reading: Computing is a Natural Science

I’ve just been re-reading Peter Denning’s article “Computing is a Natural Science1.    The basic thesis is that computation as broad concept goes way beyond digital computers and many aspects of science and life have a computational flavour; “Computing is the study of natural and artificial information processes“.  As an article this is in some ways not so controversial as computational analogies have been used in cognitive science for almost as long as there have been computers (and before that analogies with steam engines) and readers of popular science magazines can’t have missed the physicists using parallels with information and computation in cosmology.  However, Denning’s paper is to some extent a manifesto, or call to arms: “computing is not just a load of old transistor, but something to be proud of, the roots of understanding the universe”.

Particularly useful are the “principles framework for computing” that Denning has been constructing through a community discussion process.  I mentioned these before when blogging about “what is computing? The article lists the top level categories and gives examples of how each of these can be found in areas that one would not generally think of as ‘computing’.

Computation (meaning and limits of computation)
(reliable data transmission)
(cooperation among networked entities)
(storage and retrieval of information)
(meaning and limits of automation)
(performance prediction and capacity planning)
(building reliable software systems)
categories from “Great Principles of Computing

Occasionally the mappings are stretched … I’m not convinced that natural fractals are about hierarchical aggregation … but they do paint a picture of ubiquitous parallels across the key areas of computation.

Denning is presenting a brief manifesto not a treatise, so examples of very different kinds tend to be presented together.  There seem to be three main kinds:

  • ubiquity of computational devices – from iPods to the internet, computation is part of day-to-day life
  • ubiquity of computation as a tool –  from physical simulations to mathematical proofs and eScience
  • ubiquity of computation as an explanatory framework – modelling physical and biological systems as if they were performing a computational function

It is the last, computation as analogy or theoretical lens that seems most critical to the argument as the others are really about computers in the traditional sense and few would argue that computers (rather than computation) are everywhere.

Rather like weak AI, one can look treat these analogies as simply that, rather like the fact that electrical flow in circuits can be compared with water flow in pipes.  So we may feel that computation may be a good way to understand a phenomena, but with no intention of saying the phenomena is fundamentally computational.

However, some things are closer to a ‘strong’ view of computation as natural science.  One example of this is the “socio-organisational Church-Turing hypothesis”, a term I often use in talks with its origins in a 1998 paper “Redefining Organisational Memory“.  The idea is that organisations are, amongst other things, information processing systems, and therefore it is reasonable to expect to see structural similarities between phenomena in organizations and those in other information processing systems such as digital computers or our brains.  Here computation is not simply an analogy or useful model, the similarity is because there is a deep rooted relationship – an organisation is not just like a computer, it is actually computational.

Apparently absent are examples of where the methods of algorithmics or software engineering are being applied in other domains; what has become known as ‘computational thinking‘. This maybe because there are two sides to computing:

  • computing (as a natural science) understanding how computers (and similar things) behave – related to issues such as emergence, interaction and communication, limits of computability
  • computing (as a design discipline) making computers (and similar things) behave as we want them to – related to issues such as hierarchical decomposition and separation of concerns

The first can be seen as about understanding complexity and the latter controlling it.  Denning is principally addressing the former, whereas computational thinking is about the latter.

Denning’s thesis could be summarised as “computation is about more than computers”.  However, that is perhaps obvious in that the early study of computation by Church and Turing was before the advent of digital computers; indeed Church was primarily addressing what could be computed by mathematicians not machines!  Certainly I was left wondering what exactly was ubiquitous: computation, mathematics, cybernetics?

Denning notes how the pursuit of cybernetics as an all embracing science ran aground as it seemed to claim too much territory (although the practical application of control theory is still live and well) … and one wonders if the same could happen for Denning’s vision.  Certainly embodied mind theorists would find more in common with cybernetics than much of computing and mathematicians are not going to give up the language of God too easily.

Given my interest in all three subjects, computation, mathematics, cybernetics, it prompts me to look for the distinctions, and overlaps, and maybe the way that they are all linked (perhaps all just part of mathematics ;-)).  Furthermore as I am also interested in understanding the nature of computation I wonder whether looking at how natural things are ‘like’ computation may be not only an application of computational understanding, but more a lens or mirror that helps us see computation itself more clearly.

