
BASIC

Dartmouth College

Computation Center

1 October 1964

BASIC

A Manual for BASIC, the elementary

algebraic language designed for use

with the Dartmouth Time Sharing System.

1 October 1964

Copyright 1964 by the Trustees of
Dartmouth College. Reproduction for
non-commercial use is permitted provided
due credit is given to Dartmouth College.

The developm~nt of the BASIC Language.
and of this Manual, has been supported
in part by the National Science Foundation
under the terms of Grant NSF GE 3864.

TABLE OF CONTENTS

I What is a Program 1

II A BASIC Primer 3

2. 1 An Example 3

2.2 Expressions, Numbers, and Variables 8

2.3 Loops 12

2.4 Use of the Time Sharing System 14

2.5 Errors and Debugging 21

2.6 Summary of Elementary BASIC Statements 26

III More Advanced BASIC 31

3. 1 More About PRINT 31

3.2 Lists and Tables 36

3.3 Functions and Subroutines 39

3.4 Some Ideas for More Advanced Programmers 43

IV Card BASIC 50

4.1 Purpose 50

4.2 How to Prepare a Deck 50

4.3 Differences in Operation 50

4.4 MAT 51

V Appendices 53

A. Error Stops 53

B. Limitations on BASIC 55

C. The 15 BASIC Statements 56

I

WHAT IS A PROGRAM?

A program is a set of directions, a recipe, that is used to provide

an answer to some problem. It usually consists of a set of instructions to

be performed or carried out in a certain order. It starts with the given

data and parameters as the ingredients, and ends up with a set of answers
, '

as the cake. And, as with ordinary cakes, if you make a mistake in your

program, you will end up with something else -- perhaps hash!

Any program must fulfill two requirements before it can even be

carried out. The first is that it must be presented in a language that is

understood by the" computer. II If the program is a set of instructions for

solving linear equations, and the" computer" is a person, the program will

be presented in some combination of mathematical notation and English. If

the person solving the equations is a Frenchman, the program must be in

French. If the "computer" is a high speed digital computer, the program

must be presented in a language the computer can understand.

The second requirement for all programs is that they must be

completely and precisely stated. This requirement is crucial when dealing

with a digital computer, which has no ability to infer what you meant -- it

can act only upon what you actually present to it.

We are of course talking about programs that provide numerical

answers to numerical problems. To present a program in the English

language, while easy on the programmer, poses great difficulties for the

computer because English, or any other spoken language, is rich with

-1-

ambiguities and redundancies, those qualities which make poetry possible

but computing impossible. Instead. you present your program in a language

that resembles ordinary mathematical notation, which has a simple vocabu­

laryand grammar. and which permits a complete and precise specificatioTL

of your program. The language that you will use is BASIC (~eginner! s ~ll

purpose ~ymbolic ..!,nstruction fode) which is at the same time precise,

simple, and easy to understand.

Your first introduction to the BASIC language will be through an ex­

ample. Next you will learn how to use the Dartmouth Time Sharing System

to execute BASIC programs. Finally, you will study the language in more

detail with emphasis on its rules of grammar and on examples that show

the application of computing to a wide variety of problems.

-2-

II

A BASIC PRIMER

Z. I An Example

The following example is a complete BASIC progratl) for solving

two simultaneous linear equations in two unknowns with possibly several

different right hand sides. The equations to be solved are

A3XI + A~Z = BZ

Since there are only two equations, we may find the solution by the

formulas

Xz = (A IBZ - A3B I)

(AI A 4 - A3~)

It is noted that a unique solution does not exist when the denominator

Al A4-A3AZ is equal to zero. Study the example carefully - - in most cases

the purpose of each line in the program is self-evident.

10 READ AI, AZ, A3, A4
15 LET D = Al * A4 - A3 * AZ
ZO IF D = 0 THEN 65
30 READ BI, BZ
37 LET Xl = (BI*A4 - BZ * AZ) I D
4Z LET XZ = (Al * BZ - A3 * BI) ID
55 PRINT Xl, XZ
60 GO T(/) 30
65 PRINT liN(/) UNIQUE S(/JLUTI(/)N"
70 DATA 1, Z,4
80 DATAZ, -7,5
85 DATA 1, 3, 4, -7
90 END

-3-

We immediately observe several things about the above sample

program. First, all lines in the program start with a line number. These

serve to identify the lines in the program, each one of which is called a

statement; thus, a program is made up of statements, most of which are

instructions to be performed by the computer. These line numbers also

serve to specify the order in which the statements are to be performed by

the computer, which means that you could type your program in any order.

Before the program is run by the computer, it sorts out and edits the pro­

gram, putting the statements into the order specified by their line numbers.

(This editing process makes extremely simple the correcting and changing

of programs, as will be explained in later sections.)

The second observation is that each statement starts, after its

line number, with an English word. This word denotes the type of the

statement. There are fifteen types of statements in BASIC, nine of which

are discussed in this chapter. Of these nine, seven appear in the sample

program above.

The third observation is that we use only capita11etters, and that

the letter "Oh't is distinguished from the numeral" Zero" by having a diag­

onal slash through the "Oh". This feature is made necessary by the fact

that in a computer program it is not always possible to tell from the con­

text whether the letter or the number was intended unless they have a dif­

ferent appearance. This distinction is made automati<::ally by the teletype

machine, which also has a special key for the number "One" to distinguish

it from the letter" Eye" or lower case" L".

A fourth observation, though perhaps less obvious than the first

three, is that spaces have no significance in BASIC (except in messages

-4-

to be printed out as shown in statement number 65.) Thus, spaces may be

used, or not used, at will to "pretty up" a program and make it more read-

able. For huftance, statement 15 could have been typed as

15 LETD=Al*A4-A2*A3

a fully equivalent though less readable form.

Turning now to the individual statements in th.e program, we observe

that the first statement, numbered 10, is a READ statement. When the

computer encounters a READ statement while executin~ yCftit ptC1gfa:m, it

will cause the variables whose name s are listed after the :READ to be given

values according to the. next available numbers in the DATA statements.

Thus, in the example, when statement 10 is first encountered, it will cause

the variable Al to be given the value 1, the variable A2 to be given the value

2, the variable A3 to be given the value 4, and the variable A4 to be given

the value 2.

The next statement, numbered 15, is a LET statement. It causes

the computer to compute the value of the expression AIA4- A3AZ, ,

and to assign this value to the variable D. The expression computed in a

LET statement can range from the very simple (consisting of only a single

variable) to the very complex. The rules for forming these expressions are

gi ven in detail in the next se ctioIl, but for now we point out that:

1. Variable names consist of a single capital letter
possibly followed by a single digit;

2. The symbol * (asterisk) is always used to denote
multiplication;

3. Parentheses may be needed to specify the order of the
computation because the entire expression must appear
on a single line;

-5-

4. No subscripts or superscripts as such are permitted,
also because the expression must appear on a single line.

In line 20 the computer asks a question: "te t> equal to O?" If the

answer is yes, then the next statement to be executed by the computer is

the one numbered 65. If the answer is no, the computer continues to state-
. l'

ment 30, the next highetr'~numbered.nonej·la.ftelt ZOo
r

In line 30 the computer causes the variables Bl and B2 to be given

the values next appearing in the DATA statements elsewhere in the program.

Since the first four data have already been used up, Bl is given the fifth

value -7, and B2 is given the sixth valueS.

The statements numbered 37 and 42 complete the computation of

the solution, Xl and X2. Notice that the denon'linatoi' has been previously

evaluated as the variable D. Thus it is not necessary to repeat the formula

given in statement 15. Notice also how parentheses are used to specify that

the numerator of the fraction consists of the entire quantity Bl*A4 .. B2*A2.

If the parenthesesihadbeen omitted by mistake, the expression computed

B2*A2
would have been Bl*A4 - D ' which is incorrect.

Now that the answers have been computed, they will be printed out

for you to see when the computer encounters statement 55. Notice that the

comma is used to separate the individual items in the list of quantities to

be printed out at that time.

Having completed the computation" statement 60 tells the computer

to execute next statement number 30. We observe that the second encounter

of statement 30 will cause the variables Bl and :82 to be given the values

1 and 3, respectively, the next available ones in the DATA statements.

After completing the computation fQr the second eet of right hand

'~4f1Hi .,,-qd printing the answers, the computer will give the last values, 4

",wi ... 7. tQ ta~ variabl~ Bland B2., compute and print the third set of an ...

,",we;., ~nti tbtap .. top, because there is no more data when the READ state ...

ment 30 is encountered for the fourth time.

If D, the determinant of the coefficienta, is zero, we know that the

set of equations does not have a unique solution. In thh ca,e, statement 2.0

will cause the computer to execute statement 65 nelC~. Statement 65 is again

a PRINT statement, but ir:J,stead of numerical anl!lwerl beil\g f'~i~tfild out, it

will produce the English message

NCb UNIQUE S<]>LUTICbN

We could have used any other recognizable melsage between the two quota­

tion marlcs that would have indicated to us that no unique solution was pos­

sible for the given coefficients.

