VFQ.r‘m:: _ <linev“ number> FOR <va.riab1_e> = éxpression> TQ
' <expression>

or

{line number> FQR (variable> = <expressior> T
{expression> STEP (expression)

Example: 120 FQR X4 = (17 + C@PS(A))/3 TQ 3*SQR(10) STEP 1/4

(This represents the body of the loop.)

sevowe

235 NEXT X4

Comment: Omitting the STEP part of the FQR statement is equiva-
lent to having the stepsize equal to unity,

Comment: The above example will, assuming A to be equal to 0,
cause the body of the loop to be performed several
times, first with X4 equal to 6, next with X4 equal to
6. 25, then 6.50, and so on, The last time the body of
the loop will be performed is with X4 equal to 9. 25,
which is less than or equal to the final value 9.486
(approximately).

The FQR statement goes into the body of a loop if the
variable has a value less than or equal to the final

-29-

2.6.6

value (in the case of a positive stepsize), or if the vari-
able has a value greater than or equal to the final value.
(in the case of a negative stepsize,)

- Upon leaving the loop, the program continues with the

Example:

- Comment:

Example:

Comment:

Example:

Comment:

END

Form:

Example:

Comment:

statement following the NEXT; the variable used in the
FQR statement then has the value it had during the last
passage through the loop (. 9.25 in the above example.)

240 FQR X =8 TQY 3 STEP -1

The body of the loop is performed with X equal to

8, 7, 6, 5, 4, and 3, and X has the value 3 upon leaving
the loop.

456 FPR J =-3 TG 12 STEP 2

'The body of the loop will be performed with J equal to

-3, -1, 1, 3,5, 7, 9, and 11,
upon leaving the loop.

J will have the value 11

50 FQR Z=2TQ -2

The body of the loop will not be performed. Instead, the
computer will proceed to the statement immediately fol-
lowing the corresponding NEXT. The value of Z will
then be 1, which is the initial value (2) minus the step
size (1).

<1iné number > END
999 END
An END‘statement is required in all programs. It must

also be the statement with the highest line number in
the program.

-30-

III
MORE ADVANCED BASIC

3.1 More About PRINT

One of the conveneinces of BASIC is that the format of answers is
automatically supplied for the beginner. The PRINT statement does, how-
ever, permit a greater flexibility for the more advanced programmer who

wishes to specify a more elaborate output.

The teletype line is divided into five zones of fifteen spaces each
by BASIC, allowing the printing of up to five numbers per line. Three
simple rules control the use of these zones.

1. A label, in quotes, is printed just as it appears.

2. A comma is a signal to move to the next print zone,

or to the first print zone of the next line if it has

just filled the fifth print zone.

3. The end of a PRINT statement signals a new line, unless
a comma is the last symbol.

Each number occupies one zone. Each label occupies a whole number of
zones; if it occupies part of a zone, the rest of the zone is filled with

blanks. If a label runs through the fifth zone, part of it may be lost.

The examples on the following pages illustrate some of the various
ways in which the PRINT statement can be used. It should be noted that a
blank PRINT statement causes the typewriter to move to the next line, as

is implied by rule 3 above.

The format in which BASIC prints numbers is not under the control

of the user. However, the following rules may be used to guide the program-

&*

-31-

NEW
NEW PRCBLEM NAME--PRINTER
READY.

100 RA DELETED

10 READ A, B

20 PRINT "FIRST N2. ="A, "SEC@ND No. ="B
30 DATA 2.3, =3.17

40 END . v

RUN o

USER N@. 999995 PROBLEM NAME: PRINTE 6 SEPT. 1964 TIME: 21:52
FIRST N@. = 2.3 SECOND N@. =-3.17

TIME: 0 SECS;

Comment: Notice that with no comma between the
label and the variable name, the label and
the value of the variable appear together.
But since the label and the number (with its
unprinted non-significant zeros) occupies
more than one zone, the second answer is
printed starting in the third zone. This

- .~ is in accordance with rule 2, which says that

SCRATCH Ve.dounot start a new zone until a comma

READY. N : is encountered.