  1. well when I say re-reading I think the first ‘read’ was more of a skim, great thing about being on sabbatical is I actually DO get to read things 🙂 [back]

matterealities and the physical embodiment of code

Last Tuesday morning I had the pleasure of entertaining a group of attendees to the Matterealities workshop @ lancaster. Hans and I had organised a series of demos in the dept. during the morning (physiological gaming, Firefly (intelligent fairylights), VoodooIO, something to do with keyboards) … but as computer scientists are nocturnal the demos did not start until 10am, and so I got to talk with them for around an hour beforehand :-/

The people there included someone who studied people coding about DNA, someone interested in text, anthropologosts, artists and an ex-AI man. We talked about embodied computation1, the human body as part of computation, the physical nature of code, the role of the social and physical environment in computation … and briefly over lunch I even strayed onto the modeling of regret … but actually a little off topic.

Alan driving

physicality – Played a little with sticks and stones while talking about properties of physical objects: locality of effect, simplicity of state, proportionality and continuity of effect2.

physical interaction – Also talked about the DEPtH project and previous work with Masitah on natural interaction. Based on the piccie I may have acted out driving when talking about natural inverse actions

ubiquity of computation – I asked the question I often do “How many computers do you have in your house” … one person admitted to over 10 … and she meant real computers3. However, as soon as you count the computer in the TV and HiFi, the washing machine and microwave, central heating and sewing machine the count gets bigger and bigger. Then there is the number you carry with you: mobile phone, camera, USB memory stick, car keys (security codes), chips on credit cards.

FireFly on a Christmas treeHowever at the Firefly demo later in the morning they got to see what may be the greatest concentration of computers in the UK … and all on a Christmas Tree. Behind each tiny light (over 1000 of them) is a tiny computer, each as powerful as the first PC I owned allowing them to act together as a single three dimensional display.

embodiment of computation – Real computation always happens in the physical world: electrons zipping across circuit boards and transistors routing signals in silicon. For computation to happen the code (the instruction of what needs to happen) and the data (what it needs to happen with and to) need to be physically together.

The Turing Machine, Alan Turing’s thought experiment, is a lovely example of this. Traditionally the tape in the Turing machine is thought of as being dragged across a read-write head on the little machine itself.

However … if you were really to build one … the tape would get harder and harder to move as you used longer and longer tapes. In fact it makes much more sense to think of the little machine as moving over the tape … the Turing machine is really a touring machine (ouch!). Whichever way it goes, the machine that knows what to do and the tape that it must do it to are brought physically together4.

This is also of crucial importance in real computers and one of the major limits on fast computers is the length of the copper tracks on circuit boards – the data must come to the processor, and the longer the track the longer it takes … 10 cm of PCB is a long distance for an electron in a hurry.
Alanbrain as a computer – We talked about the way each age reinvents humanity in terms of its own technology: Pygmalion in stone, clockwork figures, pneumatic theories of the nervous system, steam robots, electricity in Shelley’s Frankenstein and now seeing all life through the lens of computation.

This withstanding … I did sort of mention the weird fact (or is it a factoid) that the human brain has similar memory capacity to the web5 … this is always a good point to start discussion 😉

While on the topic I did just sort of mention the socio-organisational Church-Turing hyphothesis … but that is another story

more … I recall counting the number of pairs of people and the number of seat orderings to see quadratic (n squared) and exponential effects, the importance of interpretation, why computers are more than and less than numbers, the Java Virtual Machine, and more, more, more, … it was very full hour

AlanLcoblo - artefactsAlan

  1. I just found notes I’d made for web page in embodied computation 5 years ago … so have put the notes online[back]
  2. see preface to Physicality 2006 proceedings[back]
  3. I just found an online survey on How many computers in your house[back]
  4. Yep I know that Universal Turing machine has the code on the tape, but there the ‘instructions’ to be executed are basically temporarily encoded into the UTM’s state while it zips off to the data part of the tape.[back]
  5. A. Dix (2005). the brain and the web – a quick backup in case of accidents. Interfaces, 65, pp. 6-7. Winter 2005.[back]