After printing the warning message the computer will execute next

statement 90, an END statement, which etops the r~ini of the program.

(The running will also be stopped when a READ statement is encountered

for which there is not sufficient data.) It is extremely important to remem­

ber that all programs must have an END statement, and that it must always

be the highest numbered statement in the program. The intervening DATA

statements are never executed by the computer; therefore, they may be

placed anywhere in your program. The only requirement is that END be

t~e highest numbered statement, including DATA statements, and that

DATA statements are numbered in the order in which you wish the data to

be used by the various READ statements in your program.

-7-

Z.Z ~ressions, Numbers, ~ Variables

Expressions in BASIC look like mathematical formulas, and ~re

formed from numbers, variables, operations, and functions.

A number may contain up to nine digits with or without a decimal

point, and possibly with a minus sign. For example, the following numbers

are acceptable in BASIC:

5 Z.5 lZ3456789 • lZ3456789 -lZ3456

To extend the range of numbers, a factor of a power of ten may be attach­

ed, using the letter E to stand for "times ten to the power". Again, the

following examples are all acceptable forms for the same number in BASIC,

-IZ.345 -lZ345 E-3 -.IZ345EZ -IZ345000E-6 -.0001Z345ES

It should be noted, however, that the E notation cannot stand alo~;; 1000

may be written 10EZ or lE3 but ~ E3 (which looks like a variable and is

so interpreted in BASIC~) It should also be noted that. 000123456789 is il­

legal, and must be written as, say, • IZ3456789E-3 .•

A variable in BASIC is denoted by any letter, or by any letter fol­

lowed by a digit. For instance, these are acceptable variable names:

A x NS . Xo K9 (1)1

The difference between 0 and QJ" and between I and 1 should be observed.

Thus, IO is acceptable while any of 1~, l,~, and 10 are not (the last one is

the number ten.)

A variable in BASIC stands for a number, usually one that is not

-8-

known to tlle .pr·ogrammer at the time the program was written. Variables

.. re given Qr a..-signed values by LET and READ statements. The value so

assigned will not change until the next time a LET or READ statement is

encounterf!)dthat names that variable.

Expressions are formed by combining variables and numbers to­

gether with arithmetic operations and parentheses just as in ordinary mathe-

mati cal formulas. The symbols

+ / t
stand for "plus", Ilminus", Iltimes ll , Ildivided by", and lIto the powerll, (f)

respectively. Parentheses are used in the usual way, as in

(AI + X)*(B - Ci'D7)

Because expressions must be presented as a single line, parentheses are

often required where they might not be needed in ordinary mathematical

notation. Thus,

A-B

C

is written as (A - B)/C

to show that the entire quantity A - B is to be divided by C. Omitting the

parentheses would leave A - B/C, which is interpreted as A - (B/C) .

Another example that arises quite often is

A which is written as { A/(B*C)
or

A/B/C

A/B*C Will be interpreted the same as (A/B)*C or (A*C)/B .

(f) The operation actually works with the absolute value of the left

argument. Thus X l' Y is interpreted as I X I t Y • If X could be negative

and you want xt 3 , you should write X*X*X or X*xt 2

-9-

The way that expressions are interpreted can be summarized in

terms of several rules, which correspond to standard mathematical nota-

tion. These are:

1. The expression inside a parentheses pair is computed
before the parenthesized quantity is used in further
computations.

Z. Raising to a power is computed before multiply and/or
divide, which in turn are computed before addition and/or
subtraction, in the absence of parentheses.

3. Several multiply-divides, or several addition-subtractions,
are computed from left to right.

The first rule tells us that in (A + B)*C we compute A + B first,

then multiply the result by C, an obvious interpretation. The second rule

tells us that in A + B*C1' D we first compute C i D , then multiply by

B, and finally add to A. An equivalent expression is A + (B*(Ct D» .

The third rule states that A - B - C is interpreted as (A - B) - C and ~

as A - (B - C) . Applied to multiplies and divides, the rule tells us to

interpret A/B/C as (A/B)/C and ~ as A/(B/C). For raising to a

power, At B f C means (A tB) t C or, equivalently, A l' (B*C) . If you

intend A l' (B f C) , you must use that form.

In addition to the arithmetic operations, some of the more common

standard functions are available. For example, to compute 11 + XZ

you would use SQR(I + X t Z) . The other standard functions are used in

this same way, that is, the BASIC name of the function followed by the

argument enclosed in parentheses.

-10-

SIN(X)

C0S{X)

TAN(X)

ATN(X)

EXP(X)

A-BS(X)

L~G(X)

SQR(X)

Purpose

sine of X

cosine of X
X mu.t be expressed
in radian measure.

arctaD.gent (in radians) of X

natural eJC;ponential of X, eX

absolute valu.. of X, IX I
natural logarithm of Ixi
square root of \Xl

(Two other functions, RND(X) and INT(X), are explained in section 3. 3)

The argument of a function may be any expression, no matter how compli-

cated. For example

SQR(Bt 2.- 4*AlIcC) - 17

Z - EXP(Xl + L~G(A/Xl » * TAN(A,)

SQR(SIN(Q) t 2. + C~S(Q)1" 2.

are all acceptable in BASIC.

The use of the L~G and SQR functions require s a word of caution.

In each case the argument is made positive before applying the function,

since neither function is defined for negative arguments. Many times,

though not always, an attempt, to have the computer extract the square

root of a negative number implies a fundamental error in the program. The

user should be forewarned that such occasions, hopefully rare, may there-

fore be unnoticed.

The user may define new functionljJ uaillg the DEF statement, which

is discussed in section 3.3,

-11-

2.3 Loops

Perhaps the single most important programming idea is that of a

loop. While we can write useful programs in which each statement is per-

formed only once, such a restriction places a substantial limitation on the

power of the computer. Therefore, we prepare programs that have portions

which are performed not once but many times, perhaps with slight changes

each time. This "l,ooping back" is present in the first program, which can be

used to solve not one but many sets of simultaneous linear equations having

the same left hand sides.

Making tables of,' say, square roots is another example where a loop

is necessary. Suppose that we wish to have the computer print a table of

the first hundred whole numbers and their square roots. Without loops, one

can easily see that a program would require 101 lines, all but the last hav-

ing the form:

17 PRINT 17, SQR(17)

And if one wished to go not to 100 but to 50 only, a new program would be

required, Finally, iJ one wanted togo to 10,000 the program would be ab-

surd even if someone could be found to write it all down.

We notice that the basic computation, in this case a very simple

printing, is practically the same in all cases -- only the number to be print­

ed changes. The following program makes use'of a loop.

10 LET X = 0
20 LET X = X + 1
30 PRINT X, SQR(X)
40 IF X <= 10d THEN 20
50 END

Statement 10, which gives to X the value 0, is the initialization of the loop.

Statement 20, which increases the value of X by unity, is the statement that

'.;;12-

insures that the loop is not merely ~epeting exactly t~e same thing -- an

infinite loop! Statement 30 is the body of the loop, the computation in which

we are interested. And statement 40 provides an exit from the loop after

the desired computation has been completed. All loop. contain these four

characteristics: initialization, modification each time through the loop, the

body of the loop, and a way to get out.

~ecause loops are so important, and beca\tft loops of the type shown

in the exatnple arise so often, BASIC provides two statements to enable one

to specify such a loop much more concisely. They are the FOR. and the

NEXT statements, and would be used as follows in the example above:

10 Fct>R X = 1 Tct> 100
2.0 PRINT X, SQR(X)
30 NEXT X
40 END

Statement 10 contains both the initial and final values of X. Statement 30

specifies that X be increased to its next value. In this case, the value by

which X is increased each time is implied to be unity. If instead we wished

to print the square roots of the first 50 even numbers, we would have used

10 Fct>R X = 2 Tct> 100 STEP 2
20 PRINT X, SQR(X)
30 NEXT X
40 END

Omittip,g the STEP part is the same as assuming the step-size to be unity.

To print the square roots of the multiples o~ 7 that are less than

100, one might use for line number 10

10 FQ>R X ,= 7 TQ> 100 STEP 7

The loop will be performed for all values of X that are less than or equal

to 100, in this case, for X equal to 7, 14, ..• , 91, 98.

-13-

2. 4 ~ ~ ~ Time Sharing System

The Dartmouth Time Sharing System consists of a large central
.;

computer with a number of input-output stations (currently, model 35 tele-

type machin~s.) Individuals using the input-outplit'.:stations are able to

"share" the use of the computer with each other in such a way as to suggest

that they each have sole use of the computer. The teletype machines are

the devices through which the ,user communicates with the computer.

Teletype machines are like ordinary typewriters, with certain mod-

ifications to make them suitable for transmitting messages over telephone

lines. They have a nearly standard keyboard for letters and numbers, the

most notable differences being that all1etters are capitals and that the

numeral one is not the same as the letter L. In addition there are several

special characters which can be typed using either of the two "SHIFT" keys;

these include the following special symbols that are used in BASIC programs:

+ * / =

>

There is a "CTRL" key that is related to standard teletype communications,

but aU the control symbols are igllored by BASIC. A layout of the keyboard

is shown on the following page. It should be studied until the locations of

these symbols are familiar.