10 FOR I = 1"TD 12
20 PRINT I,

30 NEXT I
40 END
RUN

USER N@. 999999 PRZBLEM NAME: PRINTE 6§ SEPT. 1964 TIME: 21:53
2 3 4 5

7 8 9 10
1

1
5
1 2

1
TIME: O SEGS, =

-32-

J

5 PRINT
6 PRINT
7 PRINT
8 PRINT
10 FER N
15 PRINT
20 eR L
30 PRINT
40 MEXT 1
5 PRINT
60 PRINT
70 NEXT
30 END
RUN

SER Nd. 999999 PRu3BLEN NAMEs: PRINT 5 SEPT. 1964 TIYE: 22:0¢

"THIS PRWGRAY CW@iFUTES AND PRINTS THE NTH PGWLRS™
"«wF THE NUMBERS LESS THAN GR EQUAL T3 N FZR VARIGUS"
"N FRgZM 1 THREUGH 7."

=1 T 7
"N o= "N
=1 T@ N
Iy,

USER NdJ. 999599 PRZBLEM NAMEe: PRINT 6 SEPT. 1964 TIME: 22:09

THIS PREGRAM CZMPUTES AND PRINTS THE NTH P@WERS
OF THE NUMBERS LESS THAN @R EQUAL T@ N FOR VARIOUS
N FR@M 1| THROUGH 7.

N = 1
1

N o= 2
)

N = 3
1

N = 4
1

N = 5
|

N = 5
|
46656,

N = 7
1

4,

8. 27.

16, 81. 256

32, 243, 1024 3125,
64. 729. 4096 15625,
128, 2187, 16384 18125,
823543,

-33.

mer in interpreting his printed results.

1. No more than six significant digits are printed (except for
integers -- see rule 4.)

2. Any trailing zeros after the decimal point are not printed.

3. For numbers less than 0.1, the form X, XXXXX E-Y is used
unless the entire significant part of the number can be printed
as a six decimal number. Thus, .03456 means that the number
is exactly .0345600000, while 3. 45600 E-2 means that the
number has been rounded to . 0345600

4. If the number is an exact integer, the decimal point is not
printed. Furthermore, integers of up through nine digits are
printed in full,

A packed form of output is available by using the character ';''in-

stead of '','', Briefly, whereas',' tells the computer to move to the next

zone for the

next answer, ; tells the computer to move to the beginning

of the next multiple of three characters for the next answer instead of to

the next zone, with six characters being the minimum. One can thus pack

many more

than five numbers on a line if the numbers themselves require

less than a full zone to print. An example of this option is shown on the

next page.

With packed output using the semi-colon, the programmer can print

11 three digit numbers per line, 8 six digit numbers per line, or 6 nine

digit numbers per line. Mixtures of the three types in subsequent lines may

not line up,

as the example shows. The user should be careful about using

the semi-colon with full length numbers which might occur near the end of

a print line,

BASIC checks to see if there are 12 or more spaces at the end

of a line before printing a number there, but some numbers require 15

spaces. The same warning holds for printing labels near the end of the

line, In each case, the last few characters may be lost.

-34-

10 FGR I = 1 T@ 100
20 PRINT I*I*Ij

30 NEXT I
40 END
RUN

USER Ng. 999999 PROBLEM NAME: PRINT 6 SEPT. 1964 TIME: 22:14

1 8 27 64 125 216 343 512 729 1000 1331
1728 2197 2744 3375 4096 4913 5832 6859
8000 - 9261 10648 12167 13824 15625 17576 19683

21952 24389 27000 29791 32768 35937 39304 428175

46656 50853 548172 59319 §4000 68921 74088 79507

85184 91125 97336 103823 110592 117649 125000 132651
140608 148877 157464 166375 175616 185193 195112 205379
216000 226981 238328 2500417 2682144 274625 287496 300763
314432 328509 343000 357911 373248 389017 405224 4218175
438976 456533 474552 493039 512000 531441 551368 571787
592704 614125 636056 658503 681472 704969 729000 753571
778688 8043517 830584 857375 834736 912673 941192 970299
1000000

TIME: 2 SECS.

-35-

3.2 Lists and Tables

In addition to the ordinary variables used by BASIC, there are
variables that can be used to designate lists or tables, For instance, A(7)
would denote the seventh item in a list called A; 'B(3, 7) denotes the item
in the third row and seventh column of the table called B. We commonly
write Ay and B3, 7 for those same items, and use the term subscripts
to denote the numbers that point to the désired items in the list or table.
(The reader may recognize that lists and tables are called, respectively,

vectors and matrices by mathematicians.)

The name of a list or table must be a single letter. The subscripts
may be any expression, no matter how complicated, as long as they have
non-negative integer values. The single letter denoting a list or table
name may also be used to denote a simple variable without confusion. How-
ever, the same letter may not be used to denote both a list and a table in
the same program. The following are acceptable examples of list and table
items, though not necessarily in the same program:

B(I+K) B(I, K) Q(A3, 7), B-C)

The example on the next page shows a simple use of both listis and
tables in the same program. We might think of this program as one that
computes the total sales for each of five salesmen selling three different
goods. The list P gives the price of the three goods. The table S gives
the individual item sales of the five salesmen, where the rows stand for
the items and the columns for the salesmen. We assume that the items
sell for $1.25, 4.30, and 2. 50, respectively, and that salesman 1 sold

40 of itemm 1, 10 of item 2, and 35 of item 3, and so on.

-36-

USEP

10
20
30
40
50
§0
70
30
%0
100
110
120
130
14C
150
2C0
210
2720
230
300

RUN

USER

TCTAL
TOTAL
TSTAL
TZTAL
TEZTAL

TIME

NEs 999999

FIRI =1 T2 3
READ P(I) ’
NEXT 1 ‘
FER I =1 T@2 3
FCR J = 1 TC 5
READ S(I,dJd)

NEXT J

MEXT I

FGR J =1 TZ 5

LET § = O

FGRI = 1 T3 3

LET S = S + P(I) % S(I,d)

NEXT I

PRINT "T@TAL SALES FdR SALESIAN "J,
NEXT J

DATA 1.25, 4.30, 2.50

DATA 40, 20, 37, 29, 42
DATA 10, 16, 3, 21, 8
JATA 35, 47, 29, 16, 33
END

NEs 999999

SALES FdR SALESMAN
SALES FOR SALESMAN
SALES FUR SALESMAN
SALES FJR SALESMAN
SALES F@R SALESMAN

Uts N —

1 SECS,

PROBLEM NAVE:

PRGBLEM NAME: SALES

SALES

-37-

6 SEPT,.

” $|'S

& SEPT,

& 7 A A A

1964

1564

180,5
21143
131,65

166455

169.4

TIEs 23316

TIME: 23:17

By way of explanation, lines 10 through 30 read in the values of
the list P . Lines 40 through 80 read in the values of the table S. .
Lines 90 through 150 compute the total sales for the five salesmen and
print each answer as it is computed. The computation for a single sales-
man takes place in lines 100 through 130. In lines 90 through 150, the
letter I stands for the good number, and the letter J stands for the sales-

man number.

BASIC provides that each list has a subscript running from 0 to 10,
inclusive. Each subscript in a table may run from 0 to 10. If the user
desires to have larger lists or tables, he may use a DIM statement in his
program. For example,

10 DIM A(17)
indicates to the computer that the subscript of the list A runs from 0 to
17, inclusive; similarly,

20 DIM B(15, 20), S(3)
means that the subscripts of B run from 0 through 15 for rows, and 0
through 20 for columns, and that the subscript of the list S runs from 0
through 3. The numbers used to denote the size of a list or table in a DIM
statement must be integer numbers. The DIM statement is used not only
to indicate that lists and tables are larger than 0-10 in each subscript, but
also to allocate storage space in very large programs by telling the com-

puter that only, say, 4 spaces are needed for the list S as shown above.

It should be mentioned that using a DIM statement does not require

the user to use all of the spaces so allocated.

-38-

3.3 Functions and Subroutines

Two additional functions that are in the BASIC repertory but which
were not described in section 2.2 are INT and RND. INT is used to deter-
mine the integer part of a number that might not be a whole number. Thus
INT(7.8) is equal to 7 . As with the other functions, the argument of INT
may be any expression. One use of INT is to round numbers to the nearest
whole integer. If the number is positive, use INT(X'+ .5) . The reader
should verify that this process is equivalent to the familiar process of
rounding. If the number is negative, INT(X - .5) must be used. The reason
ig that INT(-7.8) is -7, not -8, INT always operates by chopping off the

fractional part, whether the number is positive or negative.

INT can be used to round to any specific number of decimal places.
Again, for positive numbers,
INT(100*X + .5)/100

will round X to the nearest correct two decimal number.