There are three special keys that the user tnust know about.

"RETURN" , which is located at the right hand end of the third
i row of keys, is the ordinary carriage return. More
importantly, the cotnputer ignores all typed lines
until this key is pressed. It must be used after each
line in a BASIC program, and after each line which

-14-

&.&.I a.: _ @Z·'(Du. a.::t :::E:

'01 "··@:·®8'" . . zl±: . ~ '-. ::;

8 0 8 0 ~ 0
G (8 .ce CO _
8(880)

1 ... 8 0°8
8 G G G,' I

1 8 (f) .. ~ G
i 8 (88 G

8 @3 ~ G -'----"
8G~G
8 8 G m ®
(3 0 CD

-15-

" . .,
~ ,

is a communication to the system.

which is located on the letter "Oh" key while the
"SHIFT" key is depressed. era8e.8 the last character
typed. If the user notices that he has just mistyped
a letter or a symbol, he pushes thts key, which tells
the computer to ignore the previously typed character.
Pushing the backwards arrow more than once will
delete the same number of characters, but only to the
start of the line. For example, the sequence

ABCWT~~-DE will appear as ABCDE

while

will appear as

200 LET X = Y

"ALT MODE", located at the left hand end of the third row of keys,
is pressed to delete an entire typed line. It may be
used at anytime before a'''RETURN'' is. used.

Besides the keyboard itself, there are four buttons that are needed

to operate the teletype machine.

BUTTON'

"ORIG" the leftmost
of six small
buttons on the
right.

"C LR" next to "ORIG. "

"LOC LF" ,to the left of
the space bar.

"BUZ-RLS" , rightmost
of the six small
buttons.

FUNCTION

Turns on the teletype machine.

Turns off the teletype.

Feeds the paper to permit tearing off.

Turns 'off the buzzer, which goes on
when the paper supply is low.

All other buttons and gadgets. including the telephone dial, are not con-

nected.

-16-

WhEm you sit down at a teletype machine, you must start by

typing

HELLC1>

followed, as always, by a "RETURN". This starts the so-called HELLC1>

sequence, a short series of questions and answers that serve to tell the

computer who you are and what you wish to do .

Each user must have a user number. For students it is the six

digit student ID number. The user number for any other person consists

of a certain letter followed by five digits, and is assigned to the user by

the Computation Center. When the computer asks for your user number,

type it. (Don't forget the "RETURN".)

The next information you must supply is the name of the system or

language; in this case it will be BASIC.

When the computer asks about NEW or C1>LD, you type NEW unless

you wish to retrieve an C1>LD program in order to continue working on it.

Finally, the computer asks for the name of your problem. You

type any six letters, digits, or characters that you wish. If you are retriev­

ing an C1>LD program, you must be careful to type the problem name exactly

as you typed it originally.

The computer types READY, and is now ready for you to type in

the new program, to add or change statements in an old program, or to

command the computer to do something with your program. You must be

careful to begin each statement in your program with a line number. These

line numbers should:

-- contain no more than five digits,

-17-

contain no spaces or non-digit characters,
start at the very beginning of the line.

Mter completely typing the program, you type

RUN

The computer will now analyze and run your program. It will then print

a line that contains your user number, the problem name, the date, and

the time of day. If there are no errors of form in the program, next will

be printed the answers according to the PRINT statements within the program.

(If the program runs for a long time, the teletype machine will periodical-

ly make little grinding noises, which indicate that no output has yet been

produced. On the other hand, if a program is fairly short but produces

lots of output, you may notice that the printing may break off after a while

and commence somewhat later. During that interval, the computer is doing

the computing necessary to produce the next batch of output.) Finally, a

time statement is printed showing the total computing time used by the

run. (In many cases it will show 0 seconds, indicating that the entire run

required less than 0.5 seconds.)

A complete history of a successful run of the linear equation solver

presented earlier is shown on the following page.

Besides HELL~ and RUN, there are several extremely useful

commands that may be given to the computer by typing at the start of a

new line the command followed by pressing the "RETURN" key.

ST~P .

LIST

causes the computer to stop whatever it is doing with
the program. ST~P may be used even with the computer
is typing out; in this case it responds to your simply
typing the letter S even without a "RETURN".

will type out a complete listing of the program as it is,
including all the corrections that have been made. To stop

-18-

HELL"
USER NUC1BER--999999
SYSTEr1--BASIC
NEW 0R 0LD--NEw
NEW PR0BLEM NAME--LINEAR
READY.

10 READ A1, A2, A3, A4
15 LET 0 = A1 * A4 - A3 * A2
20 IF D = 0 THEN 65
30 READ B1, B2
37 LET Xl = (BI*A4 - B2 * A2) 1 0
42 LET X2 = (Al * B2 - A3 * B1)/0
55 PRINT Xl, X2
60 G0 T0 30
65 PRINT "N0 UNIQUE S~LUTI0N"
70 DATA 1, 2,4
80 DATA 2, -7, 5
85 DATA 1, 3, 4, -7
90 END
RUN

USER N0. 999999 PR0BLEM NAME: LINEAR 6 SEPT. 1964

4
.666667

-3.66667

TIME: 1 SECS.

-5.5
.166667
3.83333

-19-

TIME: 22:33

listing after it has started but before it is completed, type S.

LIST - -XXXXX will type out a listing of the program starting at line number
XXXXX and continuing'tothe end or until the S key is pressed.
For instance, LIST - ... 70 in the linear equations problem will
start listing at line 70, permitting the user to inspect the
DATA statements without waiting for the early part of the
program to be listed.

SAVE

UNSAVE

CATALCbG

NEW

<bLD

SCRATCH

RENAME

If the user is done working with a program at the moment
and wishes to return to it at a later time, he should save
rr:-For instance, if the user must leave the teletype and is
only half finished with the original typing, he types SAVE.
Later on, he retrieves exactly what he saved by typing
OLD. He may then continue with the typing as if nothing
had happened.

If a user has finished with a program that he ha.s saved at
some earlier time, he types UNSAVE. This action dest:roys
the saved program, making room for othe r saved programs.
All users are urgently requested to UNSAVE a.ll programs
for which they no longer have need.

In case a user is working with several different programs
and forgets what names he gave them, typing CATALOG re­
quests the computer to list the names of all programs cur­
rently being saved by that user.

Typing NEW will permit the programmer to start anew
problem. This command may be given at any time, and has
the effect of erasing the previous program (unless it was
saved.) The computer will ask for the name of the new
problem.

This command is similar to NEW, but retrieves the named
saved program, which may then be added to. Either <bLD
or NEW must be used in connection with the HELL<b sequence,
but eitherrnay be also used at any later time as well. Re­
peated use Dr<bLD does not affect the saved program; it re­
mains saved until it is unsaved, or until a new version is
saved in place of it.

This command is very close to NEW in that it erases the
previous work and presents a clean slate. It differs by
retaining the name of the previous problem instead of ask­
ing for a new name.

serves to supply a new problem name for the current work
without erasing it. It is useful if one wishes to save two
similar versions of a program. Save the first, use RENAME,
make the desired modifications, and then save or run the
modified version.

-20-

When the user is finished with a session at the teletype, it is neces-

sary only to leave the machine. The user should plan his session at the

teletype to avo~d lo,ng trances. If such hC!:ppens, the user should save his

work, and leave the machine for someone else to use. Remember the

motto,

TYPING IS NO SUBSTITUTE FOR THINKING.

2. 5 Errors and Debugging

It may occasionally happen that the first run of a new problem will

be error-free and give the correct answers. But it is much more common

that errors will be present and have to be corrected. Errors are of two

types: Errors of form, or grammatical errors, that prevent even the run-

ning of the program; Logical errors in the program which cause wrong an-

swers or even no answers to be printed.

Errors of form will cause error messages to be printed out instead

of the expected answers. These messages give the nature of the error, and

the line number in which the error occurred. Logical errors are often much

harder to uncover, particularly when the program appears to give nearly

correct answers. But after careful analysis and when the incorrect state-

ment or statements are discovered, the correction is made by retyping the

incorrect line or lines, by inserting new lines, or by deleting existing lines.

These three kinds of corrections are made as follows:

Changing a line

Inserting a line

Deleting a line

Type it correctly with the same line
number.

Type it with a line number between
those of the two 'existing lines.

Type the line number only.

-21-

Notice that being able to insert a line requires that the originalline

numbers not be consecutive numbers. For this reason, .most users will

start out using line numbers that are multiples of five or ten, but that is

up to them.

These corrections can be made at any time, either before or after

a run. They may even be made in an earlier part 6f the ~rogratn while you

are typing the later lines. Simply retype the offent1tli* line with its original

line number, and then continue typing the rest of the progr~tn.

The whole process of locating errors or "debugging" a pr6~ram is

illustrated by a case history which starts on the next page. It takes tiS

from the HELL~ sequence to the final successful printing of the correct

answers. The circled numbers refer to comments., which start below. For

convenience, the portions typed by the computer are Underlined or margin­

lined, although no underlining is used on the actual computer.

The problem is to locate the maximum point on the sine curve be­

tween 0 and 3 by searching along the x-axis. The searching win be done

three time s, first with a spacing of 0.1, then with spacings of O. 01, and

O. 001. In each case will be printed the location of the maximum, the maxi-

mum, and the spacing. The program as first written down on paper was:

10 READ D
20 LET XO = 0
30 F~R X = (j T~ 3 STEP D
40 IF SIN(X) ~= M THEN 100
50 LET XO = X
60 LET M = SIN(XO)
70 PRINT XO, X, D
80 NEXT XO
90 G~ T~ 20

100 DATA. 1, .01, .001
110 END

-22-

HELL~
USER NUMBER--999999
SYSTEM--BASIC
NEW 0R 0LD--NEW
NEW PR0BLEM NAME--MAXSIN
READY.

10 READ D
20 LWR XO = 0
30 F0R X = 0 T0 3 STR~EP D /7)
40 IF SINE~(X) <= M THEN 100 ~<:-------- \..!/
50 LET XO = X
60 LET M = SIN(X)
70 PRINT X0, X, D
80 NEXT XO
90 G0 T0 20
20 LET XO = 0 ~~---------- 0
LOO~~~100 DATA .1, .01, .001 '0lIl;;<:---______ CD
110 END
RUN

USER N0. 999999 PROBLEM NAME: MAXSIN 6 SEPT. 1964

ILLEGAL F0RMULA IN 70 ~ @
N0T MA TCHED WI TH F0R IN 80 Y
F0R WITH0UT NEXT --(f)

TIME: o SECS.

-{})
70 PRINT XO, X, D ~ (i)
40 IF SIN(X) <= M THEN 80 ~ -
80 NEXT X 6:: (j)
RUN

TIME: 21:37

tUSER N0. 999999

ST0P

PR0BLEM NAME: MAXSIN 6 SEPT. 1964 TIME: 21:38

READY.
< (J)

;,,23-

20 LET :11 = -1
RUN

USER NK? 999999

o
• 1
.2
.3
.4

ST0P.
REA;)Y.

70

o
• 1
.2
.3

PR0BLEM NA~E: MAXSIN

• 1
• 1
• 1
• 1

85 PRINT XO, M, D
RUN

USER \lZ. 999999

1.6
1.6
1.6

ST0P.
READY.

PR0BLEM NAME: MAXSIN

.999574

.999574

.99

• 1
• 1

6 SEPT. 1964 . TIME: 21: 42

co

6 SEPT. 1964 rIME: 21:43

90 G0 T0 10
5 PRINT "X VALUE", "SINE2+-", RES0LUTI0N" ooE<~-----(j)
RUN

USER N0. 999999 PR0BLEM NAME: MAXSIN 6 SEPT. 1964 TIME: 21 :44

INC0RRECT F0RMAT IN 5 ~~~-----------~((i)

TI ME: 1 SECS.

-24-

5 PRI NT "X VALUE", "SI NE", "RES0LUTI iON" -oE<::::-------_ IJO'
RUN I....!..:Y

USER N0. 999999 PR0BLEM NAME: MAXSIN 6 SEPT. 1964 TIME: 21 :46

X VALUE SINE RESiOLUTI0N
1.6 .999574 • 1
1.57 1 • .01
1.571 1 • .001 ([0

TIME: 1 MINS. 0 SEes.

LIST ~~~----------------~--~----------_~

USER N0. 999999 PR0BLEM NAME: MAXSIN

5 PRINT "X VALUE", "SINE", "RES0LUTI0N"
10 READ 0
20 LET i1 = -1
30 F0R X= 0 T0 3 STEP D
40 IF SIN(X) <= M THEN 80
50 LET XO = X
60 LET M = SIN(X)
80 NEXT X
85 PRINT XO, M, D
90 G0 T0 10
100 DATA .1, .01, .001
110 END

6 SEPT. 1964 TIME: 21 :48

SAVE ~ (0
READY.

-2.5-

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

2.6

Notice the use of the backwards arrow to correct mistakes as you
go along.

The user notices at this point that he had mistyped the word LET
ear lier, and corre cts it.

An inspection of statement 70 shows that a variable XQJ is used,
which is illegal, when XO was intended. The line is retyped cor­
rectly.

The variable in the NEXT statement should have been X instead of
XO, and the change is made.

By chance, the user notices that originally the IF-THEN statement
pointed to a DATA statement, and the correction is made.

The problem runs for a long time without any output. Since we ex­
pect output almost immediately, we suspect something is wrong. It
must be that the PRINT statement is forever bypassed. This could
happen only if M were so large that the IF- THEN statement was
always satisfied. We then observe that we forgot to initialize M to
some value less than the maximum value on the sine curve, so we
choose -1.

At last we get printed output, but it appears that the printing is tak­
ing place each time through the loop rather than at the end of the
loop. We move the print statement from before to after the NEXT
statement, and incidentally change it to print M rather than X as
the second term.

Ugh. Still not correct. We seem to be doing the first case over and
over again. An infinite loop! This is corrected by going back to
statement 10 instead of statement 20.

While we are at it, we put in labels to identify each column in the
printed output.

Forgot the opening" for the third label.

We finally obtain the desired answers.

The final corre cted ver sion of the program is listed.

The program is saved for later use. (This should not be done unless
future use is necessary.)

Summary ~ Elementary BASIC Statements

This section gives a short and concise but complete description of
(

each of the nine types of BASIC statements discussed earlier in this chapter.

-26-

The notation L.. ••• > is used to denote a particular unspecified instance

of 'the t1P~ df thing referred to inside the <.). Thus, <linenumbe~ is

used to stand for any particular line number. <yariabl~ refers to any

variable, which is a single letter possibly followed by a single digit.

<expression) stands for any particular expression, no matter how com-

plicated, so long as it follows the rules for forming expressions given in

section 2. 2. (number> stands for any constant or data number.

2.6. 1 LET

Form: t:. line number) LET <variable> = <expressi0xY

Example: 100 LET X = X + 1

259 LET W7 = (W - X4t 3)*(Z - Al/(A - S» - 17

Comment: The LET statement is not a statement of algebraic
equality, but is rather acommand to the computer to
perform certain computations and to assign the answer
to a certain variable. Thus, the first example tells the
computer to take the current value of X, add 1 to it, and
assign the answer to the variable X. tn dther words, X
is increased by unity.

2.6.2 READ arid DATA

Form: < line number; READ qist of variablei>

Example: 150 READ X, Y, Z, Xl, Y2, Z(K+I, J)

Form: < line number> DATA Q.ist of number9

Example: 300 DATA 4, 2, 1. 5, 0.6734E-2, -174.321

Comment: A READ statement causes the variables listed in it to
be given in order the next available numbers in the col­
lection of DATA statements.

Comment: Before the program is run, the computer takes all the
DATA statements in the order in which they appear and
creates a large data block. Each time a READ state­
rnent is encountered anywhere in the program, the data
block supplies the next available number or numbers. If
the data block runs out of data, with a READ statement
still asking for more, the program is assumed to be
done. .

-27-

2.6.3 PRINT

Form: < line number) PRINT Gist of expressions to be
printed>

Example: 100 PRINT X, Y, Z, B*B - 4*A*C, EXP(L~G(17»

Form: <line number> PRINT" <any string of characters> "

Example: 200 PRINT" THIS PR~GRAM IS N~ G~~D .••

150 PRINT "C~MPUTES X + Y = ZIt

Comment: The numerical quantities printed need not be simple
variables, they may be any expressions. The expression
is first evaluated, then printed. There may be any number
of expressions separated by commas, but they will be
printed five to a line.

Example: 150 PRINT "X··, •• Y··, •• ZIt

Comment: Several messages may be included in the list separated
by commas. The effect is to print the letter X in the
first column, the letter Y in the 16th column, and the
letter Z in the 31 st column.

Example: 200 PRINT "X = ", X, "Y = •. , Y

Comment: Labels and expressions may appear in the same print
statement.

Comment: Much more variety is permitted in PRINT statements
than is shown here. The additional flexibility is ex­
plained in section 3. 1.

2.6. 4 G~ T~ and IF-THEN

Form:

Example:

Comment:

Form:

Exarpple:

.q.ine number> G~ T~ <line numbe~

150 G~T~ 75

240 G~ T~ 850

Sometimes called an unconditional go to, G~ T~ is
used to interrupt the normal sequence of executing
statements in the increasing order of their line numbers.

<line number> IF <ex.fression> <relatio~
(expression> THEN ~line number>

140 IF X /' Y + Z THEN 200

85 IF X * SIN(X) "/= 1 THEN 100

-28-

Comment: Sometime s called a conditional go to, the IF - THEN
statement provides a way to select one of two sequences
in the program depending on the results of some previous
computation. If the condition is met, the implied go to
is performed; if the condition is not met, the next
statement in sequence is performed. .