The function RND produces a random number between 0 and 1. The
form of RND requires an argument, though the argument has no significance;

thus, we commonly choose a single letter such as X or Z, and use RND(X)

The property of RND is that it produces a new and different random
number each time it is used in a program. Thus, to produce and print 20

random digits, one might write a program like that shown on the next page.

The middle example shows that the next time the program is run,
the same sequence is obtained. To vary the sequence we might ""throw away"
an arbitrary number of random numbers at the start of the program. In the

third example at the bottom of the page, the first 115 random numbers are

-39-

10 FGR I = 1 Td 20
20 PRINT - INTC 10%RNDC(X))3

30 NEXT I
40 END

RUN

USER N@. 999999

9 0 4 1 6 4 9
6 5 9 3 4 o .. 7
TIME: 1 SECS.

RUN

USER Ng@. 999999 . PROBLEM NAME: RANDGM
9 0 4 1 6 4 9
3 5 9 3 4 0 7

TIME: 1 SECS.

10 READ N

20 FOR I =1 TO N

30 LET X = RND(X)

40 NEXT I =

50 Fg@RI =1 T@ 20

60 PRINT INTC 1OXRNDCX))3

70 NEXT I |

80 DATA 115

S0 END

RUN

USER N@. 9959999 PROBLEM NAME: RAND®OM

7 S S 0. S 4 5

2 2 4 2 o 0 0
" TIME: © 1 SECS.

-40-

PREBLEM NAME: RANDOM

6 SEPT. 1564

5 g8
7 7

6 SEPT, 1964
5 8
7 7

6 SEPT., 1564
S S
3 3

3

TIME: 23:33
)

TIME: 23334
. 8

TIME: 23:35
5

discarded. The output shows random digits numbetred 116 through 135,

Additional flexibility is provided in BASIC by three statements

that petmit the use of user-defined functions and subroutines.

The DEF statement permits the user to define a function other than
the standard functions listed in section 2. 2 86 that he doesn't have to keep
repeating the formula for the function each time he uses it in his program.
The name of a defined function must be three letters, the first two of
which are FN . The user thus may define up to 26 functions. The f6Tlow-
ing examples illustrate the form of the DEF statement:
25 DEF FNF(Z) = SIN(Z*P) (where P has the value 3. 14159265/180)
40 DEF FNL(X) = LOG(X)/LOG(10)
Thus, FNF is the sine function measured in degrees, and FNL is the func-

tion log-to-the-base-ten.

‘The DEF statement may occur anywhere in the program. The user
needs to be cautioned that the variable used in the DEF statement must not
be subscripted, and that it is used every time that function is used. Thus,
in a program containing FNF as above defined, it is best not to use the

variable Z elsewhere in the program.,

The expression on the right of the equal sign can be any expres-
sion that can be fit into one line. It could involve many 6ther variables
besides the one denoting the argument of the function. Thus,

60 DEF FNX(X) = SQR(X*X + Y*Y)
may be used to set up a function that computes the square root of the sum
of the squares of X and Y. To use FNX, one might use the following:

10 LET Y = 30
20 LET Sl = FNX(40)

-41-

Of course, Sl would end up having the yalue 50.

It should be noted that one does not need DEF unless the defined
function must appear at two or more locations in the program. Thus,

10 DEF FNF(Z) = SIN(Z*P)

20 LET P = 3.14159265/180

30 FGR X =0 TQ® 90

40 PRINT X, FNF(X)

50 NEXT X

60 END
might be more efficiently written as

20 LET P = 3,14159265/180

30 FGR X=0TQ® 90

40 PRINT X, SIN(X*P)

50 NEXT X

60 END

to compute a table of values of the sine function in degrees.

The use of DEF is lirﬁited to those cases where the value of the
function can be computed within a single BASIC statement. Often much more
complicated functions, or perhaps even pieces of program that are not func-
tions, must be calculated at several different points within the program. For

this, the G@SUB statement may frequently be useful.

The form of a GPSUB st‘atement is illustrated as follows:
25 GQ@SUB 180
The effect of the GOSUB is exactly the same as a GQTQ except that note is
taken by the computer as to where the G@SUB statement is in the program.
As soon as a RETURN statement is encountered, the computer automatical-
ly goes back to the statement immediately following the G@SUB. As a skele-
ton example, |
100 LET X.=.3

110 G@SUB 400
120 PRINT U, V, W

(continued on next page)

-42-

(continued)

200 LET X =5

210 G@SUB 400

220 Ll?T Z=U+ 2%V + 3%W

400 LET U = X*X

410 LET V = X¥X*X

420 LET W - X¥X*X*X + X*X*X + X*X + X

430 RETURN

|

When statement 400 is entered by the G@SUB 400 in line 110, the computa-
tions in lines 400, 410, and 420 are performed, after which the computer
goes back to statement 120, When the subroutine is entered from statement

210, the computer goes back to statement 220.

The user must be very careful not to write a program in which a
GQ@SUB appears inside a subroutine which itself is entered via a G@SUB; it

just won't work,

As a complete illustration, the next page contains a program that
determines the Greatest Common Divisor of three integers‘, using the
celebrated Euclidean algorithm as a subroutine. The subroutine is contain-
ed in lines 200 to 310, and is applied to two integers only. The main routine
applies this subroutine to the first two integers, and then to the GCD of
these and the third integer. The GCD is then printed, and a new case con-

sidered.

3.4 Some Ideas f_o_r More Advanced Prog{ammers

An important part of any computer program is the description of
what it does, and what data should be supplied. This description is com-
monly called documentation. One of the ways a computer program can be
documented is by supplying remarks along with the program itself, BASIC

provides for this capability with the REM statement. For example,

-43-

USER N@. 999999 PROBLEM NAME: GCD3NQ 6 SEPT. 1964 TIME:s 23327

10 PRINT "A", "B", "C", "GCD"

20 READ A, B, C

30 LET X

40 LET Y

50 GOSUB

60 LET X

70 LET Y |

80 G@SUB 200 =

90 PRINT A, B, c, G

100 G8 T@ 20 - -

110 DATA 60, S0, 120

120 DATA 38456, 64872, 98765

130 DATA 32, 384, 72

200 LET Q@ = INT(X/Y)

210 LET R = X = Q*Y

220 IF R = O THEN 300

230 LET X -
Y
2

S ATERTEE S HTERTR
ocomoWwr»

240 LET
250 G2 T
300 LET G
310 RETURN
999 END

RUN

USER Ng. 999999 PROBLEM NAME: GCD3N@ 6 SEPT. 1964 TIME: 23:28

A B c GCD
60 - - 90 120 30
38456 64872 98765 1
32 o 38412 g

TIME: 1 SECS.

-44-

" REM THIS PROGRAM S@GLVES LINEAR EQUATIONS QF THEFORM
REM Al*X1 + A2%X2 = Bl, A3*X1 + A4*X3 = B2. THE DATA

"REM MUSTFIRST LIST THEMGR VALVES @F AIN RDER, THEN
REM ' THEDESIRED RIGHT HAND SIDES F@QR WHICH SO LUTIONS
REM . ARE NEEDED

GLp W =

might reasonably be added to the original example for solving linear equa-
tions. For longer programs, more detailed REM's may be needed, espe-
cially ones spotted throughout the program to remind you what each of the
parts does. Each user quickly learns how much documentation he needs to
permit him to understand his program, and where to put REM statements.
But it is certain that REM's are needed in any saved program. It should be

emphasized that REM's have absolutely no effect on the computation.

Sometimes a program will have two or more natural ending points.
In such a case the programmer might use a GOTQ® to the END statement.
Such a statement can be replaced by a ST@P, with nothing following the
word STOP, Thus,

400 GOQTQ® 999
710 GOTO® 999

999 END
may be replaced by

400 STQP
710 STQP
999 END
BASIC allows G@ T® and IF-THEN statements to point to REM and

DATA statements. The effect is to perform a vacuous statement having

~45-

that number and proceed to the next numbered statement. In the case of
DATA statements, the END sta.tement nrught ‘eventually be rea.ched How-
ever, for REM statements the programmer might deliberately have his
GQTQ's point to REM statements, the remark part identifying that part of

-the program,

One of the ‘nvmst irhpdi'tatlt“ é.nd difficult problems in computing is
that of round-off error. It exerts its influence in subtle ways, and some-
times in ‘w‘a‘.ys‘. hot so subtie; A full treatment of the effects of round-off
error is beyond the scope of this tné.nua.l, but one fairly common situation

will be dis ch’sAsred.