Any of the six standard relations may be used.

Symbol

<­
<=
=

>=
>
<.>

Me anini

less than

less than or equal

equal

greater than or equal

greater than

not equal

2..6.5 F0R and NEXT
~-------

:fQrm: (line number) F<1>R (variable/> ;:: ~xpression> T<1>
<expression;>

or

<line nu~ber> F<1>R (~adable~ = <expressio~ T<1>
(expresslon> STEP «expresslon)

Example: 120 F<1>R X4 = (17 + C<1>S(A»/3 T<1> 3*SQR(l0) STEP 1/4

(This represents the body of the loop.)

235 NEXT X4

Comment: Omitting the STEP part of the F<1>R statement is equiva­
lent to having the stepsize equal to unity.

Comment: The above example will, assuming A to be equal to 0,
cause the body of the loop to be performed several
times, first with X4 equal to 6, next with X4 equal to
6.25, then 6, 50, and so on. The last time the body of
the loop will be performed is with X4 equal to 9. 2.5.
which is less than or equal to the final value 9 .. 486
(approximately).

The F<1>R statement goes into the body of a loop if the
variable has a value less than or equal to the final

-29-

value (in the case of a pos'itive stepsize), or if tbe vari­
able has a value greater than or equal to the final value.
(in the case of a negativestepsize.)

. Upon leaving the loop, the program continues with the
statement following the NEXT; the variable used in the
FQ>R statement then has the value it had during the last
passage through the loop (9.2.5 in the above example.)

Example: 2.40 FQ>RX = 8 TQ> 3 STEP -1

Comment: The body of the loop is performed with X equal to
8, 7, 6, 5, 4, and 3, and X has the value 3 upon leaving
the loop.

Example: 456 F¢R J = -3 TQ> 12 STEP 2

Comment: 'The body of the loop will be performed with J equal to
-3, -1, 1, 3, 5, 7, 9, and 11. J will have the value 11
upon leaving the loop.

Example: 50 FQ>R Z = 2 TQJ -2

Comment: The body of the loop will not be performed. Instead, the
computer will proceed to the statement immediately fol­
lowing the corresponding NEXT. The value of Z will
then be 1, which is the initial value (2.) minus the step
size (1).

2.6.6 END

Form: <line number? END

Example: 999 END

Comment: An END statement is required in all programs. It must
also be the statement with the highest line number in
the program.

-30-

III

MORE ADVANCED BASIC

3.1 More About PRINT

One of the conveneinces of BASIC is that the format of answers is

automatically supplied for the beginner. The PRINT statement does, how-

ever, permit a greater flexibility for the more advanced programmer who

wishes to specify a more elaborate output.

The teletype line is divided into five zones of fifteen spaces each

by BASIC, allowing the printing of up to five- numbers per line. Three

simple rules control the use of these zones.

1.

2.

3.

A label, in quotes, is printed just as it appears.

A comma is a signal to move to the next print zone,
or to the fir st print zone of the next line if it has
just filled the fifth print zone.

The end of a PRINT statement signals a new line, unless
a comma is the last symbol.

Each number occupies one zone. Each label occupies a whole num.ber of

zones; if it occupies part of a zone, the rest of the zone is filled with

blanks. If a label runs through the fifth zone, part of it may be lost.

The examples on the following pages illustrate some of the various

ways in which the PRINT statement can be used. It should be noted that a

blank PRINT statement causes the typewriter to move to the next line, as

is implied by rule 3 above.

The format in which BASIC prints numbers is not under the control

of the user. However, the following rules may be used to guide the program-
•

-31-

NEW
NEW PR0BLEM NAME--PRINTER
READY.

10 RA DELETED
10 READ A, B
20 PRINT "FIRST N0. :"A, "SEC0ND N0. :"8
30 DATA 2.3, -3.17
40 END
RUN

USER N0. 99'9'999

FIRST N0.: 2.3

PR0BLEM NAME: PRINTE 6 SEPT. 1964 TIME: 21 :52

TIME:

SCRATCH
READY.

OSECS~ .

10 F0R I : I'T0 12
20 PRINT I,
30 NEXT I
40 END
RUN

- '

SEC0ND N0. :-3.17

Comment: Notice that with no comma between the
label and the variable name, the label and
the value of the variable appear toqether.
But since the label and the number (with its
unprinted non-significant zeros) occupies
more than one zone, the second answer is
printed starting in the third zone. This
is in accordance with rule 2, which says that
we do not start a new zone until a comma
is encountered.

USER N0. 99~99~ PR0BLEM NAME: PRINTE 6 SEPT. 1964 TIME: 21: 53

1 2 3 4 5
6 7 8 9 10
1 1 12

TH1E: 0 SEeS'.

-32-

USER NIJ. 999999 PR03LEM NAME: PRINT 6 SEPT. 1964 T1.'1E: 22:0t'

5 PRINT "THIS PR0GRA~ C0~PUTES AND P~INTS THE NTH P0WERS"
6 PRINT "JF THE NUMBERS LESS THAN 0R EQUAL T0 N FZR VARI0US"
7 PRINT"N FR0M 1 THR0UGH 7."
g PRH~T

10 F~R ~ = 1 T0 7
15 PRrNT"N = "N
?O F~R 1 = 1 T0 N
30 PRINT I1'N,
40 ;·;EXT I
50 PRINT
60 PRINT
70 NEXT N
SO ENO

RUN

USER N0. 999999 PR0BLEM NAME: PRINT 6 SEPT. 1964

THIS PR0GRAM C0~PUTES AND PRI~TS THE NTH P0WERS
OF THE NUMBERS LESS THAN 0R EQUAL T0 N FOR VARI0US
N FR0M 1 THR0UGH 7.

N - 1 -
1

N = 2
4.

N = 3
1 8. 27.

~~ = 4
1 16. 81 •

N - 5 -
1 32. 243. 1024

N - 6 -
1 64. 729. 4096
46656.

N = 7
1 128. 2187. 16384
279936. 823543.

TIME: 2 SECS.

-33-

TIME: 22:09

3125.

15625.

78125.

mer in interpreting his printed results.

1. No' more than six significant digits are printed (except for
integers - - see rule 4.)

i. Any trailing zeros after the decimal point are not printed.

3. For numbers less than O. 1, the form X. XXXXX E- Y is used
unless the entire significant part of the number can be printed
as a six decimal number. Thus, .03456 means that the number
is exactly . 0345600000, while 3. 45600 E-2 means that the
number has been rounded to . 0345600 .

4. If the number is an exact integer, the decimal point is not
printed. Furthermore, integers of up through nine digits are
p:riilted in full.

A packed form of output is available by using the character "; "in-

stead of ", ". Briefly, whereas" t II tells the computer to move to the next

zone for the next answer, tells the computer to move to the beginning

of the next multiple of three characters for the next answer instead of to

the next zone, with six characters being the minimum. One can thus pack

many more than five numbers on a line if the numbers themselves require

less than a full zone to print. An example of this option is shown on the

next page.

With packed output using the semi-colon, the programmer can print

11 three digit numbers per line, 8 six digit numbers per line, or 6 nine

digit numbers per line. Mixtures of the three types in subsequent lines may

not line up, as the example shows. The user should be careful about using

the semi-colon with full length numbers which might occur near the end of

a print line. BASIC checks to see if there are 12 or more spaces at the end

of a line before printing a number there, but some numbers require 15

spaces. The same warning holds for printing labels near the end of the

line. In each case, the last few characters may be lost.

-34-

10 F0R I = 1 T0 100
20 PRINT 1*1*1;
30 NEXT I
40 END
RUN

USER N0. 999999 PR0BLEM NAME: PRINT 6 SEPT. 1964

1 8 27 64 125 216 343 512 729
1728 2197 2744 3375 4096 4913
8000 9261 10648 12167 13824 15625
21952 24389 27000 297~1 32768 35937
46656 50653 54872 59319 64000 68921
85184 91125 97336 103823 110592 117649
140608 148877 157464 166375 1 75616 185193
216000 226981 238328 250047 262144 274625
3144.7;2 328509 343000 357911 373248 389017
438~76 456533 474552 493039 512000 531441
592704 614125 636056 658503 681472 704969
778688 804357 830584 857375 884736 912673
1000000

TIME: 2 SEes.

-35-

TIME: 22:14

1000 1331
5832 6859
1 7576 19683
39304 42875
74088 79507
125000 132651
195112 205379
287496 300763
405224 421875
551368 571787
729000 753571
941192 970299

3. 2 Lists and Tables

In addition to the ordinary variables used by BASIC, there are

variables that can be used to designate lists or tables. For instance, A(7)

would denote the seventh item in a list called A; IB(3,7) denotes the item

in the third row and seventh column of the table called B. We commonly

write A7 and B3, '7 for those same items, and use the term subscripts

to denote the numbers that point to the desired items in the list or table.

(The reader may recognize that lists and tables are called, respectively,

vectors and matrices by mathematicians.)