Most programmers eventually write or encounter a program some-

thing like this:

5 LETS=0

10 LETX-=0

20 LETS=S+X ‘
30 IF X-»>=2 THEN 60
40 LET X=X+.1

50 GQ TQ 20

60 PRINT S

70 END
for computing the sum of all the nonénegative multiples of . 1 less than or
equal to 2. The correct answer is 21, but invariably the program will pro-
duce 23,1 as the answer. What is wrong? Round-off has reared its ugly
head high enough for us to see. The explanation is that the computer works
in the binary number system, and cannot express .l exactly. Just as 1/3
cannot be expressed in terms of a single decimal number, neither can .l
be expressed in terms of a single binary number. It turns out that .l in
the computer is a number very slightly less than . 1. Thus, when the loop
in the above example has 'beert ﬁeffortned 21 times, the value of X is not

2 exactly, but is \'refy :SIightly less than 2. The IF statement in line 30

-46-

determines that the final value, exactly 2, has not yet been achieved or ex-

ceeded, and so calls for one more passage thraugh the leep.

If the programmer had known that the computer treats , 1 as a
number slightly less, he could have compensated by writing 1, 95 in place
of 2 in statement 30. A better way rests an the fact that the camputer per-
forms exactl_y correct arithmetic for integers, The user may thus count
the number of times through the loop with intagers, The esamgle may be
rewritten as follows:

5 LET S=0
10 LET N=0
20 LET S=S+ N/l10
30 IF N >»= 20 THEN 60
40 LET N=N+1
50 GQTQ® 20
60 PRINT S
70 END

Better still, a FQR statement can shorten the program to

100 LETX=0
20 FQR N=1TQ 20
30 LETS=S+N/10
40 NEXT N

50 PRINT S

60 END

One of the most exasperating problems confronting programmers is
that of a fairly long and complex program that looks as if it should work
simply refuses to do so, (Presumably, all errors of form have been detect-

ed and removed,) The locating and removing of logical errors is called

debugging, and the methods to be used depend on the nature of the program =

and also on the programmer himself. An important part of debugging is
intuition, but it is possible to suggest some approaches that might be use-

ful in many cases.

The first thing to do with an apparently incorrect program is

- 47 -

to check vetry caréfully the method used. If that doesn't uncover the bug,
then examire very carefully your programming to see if you have mixed
up any of thg vavr.ia!:blse_}s\.‘l It1§ oftend1ff1cu1t to spot such errors because
} one. te}nds»tc;jéegi.iﬁvg_'ézi-qgfg.z’ﬂ‘wﬁaé he expects to see rather than what is

there.

LA T

Another fnethod that’is extremely useful in providing clues as to the
nature and location of the bug or bugs is tracing. In BASIC this tracing may
be accomplished by inserting superfluous PRINT statements at various
places in your program to print the values of some of the intermediate
quantities. When the program ig,"tyh'e:n_ RUN, the values of these intermediate

quantities often suggest the exact nature of the error. When the program

has been debugged and is working properly, these statements are removed.

There aré some niatters that do not affect the correct running of
programs, but perta.iﬁ to style and ;;eal‘tne‘ss. For instance, as between two
or more similar ways to prepare a part of a program, one should select
the one that is most easily understood unless there is an important reason

not to do so.

‘ More_ ex.éériennjc;eci _p;_og:amﬁerg will tend to group the data in DATA
sfafetﬁgnt‘ls s.o’t.ha.t 1tre£1ects ,the READ statements that correspond. The
first ex,}ampile on 1ine$,r _;_equaftigﬁs“ represents bad style, but was done pur-
po‘seﬂly v_to illus‘_tﬁr;aftyke tha.t opé ca.n a.!z_'bi'iv:’ra.rily group the data in the DATA

statements,

‘One tends aftet ‘a whilé'to plice his data statements near the end
of the program, or near the beginning, but at least in one group to avoid

confusing himself with DATA statements spread throughout the program.

" 148-

Seme programmers also tend to give the END statement a number like

9999 te insure that it will be the one with the highest number.

Ne doubt the user will be able to devise other ways to make a pro-
gram neat and readable. But again, the important consideration in style is
to program in a way that makes it more undérptandable and useful to both

oneself and others in the future.

-49~

R T IV

CARDBASIC

4.1 Purpose
| A cafd-operéted (on;line) §er sion of BASIC is available and pro-
vides the following advantages over teletypes: |
(1) Longer programs are:allowed. : .
(2) There is no limit on DATA,
(3) Output is on the highspeed printer. This is much faster and
allows 8 numbers per line in the normal format, and up to

18 in packed format.