The name of a list Or table must be a single letter. The subscripts

may be any expression, no matter how complicated, as long as they have

non-negative integer values. The single letter denoting a list or table

name may also be used to denote a simple variable without confusion. How-

ever, the same letter may not be used to denote both a list and a table in

the same program. The following are acceptable examples of list and table

items, though not necessarily in the same program:

B(I + K) B(I, K) Q(A(3, 7), B - C)

The exal!lple on the next page shows a simple use of both lists and

tables in the same program. We might think of this program as one that

computes the total sales for each of five salesmen selling three different

goods. The list P gives the price of the three goods. The table 5 gives

the individual item sales of the five salesmen, where the rows stand for

the items and the columns for the salesmen. We assume that the items

sell for $1. 25, 4. 30, and 2.50, respectively, and that salesman 1 sold

40 of item 1, 10 of item 2, and 35 of item 3, and so on.

-36-

~s::p. NC. 999999

10 FJR I = 1 T0 3
20 READ PCI)
30 NEXT ,I

PR0BLEM NAME: SALES

40 FC~ I = I T0 3
50 FCK J = 1 T0 5
60 RZAD S<I,J)
70 tlEXT J
30 [--lEXT I
90 FOR J - 1 T0 5
100 LET S = a
110 F0R I = 1 T0 3
120 LET S = S + P(I) * S(I,J)
130 NSXT I

6 SEPT. 1964

140 PRINT "T0TAL SALES F0R SALESMAN "J, "$"S
150 NSXT J
200 JATA 1.25, 4.30, 2.50
210 DATA 40, 20, 37, 29, 42
??,O D,!nA 10, 16, 3, 21, 8
230 DATA 35, 47, 29, 16, 33
300 EN]

RU~

USER m:. 999999 PR0BLEl'1 NA;fJE:

TCTAL S~,LES F0R SALES('1AN 1
TLJTAL SALES F0R SALESl"JAN 2
T,zTAL SALES F0R SALESi'1AN 3
HHAL SALES F0R SALES~1AN 4
TCTAL SALES F0R SALESMAN 5

TI ~1E : 1 SECS.

SALES 6 SEPT. 1964

$ 180.5
$ 211 .3
$ 131 .65
$.166.55
$ 169.4

-37-

T 1:'1 [: 23: 1 6

TIME: 23:17

By way of explanation, lines 10 through 30 read in the values of

the list P • Lines 40 through 80 read in the values of the table 8 .•

Lines 90 through 150 compute the total sales for the five salesmen and

print each answer as it is computed. The computation for a single sales­

man takes place in lines 100 through 130. In lines 90 through 150, the

letter I stands for the good number, and the letter J stands for the sales­

man number.

BASIC provides that each list has a subscript running from 0 to 10,

inclusive. Each subscript in a table may run from 0 to 10. If the user

desires to have larger lists or tables, he may use a DIM statement in his

program. For example,

10 DIM A(17)

indicates to the computer that the subscript of the list A runs from 0 to

17, inclusive; similarly,

20 DIM B(15, 20) , 8(3)

means that the subscripts of B run from 0 through 15 for rows, and 0

through 20 for columns, and that the subscript of the list 8 runs from 0

through 3. The numbers used to denote the size of a list or table in a DIM

statement must be integer numbers. The DIM statement is used not only

to indicate that lists and tables are larger than 0-10 in each subscript, but

also to allocate storage space in very large programs by telling the com­

puter that only, say, 4 spaces are needed for the list 8 as shown above.

It should be mentioned that using a DIM statement. does not require

the user to use all of the spaces so allocated.

-38-

3. 3 Functions and Subroutines

Two additional functions that are in the BASIC repertory but which

were not described in section 2.2 are INT and RND. INT is used to deter­

mine the integer part of a number that might not be a whole number. Thus

INT(7.8) is equal to 7 . As with the other functions, the argument of INT

may be any expression. One use of INT is to round numbers to the nearest

whole integer. If the number is positive, use INT(X + .5). The reader

should verify that this process is equivalent to the familiar process of

rounding. If the number is negative, INT(X - .5) must be used. The reason

is that INT(-7.8) is -7, not -8. INT always operates by chopping off the

fractional part, whether the number is positive or negative.

INT can be used to round to any specific number of decimal places.

Again, for positive numbers,

INT(100*X+ .5)/100

will round X to the nearest correct two decimal number.

The function RND produces a random number between 0 and 1. The

form of RND requires an argument, though the argument has no significance;

thus, we commonly choose a single letter such as X or Z, and use RND(X) .

The property of RND is that it produces a new and different random

number each time it is used in a program. Thus, to produce and print 20

random digits, one might write a program like that shown on the next page.

The middle example shows that the next time the program is run,

the same sequence is obtained. To vary the sequence we might "throwaway"

an arbitrary number of random numbers at the start of the program. In the

third example at the bottom of the page, the first 115 random numbers are

-39-

10 FOR I = 1 T~ 20
20PRINTINTe 10*RNDeX));
30 NEXT I
40 END
RUN

USER N0. 999999 PR0BLEM NAME: RAND0M 6 SEPT. 1964

9
6

o
6

4
9

TIME: 1 SEes.

RUN

1
3

6
4

4
o

9
7

5
'7

8
7

USER Nel. 99999.9 PR0BLEM NAME: RAND0M 6 SEPT. 1964

9
6

o
6

4
9

1
3

6
4

TI ME: 1 SEes.

10 READ N
20 F0R I ~ .1 T0 N
30 LET X = RNDeX)
40 ,NEXT I
50 F0R I = 1 T0 20
60 PRINT INT(10*RND(X)
70 NEXT I
80 DATA 115
90 END
RUN

) ;

4
o

9
7

5
7

8
7

USER N0. 999999 PR0BLEM NAME: RAND0M 6 SEPT. 1964

7
2

9
2

9
4

TIME:' 1 SEes.

o
2

9
o

4
o

-40-

5
o

9
3

9
3

3

3

7

TU1E: 23:33

8

TIME: 23:34

8

TIME: 23:35

5

discarded. The output shows random digits nutrlbered 116 through 135.

Additional flexibility is p~ovided in BASIC by three statements

that pe:rmit the used! user-defined functions and subroutines.

The DEF statement permits the user to define a function other than

the standard functions listed in section 2.. 2. so that he aoesn't nave to keep

repeating the formula for the function each time he uses it in his program.

The name of a defined function must be three letters, the first two of

which are FN . The user thus may define up to 2.6 functions. The t611'ow-

ing examples illustrate the form of the DEF statement:'

2.5 DEF FNF(Z) = 5IN(Z*P) (where P has the value 3. 141592.65/180)

40 DEF FNL(X) = L~G(X) / L~G(10)

Thus, FNF is the sine function measured in degrees, and FNL is the func-

tion log-to-the- base-ten.

The DEF statement may occur anywhere in the program. The user

needs to be cautioned that the variable used in the DEF statement must not

be subscripted, and that it is used every time that function fs used. Thus,

in a program containing FNF as above defined, it is best not to use the

variable Z elsewhere in the program.

The' expression on the right of the equal sign can be any expres-

sion that' ca:n be fit into one line. It could involve many other variables

besides the one denoting the argument of the function~ Thus,

60 DEF FNX(X) = 5QR(X*X + y*y)

may be used to set up a function that computes the square root of the sum

of the squares of X and Y. To use FNX, one might use the following:

10 LET Y = 30
2.0 LET 51 = FNX(40)

-41-

Of course, Sl would end up having,t);le value 50.

It should be noteq that one does not need DEF unless the defined
• .. '"'1 ,. -. i

function must.a:pp,e,a.r at two or more locations in the program. Thus,

10 DEF FNF(Z) = SIN(Z*P)
20 LET P = 3. 14159265/180
30 F~R X = 0 T~ 90
40 PRINT X, FNF(X)
50 NEXT X
60 END

might be more efficiently written as

20 LET P = 3. 14159265/180
30 F~R X = 0 T~ 90
40 PRINT X, SIN(X*P)
50 NEXT X
60 END

to compute a table of values of the sine function in degrees.

The use of DEF is limited to those cases where the value of the

function can be computed within a single BASIC statement. Often much more

complicated functions, or perhaps even pieces of program that are not func-

tions, must be calculated at several different points within the program. For

this, the G~UB statement may frequently be useful.

The form of a G~SUB statement is illustrated as follows:

25 G~SUB 180

The effect of the G~SUB is exactly the same as a G~T~ except that note is

taken by the computer as to where the G~SUB statement is in the program.

As soon as a RETURN statement is encountered, the computer automatical-

ly goes back to the statement immediately following the G~UB. As a skele-

ton example"

100 LET X =.3.
110 G~SUB 400
120 PRINT U, V, w

I

-42-

(continued on next page)

(continued) I
200 LET X = 5
210 GQ>SUB 400
220 LET Z = U + z*V + 3*W

I
400 LET U = x*x
410 LET V = x*X*X
420 LET W - X*X*X*X + X*X*X + X*X + X
430 RETURN

I
When statement 400 is entered by the G<Z>SUB 400 in line 110, the computa-

tions in lines 400, 410, and 420 are performed, after which the computer

goes back to statement 120. When the subroutine is entered from statement

210, the computer goes back to statement 220.

The user must be very careful not: to write a program in which a

GQ>SUB appears inside a subroutine which itself is entered via a G<Z>SUB; it

just won't work.

As a complete illustration, the ne~t page contains a program that

determines the Greatest Common Divisor of three integers, using the

celebrated Euclidean algorithm as a subroutine. The subroutine is contain-

ed in lines 200 to 310, and is applied to two integers only. The main routine

applies this subroutine to the first two integers, and then to the GCD of

these and the third integer. The GCD 1$ then printed, and a new case con-

sidered.

3.4 Some Ideas for More Advanced Programmers
-- i

An important part of any computer program is the description of

what it does, and what data should be s\1pplied. This description is com-

monly called documentation. One of the w~ys a computer program can be

documented is by supplying remarks along with the progl,"am itself. BASIC

provides for this capability with the REMfJtatement. For example,

-43-

USER Nel. 999999 PRelBLEM NAME: GC03Nel 6 SEPT. 1964

10 PRINT "A", "B", "C", "Geo"
20 READ A, B, C
30 LET X : A
40 LET Y : B
50 GelSUB 200
60 LET X : G
70 LET Y : C
80 G0SUB'200
90 PRINT A, B, C, G
100 Gel Tel 20
110 DATA 60, 90, 120

I ~ "

120 DAT-A 38456,' 64872', 98765
130 DATA 32, 384, 72
200 LET Q : INT(X/Y)
210 LET R : X - Q*Y
220 IF R : 0 THEN 300
230 LEt X ': Y ,'<

240 LET Y : R
250 Gel Tel 200
300 LET G = Y
310 RETURN
999 END

RUN
.... "-. '-'". ."', ", ''''.

USER N0. 999999 PR0BLEM NAME: GCD3N0 6 SEPT. 1964

A
60 ' '
38456
32

TIME: 1 SECS.

B
90
64872
384 ' ,,'

C
120
98765

,72 '

-44-

GCD
30
1
8.

Tli~E: 23:27

TIME: 23:28

1 REM TH'ISPR<bGRA'MS~LVES LIN&AR. EQilJATRi'NS<bF THE FORM
Z REM Al*Xl + AZ*XZ = Bl, A3*Xl + J\4*X3 = BZ. THE DATA
3 ,REM ·'MUST'FIRST LIS'l" THEN .. VAl.UES fI)"" A IN <bRDER, THEN
4 REM: THEDESIREDRIGHTHANDSIDESF(/>R WHICH SOLUTIONS
5 REM ARE NEEDED.

might reasonably be added to the original example for solving linear equa-

tions. For longer programs, more detaUed REi'M', maY be needed, espe-

cially ones spotted throughout the program to remind yo~ what each of the

parts does. Each user quickly learns how mu.ch docu.mentation he needs to

permit him to understand his program, and where to put REM statements.

But it is certain that REM's are needed in any saved program. It should be

emphasized that REM's have absolutely no effect on the computation.

Sometimes a program will have two or more natural ending points.

In such a case the programmer might use a O<bT<b to the END statement.

Such a statement can be replaced by a ST(jP, with nothing following the

word STOP. Thus,

400 G<bT<b 999

710 G<bT<b 999

999 END

may be replaced by

400 ST<bP

710 ST<bP

999 END

BASIC allows G<b T<b and IF-THEN statements to point to REM and

DATA statements. The effect is to perfQrm a vacuous statement having

-45-

that number and proceed to the,next ~umbered statement. In the case of

DATA state,ments, the END s~atem~nt might eventually be reached. How­

ever, for REM stat~ments the programmer might deliberately have his

G(/)T(/)'s point to REM statements, the remark part identifying that part of

the program.

One of the most important and difficult problems in computing is

that of round-off error. It exerts its influence in subtle ways, and some-

times in ways not so subtle. A full treatment of the effects of round-off

error is beyond the scope of this manual, but one fairly common situation

will be discussed.

Most programmers eventually write or encounter a program some-

thing like this:

5' LET S = 0
10 LET X =0
20 LET S = S + X
30 IF X)= Z THEN 60
40 LET X = X + . I
50 G(/) T(/) ZO
60 PRINT S
70 END

for computing the sum of all the non-negative multiples of • 1 less than or

equal to Z. The correct answer is ZI, but invariably the program will pro-

duce Z3. 1 as the answer. What is wrong? Round-off has reared its ugly

head high enough for us to see. The explanation is that the computer works

in the binary number system, and cannot express. 1 exactly. Just as 1/3

cannot be expressed in terms of a single decimal number, neither can. 1

be expressed in terms of a single. binary number. It turns out that. I in

the computer is a number very slightly less than. 1. Thus, when the loop

in the above e~~mplelias been performed ZI times, the value of X is not

Z exactly, but is very 'slightly less than Z. The IF statement in line 30

-46-

j.~:rmi:tlf;l' ~bA-~ the final val~e. e~~ct~y~, B' _" .. t ._11. ae4ieved or ex­

~~,qed, ~~ 80 calls f9r one mo:r~ 'al ~rQ~la ~M lca.,(iap.

U the programmer had kn9wn ~. *'" ~QmplM:.r treat" 1 a. a.
number .liSlltly less, he could have COmiMn\,.Mt1 by w:ri_i". 1,95 in place

of 2 in statement 30. A better way reet, q~ tM fi.p~ tMot •• c~mp\lter per­

forms exactly correct arithmetic for tntege", Tn. M' ... ~y *b.qs count

the number of times through the loop with iJl~e •• J!'~ Tft. esalP"le ~y be

rewritten as follows:

5 LET S = 0
10 LET N = 0
20 LET S = S + Nil 0
30 IF N >= 20 THEN 60
40 LET N = N + 1
50 G(/)T(/) 20
60 PRINT S
70 END

Better still, a F(/)R statement can shorten the program to

10 LET X = 0
20 F(/)R N = 1 T(/) 20
30 LET S = S + N/10
40 NEXT N
SO PRINT S
60 END

One of the most exasperating problems confronting programmers is

that of a fairly long and complex program tha.t looks as if it should work

simply refuses to do so. (Presumably, all errors of form have been detect­

ed and' removed.) The locating and removing of logical errors is called

debugging, and the methods to be used depend on the nature of the program'

and also on the programmer himself. An important part of debugging is

intuition, but it is possible to suggest some approaches that might be use­

ful in many cases.

The first thing to do with an appa.rently incorrect program is

to 'check very carefull}l the' method lised. If that doesn't uncover the 'bug,

then examine'very' ca:t-~fu11y your 'programming to see if you have mixed

up any of the variables. It is often difficult to spot such erro,rs because,
. - ': !.;: :': ,.', :' .j~ '~.' .;,: ';" :. -;

one tends to see in a program what he expects to see rather than what is
, ;, i. (... ",'. '." . '," .

there.

Another methocl that'is' e,ttr~~ely useful in providing clues as to the

natureahd location 'of the bug or bugs is tracing. In BASIC this tracing may

be accomplished by inserting superfluous PRINT statements at various

places in your program to print the values of some of the intermediate

quantities. When the program is fhen RUN, the values of these intermediate

quantities often suggest the exact nature of the error. When the program

has been debugged and is working properly, these statements are removed.

There are ;some'trla.tter's thcitdo not affect the correct running of

programs, but pertain to style and l},eatness. For instance, as between two

or more similar ways to prepare a part of a program, ,one should select

the one that is most easily understood unless there is an important reason

not to do so.

More experienced programmers will tend to group the data in DATA
',- .;." "

statements so that it reflects ,the READ statements that correspond. The
, . ,

fir st example on linear,equations repre sents bad style, but was done pur-
"' ',,',',

posely to illustrate that one can arbitrarily group the data in the DATA
• .. '.< •• :., .J"':' '. ,: .• " .;.', .'

statements.

One tends afte:rawhile'to 'place his data statements near the end

of the program, or near the beginning, but at least in one group to avoid

confusing himself \yith DATA statell?-ents spread throughout the program.
" ' ,"::;" ,~,..." '> ~~ . " ,

'::'48-

S.,me programmers also tend to give the ll:ND statement a number like

9999 to huure that it will be the one witl? the hi,.eat number.

1'{Q doubt the user will be able to ctevi'. ather ways to make a pro­

gram neat and readable. But again, the important can.ideration in style is

to program in a way that makes it more Ul'ld.r.tandable and useful to both

oneself and others in the future.

-49,.

IV

CARDBASIC

4. 1 Purpose

A card-operated (on-line) version of BASIC is available and pro-

vides the following advantages over teletypes:

(1) Longer programs areLallowed. ;

(2) There is no limit on DATA.

(3) Output is on the highspeed printer. This is much faster and
allows 8 numbers per line in the normal format, and up to
18 in packed format.