(4) Matrix subroutines are available,

4.2 How to Prepare a Deck.

You punch on cards a program almost exactly the way you would
type it on a teletype, with one instruction per card. Due to the fact that
there are fewer symbols on a key-punch, the following modifications are

needed:
In PRINT, use single quote (') in place of quote ('').
For the relational symbols, use the following three letter equivalents,

EQU
LSS

GRT
LQU
GQU
NQU

/\ .
SOV

In place of a semi-colon in a PRINT statement, you must use a

5-8 multiple punch.

4.3 Differences in Operation.

Do not type DATA as part of your program deck. Instead, add to the

-50-

end of your program (after the END card) a data deck. There are no line
numbers for data, and the word DATA should not appear. Just a list of
numbers, separated by commas. You may put as many or as few numbers

on one card as you wish,

There is a new instruction PAGE. This starts a new printed page

for the output.

There is a series of matrix subroutines available as part of the

new instruction MAT. See the next section for a detailed description.

" You have much larger ‘matrices available, The limitations are:
(1) At most 1000 components in any one vecfor or list,
(2) No matrix or table dimension may exceed 500,

(3) The total number of components in all vectors and
matrices (lists and tables) may not exceed 4000,

~Matrices must start with component 1 (not 0).

4.4 MAT

Matrix subroutines are available in CARDBASIC. They are called
by means of the MAT instruction. Observe the following restrictions: (1)
A matrix in an MAT instruction must have had a DIM declared. (2) While
the same matrix may appear in an MAT and an arithmetic statement, it

must occur for the first time in an MAT statement.

Allowed MAT operations are:

MAT READ A(M, N) Read one matrix, dimensions shown.
MAT PRINT A Print one matrix.
MAT C=A+3B Add two matrices,

MAT C=A-B Subtract matrices.

(continued on next page)

51~

MAT C=A*B Multiply matrices,

MAT C = ZER(M, N) Introduce a 0 matrix, dimensions shown.

"MAT C = C@N(M,N) Matrix of all 1's, dimensions shown.
MAT C = IDN(N) Identity matrix, dimension shown.
MAT C = TRN(A) Transpose.

MAT C=INV(A) Inverse.
MAT C = (k)*A Constant multiple, note parenthesese.

In appropriate places, vectors may be substituted for matrices,. E. g.,
MAT READ A(7) will read a 7-component column vecter, MAT PRINT
prints all vectors as row-vectors, for convenience, M and N may be form-

ulas. Thus one has the possibility of writing

DIM A(20,20)
READ M
MAT READ A(M, M)

This allows A to be any square matrix up to 20 x 20, its actual dimension
specified in the data. If MAT PRINT A is followed by a 5-8 multiple punch,

matrices will be printed in the '";" packed format.

-52-

A%

APPENDICES

APPENDIX A -- Error Messages

The various error messages that can occur in BASIC, together

with their interpretation, are now given:

Error Message

DIMENSI®N TQ® @ LARGE

ILLEGAL CQNSTANT

ILLEGAL FGRMULA

ILLEGAL RELATION
ILLEGAL LINE NUMBER
ILLEGAL INSTRUCTIQN

ILLEGAL VARIABLE

INCORRECT FQRMAT

END IS N@QT LAST

N@ END INSTRUCTI@N

Interpretation

The size of a list or table is too large
for the available storage. Make them
smaller, (See Appendix B.)

More than nine digits or incorrect form
in a constant number, ‘

Perhaps the most common error mes-
sage, may indicate missing parentheses,
illegal variable names, missing multiply
signs, illegal numbers, or many other
errors. Check the statement thoroughly.

Something is wrong with the relational
expression in an IF-THEN statement.
Check to see if you used one of the six
permissable relational symbols.

Line number is of incorrect form, or
contains more than five digits.

- Other than one of the fifteen legal BASIC
instructions has been used following the
line number.

An illegal variable name has been used.

The format of an instruction is wrong,
See especially IF-THEN's and FQR's.

Self-explanatory, it also occurs if
there are two or more END statements
in the program.

The program has no END statement.

-53-

N@ DATA

UNDEFINED FUNCTIQN
UNDEFINED NUMBER
PROGRAM TGG LONG
.TQKD MUCH DATA

TG@ MANY LABELS
T@Q® MANY LQQ@PS

N@T MATCH WITH FQR

FOQR WITHQUT NEXT

CUT PROGRAM QR DIMS.

SUBSCRIPT ERRQR

ILLEGAL RETURN

There is at least one READ statement in
the program, but no DATA statements.

A function such as FNF () has been used
without appearing in a DEF statement.
Check for typographmal errors.

The statement number appearing in a GO
T® or IF-THEN statement does not appear
as a line number in the program.

Either the program itself is too long for
the available storage, or there are too
many constants and printed labels.

(See Appendix B.)

There is too much data in the program.
(See Appendix B.)

The total length of all printed labels in
the program exceeds the limit. (See
Appendix B.)

There are too many FOR-NEXT combin-
ations in the program. The upper limit
is 26. (See Appendix B.)

An incorrect NEXT statermeént, perhaps
with a wrong variable given. Also, check
for incorrectly nested FQR statements.

A missing NEXT statement, This mes-
sage can also occur in conjunction with
the previous one,

Either the program is too long, or the
amount of space reserved by the DIM
statements is too much, or a combina~
tion of these. This message can be elim-
inated by either cutting the length of the
program, or by reducing the size of the
lists and tables.

A subscript has been called for that lies
outside the range specified in the DIM
statement, or if no DIM statement applies,
outside the range 0 through 10,

Occurs if a RETURN is eacountered be-
fore the first G®SUB during the running
of a program. (Note: BASIC does not re-
quire the G@SUB to have an earlier state-
ment number -- only to perform a G@SUB
before performing a RETURN.)

-54-

APPENDIX B -- Limitations on BASIC

There are some limitations imposed; on BASIC by the limited amount

of computer storage. Listed below are some of these limitations, in partieu-

lar, those that are related to the error messages in APPENDIX A. The read-

er should realize that while the BASIC language itself is fixed, in time some

of these limitations may be relaxed slightly.

Item

Length of program

Constants and printed labels
Data

Length of printed labels

FQ@R statements
G® T® and IF-THEN statements

Lists and Tables

Limitation ‘

Difficult to relate to the BASIC program,
but in general about two feet of teletype
paper filled with BASIC statements is
about it.

The total number of constants and differ-
ent printed labels must not exceed 175,

There can be no more than 300 data
numbers. :

The total length of printed labels cannot
exceed something slightly less than 600
characters.

There can be no more than 26 FQR state-
ments in a program.

The total number of these statements
combined cannot exceed 80.

The total number of elements in all the

lists and tables combined cannot exceed
1500.

~55-

APPENDIX C -- Summary of the 15 BASIC Statements

In this summary it is assumed that all statements begin with a line

number. Following each is one example.

LET LET <variable} = {expression)

10 LETX1=Y+2Z+(Z /A-B7TDIl)

READ READ (variable) , (variabley , ..., (yariabled
10 READ X, Y, Z , Al, Q(I, J)

DATA ~ DATA <1;1umber> s <r‘1‘umber> s coe s <pumber>
10 DATA 1, 2, -3, 7, 123.479, -2.35E-4
PRINT PRINT <1abe1> , or <labe1> <expression> , Or
expression

10 PRINT "SINE", "X = " X(I, K), A + B*CQ®S(Y)

G@T® G@TQ) <1ine numBer>
10 GQTQ 17
IF-THEN IF <exp‘ression> éelationa1> <expre sion> THEN

line numbe1>
10IF X+ Y > 0 THEN 419
FOR FOR <unsubscripted va.riable> = <expression> T®
<expressio;> STEP '<expressior>f
I0FQRI=1TQ 17

10 FGR X1 =0 TQ® 7 STEP 0.5

NEXT NEXT (unsubscripted variable)
10 NEXT X1

(continued on next page)

-56-

(continued)

END _

STOP

DEF

G@SUB

RETURN

DIM

REM

END

10 END
STQP

10 STQP

DEF FN <1etter> ((unsubscripted variable)) = <expressior?

10 DEF FNG(Z) =1+ SQR(1 + Z * Z)

GOQSUB <line number>

10 G@SUB 110

RETURN

10 RETURN

DIM <1etter> (<integer>), or (letter> (<integei> ’

integer))

10 DIM A(17), B(3, 20)

REM <any string of characters wha.tsoever>

10 REM THIS IS THE END OF APPENDIX C

-57-

NOTES

~-58~

	front-cover
	inside-front-cover
	i
	ii
	iii
	iv
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58