(4) Matrix subroutines are available.

4. 2 ~ to Prepare ~ Deck.

You punch on cards a program almost exactly the way you would

type it on a teletype, with one instruction per card. Due to the fact that

there are fewer symbols on a key-punch, the following modifications are

needed:

In PRINT, use single quote (') in place of quote (II).

For the relational symbols, use the following three letter equivalents.

EQU
LSS
GRT
LQU
GQU
NQU

In place of a semi-colon in a PRINT statement, you must use a

5-8 multiple punch.

4. 3 Differences in Operation.

Do not type DATA as part of your program deck. Instead, add to the

-50-

end of your program (after the END card) a data de ck. There are no line

numbers for da.ta, and the word DATA should not appear. Just a list of

numbers,sepa.rated by commas. You may P\lt a:8 . many or as few numbers

on ontf card as you wish.

There is a new instruction PAGE. This starts a new printed page

for the output.

There is a series of matrix subroutines available a8 part of the

new instruction MAT. See the next section for a detailed description.

You have much larger matrices available. The limitations are:

(1) At most 1000 components in anyone vector or list.

(2) No matrix or table dimension may exceed 500.

(3) The total number of components in all vectors and
matrices (lists and tables) may not exceed 4000.

Matrices must start with component 1 (not 0).

4.4 MAT

Matrix subroutines are available in CARDBASIC. They are called

by means of the MAT instruction. Observe the following restrictions: (1)

A matrix in an MAT instruction must have had a DIM declared. (2) While

the same matrix may appear in an MAT and an arithmetic statement, it

must occur for the first time in an MAT statement.

Allowed MAT operations are:

MA TREAD A(M, N)

MAT PRINT A

MAT C = A + B

MAT C = A - B

Read one matrix, dimensions shown.

Print one matrix.

Add two matrices.

Subtract matrices.

(continued on next page)

-51-

MAT C=AllcB MultiplY'mM~i~.

MAT C = ZER(-M, N) Iatroclu<:e :& 6 matr-is, dimensions shown.

MAT C ;: C~N(M,N) Matrix «a.111 t ., clilmentJionsshown.

MAT C = iDN(N) Identity matrix, dimension ShOWD.

MAT C = TRN(A) Transpose.

MAT C = INV(A) Inverse.

MAT C = (k)*A Constant multiple, noteparenthesese.

Inappropriate places, vectors may be substitute .. f&r !!la.tees. E. g. ,

MAT READ A(7) will read a 7-component column ved.t' • .MA.T PRINT

prints all vectors as row-vectors, for convenience. M and N may be form-

ulas. Thus one has the possibility of writing

DIM
READ
MAT

A(20,20)
M
READ A(M, M)

This allows A to be any square matrix up to 20 x 20, its actual dimension

specified in the data. If MAT PRINT A is followed by a 5.8 multiple punch,

matrice s will be printed in the ";" packed format •

... 52-

v

APPENDICES

APPENDIX A -- Error Messages

The various error messages that can occur in BASIC, together

with their ihterpretation, are now given:

Error M~ssage

DIMENSrc1>N T(/).(/) LARGE

ILLEGAL C(/)NSTANT

ILLEGAL F(/)RMULA

ILLEGAL RELATION

ILLEGAL LINE NUMBER

ILLEGAL INSTR UCTI(/)N

ILLEGAL· VARIAB LE

INC(/)RRECT F(/)RMAT

END IS N(/)T LAST

N(/) END INSTR UCTI(/)N

Interpretation

The size of a list or table is too large
for the available storage. Make them
smaller. (See Appendix B.)

More than nine digits or incorrect form
in a constant number.

Perhaps the most common error mes­
sage, may indicate missing parentheses,
illegal variable names, missing multiply
signs, illegal numbers, or many other
errors. Check. the statement thoroughly.

Something is wrong with the relational
expression in an IF-THEN statement.
Che ck to see if you used one of the six
permissable relational symbols.

Line number is of incorrect form, or
contains more than five digits.

Other than one of the fifteen legal BASIC
instructions has been used following the
line number,

An illegal variable name has been used.

The format of an instruction is wrong.
See especially IF-THEN's and F(/)R's.

Self-explanatory, it also occurs if
there are two or more END statements
in the program.

The program has no END statement.

-53-

NC/J DATA

UNDEFINED FUNCTIC/JN

UNDEFINED NUMBER

PRQ>GRAM TC/JO LC/JNG

TOC/J MUCH DATA

TO(/J MANY LABE is

T(/JC/J MANY LC/J(/JPS

NQ)T MA.TCH WITH FOR

F<1>R WITHOUT NEXT

CUT PRC/JGRAM C])R DIMS.

SUBSCRIPT ERRC/JR

ILLEGAL RETURN

There is at least .one READ statement in
the program, but no DAtA statements.

A function such as FNF' () has been used
without appearing in a DEli' statement.
Check for typographical errors.

The statement number appearing in a GC/J
T(/J or IF-THEN statement does not appear
as a line number in the program.

Either the program itself is too long for
the available ltorag·e,or there are too
many constanu and. pdAted labels.
(See Appendix B.)

There is too much data in the program.
(See Appendix B.)

The total length of aU printed labels in
the program exceeds the limit. (See
Appendix B.)

There are too many F<;bR-NEXT combin­
ations in the program. The upper limit
is 26. (See Appendix B.)

An incorrect NEXT statem.ent, perhaps
with a wrong variable given. Also, check
for incorrectly nested F(/JR statements.

A missing NEXT statement~ This mes­
sage can also occur in conjunction with
the previous one.

Either the program is too long, or the
amount of space reserved by the DIM
statements is too much, or a combina­
tion of these. This message can be elim­
inated by either cutting the length of the
program, or by reducing the size of the
lists and tables. .

A subscript has been called for that lies
outside the range specified in the DIM
statement, or if no DIM statement applies,
outside the range 0 through 10.

Occurs if a RETURN is encountered be­
fore the first G(/JSUB during the running
of a program. (Note.: BASIC does not re­
quire the G(/JSUB to have an earlier state­
ment number -- only to perform a G<;bSUB
before performing a RETURN.)

-54-

APPENDIX B - - Limitations on BASIC

There are some limitations imposed on BASIC by the limited amount

of computer storage. Listed below are some of these limitations, in particu-

lar,. those that are related to the error messages in APPENDIX A. The read-

er should realize that while the BASIC language itself is fixed, in time some

of these limitations may be relaxed slightly.

Item

Length of program

Constants and printed labels

Data

Limitation

Difficult to relate to the BASIC program,
but in general about two feet of teletype
paper filled with BASIC statements is
about it.

The total number of constants and differ­
ent printed labels must not exceed 175.

There can be no more than 300 data
numbers.

Length of printed labels The total length of printed labels cannot
exceed something slightly less than 600
characters.

F<bR statements There can be no more than 26 F<bR state­
ments in a program.

G<b T<b and IF- THEN statements The total number of these statements
combined cannot exceed 80.

Lists and Tables The total number of elements in all the
lists and tables combined cannot exceed
1500.

-55-

APPENDIX C -- Summary of ~!1 BASIC Statements

In this summary it is as sumed that all statements begin with a line

number. Following each is one example.

LET

READ

DATA

PRINT

IF-THEN

FCbR

NEXT

LET· (variable)- ::; <~xpression>

10 LET Xl ::; Y+ Z+ (Z /A,- B1'Dl)

READ <variable> ' <variable) , ..., qariablo/

10 READ X, Y, Z , AI, Q(I, J)

DATA <number> <~umber>, ... , <number)

10 DATA 1, 2, -3, 7, 123.479, -2. 35E-4

PRINT <labeii , or <label> <expression? ' or
~expression>

10 PRINT "SINE", "X::; 11 XCI, K). A + B*CCbS(Y)

G(/>TCb <line number>

10 GCbTCb 17

IF <expression) <{elational> < expr~sio~ THEN
. <..~ine numbe9

10 IF X + Y ') 0 THEN 419

FCbR <unsubscripted variablo/ ::; 'expression) TCb ~
<expressio~ STEP<expressio~

10 FCbR I ::; 1 TCb 17

10 FCbR Xl ::; 0 TCb 7 STEP 0.5

NEXT (uIEubscripted variable)

10 NEXT Xl

(continued on next page)

-56-

(con,tinued)

END

ST(/>P

DEF

G(1)SUB

RETURN

DIM

REM

END

10 END

ST(/>P

10 ST(/>P

DEF FN <letter> (unsubscripted variable») = <expressio~
10 DEF FNG(Z) = 1 + SQR(1 + Z * Z)

G(/>SUB <Jine number>

10 G(/>SUB 110

RETURN

10 RETURN

DIM <letter» (<integer?), or <letter:> C ~ntege~ ,
<integer?)

10DIMA(17), B(3, 20)

REM <any string of characters whatsoever>

10 REM THIS IS THE END OF APPENDIX C

-57-

NOTES

-58-

	front-cover
	inside-front-cover
	i
	ii
	iii
	iv
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58

